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In this survey I list the degenerations of Schubert (and similar) varieties I know about.
It is not historically exhaustive; in particular my degeneration in §7 subsumes a number
of previously known special cases. There are a few conjectures and problems included.
References are given, but no proofs, and combinatorial details are mostly omitted.

1. HODGE’S DEGENERATION OF THE GRASSMANNIAN TO A STANLEY-REISNER SCHEME

The map

Mk×n → Altk Cn

(~v1, . . . ,~vk) 7→ ~v1 ∧ · · ·∧ ~vk

is SLk-invariant, so descends to a map

SLk\\Mk×n =: Ĝrk(Cn) ↪→ Altk Cn.
The

(
n
k

)
determinants (pλ) of k×k submatrices (called Plücker coordinates) generate this

ring of SLk-invariants (this is the first fundamental theorem of invariant theory). We will
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index
(
n
k

)
by partitions inside a k×(n−k) box. The relations among the (pλ) are generated

by the straightening laws
pλpµ = pλ∪µpλ∩µ + . . .

for λ, µ incomparable (the second fundamental theorem of invariant theory).
The projectivization of this map is called the Plücker embedding.

Theorem (Hodge, predating Gröbner basis theory). There is flat projective degeneration of
subschemes of Plücker space P(AltkCn), taking the straightening laws to their initial forms

pλpµ = 0

for λ, µ incomparable.
The initial scheme is a union of coordinate subspaces, one for each standard Young tableau in

the k× (n− k) box.

Inside Mk×n is the subset of reduced row-echelon forms with a fixed set µ of pivot
columns. Its image Xµ◦ in Grk(Cn) is often called a Bruhat cell, with closure Xµ a Schubert
variety. Similarly we define Xλ by asking that the left-right reversed matrix be in echelon
form, and Xµλ as their (transverse) intersection, a Richardson variety.

Theorem (Hodge, basically). The equations defining Xλ are linear, pµ = 0 ∀µ 6≥ λ. The same
holds for the initial scheme of Xλ (likewise Xµλ).

In particular, the initial scheme of Xµλ is a union of coordinate spaces, one for each standard skew-
tableau of shape µ/λ. The corresponding simplicial complex is homeomorphic to a ball [Björner-
Wachs].

These are not the only subvarieties one can follow nicely into the degeneration; in §8
we’ll do the same with positroid varieties.

2. THE LESS DRASTIC GEL’FAND-CETLIN DEGENERATION

Theorem. There is a Gröbner degeneration of the Grassmannian to the irreducible toric variety
defined by

pλpµ = pλ∪µpλ∩µ

The moment polytope can be identified with real Young tableaux (neither set of inequalities
being strict) with values in [0, 1]. Its vertices are the Young tableaux with values {0, 1}, corre-
sponding to partitions.

The flatness of this follows from the flatness in Hodge’s more drastic degeneration.
The fact that we can chain the degenerations in order shows that the Hodge simplicial
complex (the order complex of Young’s lattice) gives a triangulation of the Gel ′fand-Cetlin
polytope. E.g. for Gr2(C4), the GC polytope is the solutions to

A
≥ ≥

B C
≥ ≥ ≥ ≥

1 D 0

which breaks into two simplices along the plane A = D.
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In particular, there’s a map on face posets, taking a skew-tableaux (indexing a stratum
in the Hodge degeneration) to a face of the Gel ′fand-Cetlin polytope. These faces are in-
dexed by which entries are 1 (by the West corner), which entries are 0 (by the East corner),
and which are NE and SE equalities hold. From a skew-tableau (turned counterclockwise
45◦), it is clear how to obtain this data.

E.g. for Gr2(C4), the tableaux 1 2
3 4

and 1 3
2 4

provide the two top simplices, glued along the
one from 1 2

2 4
.

Question: In both this and the Hodge degeneration, one can follow the conormal variety
of the Grassmannian through the degeneration. What indexes the components of the
resulting scheme, and what are the multiplicities of the components?

3. THE EXTENSION OF THAT TO GLn/B BY GONCIULEA-LAKSHMIBAI

When a subring (e.g. an invariant ring) of a domain degenerates to another domain, as
in the last section, it’s suggestive that it could degenerate as a subring, which will be how
we pursue it further.

The fundamental theorems of invariant theory also apply to N−\\Mn×n, where N− is
lower unipotent matrices. Now the Plücker determinants are of all sizes k, using any k
columns and the top k rows. We can correspond these 2n generators with partitions in the
upper triangle of a matrix, and from there to {0, 1} Young tableaux, such as

0 0 0 0 1 1
0 0 0 1 1
0 1 1 1
1 1 1
1 1
1

The correspondence goes as follows: start in the NE corner, and go left/down n times,
keeping the 1s to the SE and 0s to the NW. The number of 1s on the diagonal gives k.

Let p ′λ be the diagonal term of the determinant pλ.

Theorem. [GL, MS] There is a flat (SAGBI) degeneration of the N−-invariant subring to the
monomial subring generated by the (p ′λ). Its monoid can be identified with Gel ′fand-Cetlin pat-
terns, which are Young tableaux in the NE triangle. The {0, 1} tableaux above are the Hilbert basis
of that monoid (once we ditch the all-0s pattern, corresponding to the 0× 0 Plücker determinant).

A big difference between the Grassmannian and flag manifold Gel ′fand-Cetlin degen-
erations is that the degenerate flag manifold acquires new T -fixed points. There has been
much work by de Loera and others on the moment images of these new points (which
need not be integral).

Every SAGBI degeneration has an associated Gröbner degeneration. It is then interest-
ing to follow Richardson varieties under this degeneration. Here are some facts for which
I don’t have references:

Theorem 1. (1) init of a Richardson variety is again reduced, i.e. is the union of toric vari-
eties TV(F) corresponding to a certain set {F} of faces of the Gel ′fand-Cetlin polytope.
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(2) For each face F of the polytope, there is a unique smallest Xvw with init Xvw ⊇ TV(F). It is
read this way: in each of the two sets of GC inequalities, the locations of equalities deter-
mines a pipe dream whose Demazure product is v or w, depending. (These definitions
are in §7.)

(3) The union of those faces is homeomorphic to a ball.

Some of that is in [Kogan-Miller], some [Björner-Wachs], some [K]. I believe more will
be in a Speyer student thesis soon.

4. FEIGIN ET AL.’S DEGENERATION OF GLn/B TO A COMINUSCULE SCHUBERT VARIETY

In [Fe] is given a SAGBI-like degeneration of GLn/B to an irreducible variety, with
many nice properties, one being that the open N-action degenerates to an open action of
the vector space n, giving a sort of Ga-version of a toric variety.

The resulting variety was recognized in [IL] as a Schubert variety. Many of Feigin et
al.’s results on this “degenerate flag variety”, such as it having a Frobenius splitting and
a Bott-Samelson-”like” resolution, follow trivially from [IL].

Lanini and I showed that this degeneration can be seen as embedded:

Theorem 2. Let∆± : Cn → Cn⊕Cn take~v 7→ ~v⊕±~v. Define Fl(1, 2, 3, . . . , n)→ Fl(2, 4, 6, . . . , 2n)
by

(0 < V1 < V2 < . . . < Vn) 7→ (. . . < ∆+(Vi) + ∆−(Ci) < . . .)
Then the image has a Gröbner degeneration to a certain Schubert variety.

5. CHIRIVÍ’S EXTENSION OF HODGE TO GENERAL G/P AND LINE BUNDLE

The Lakshmibai-Seshadri conjecture gave a type-independent way to compute the mul-
tiplicities in G-irreps, by counting lattice points in a union of stretched simplices. It in-
spired and was proven using Littelmann’s path model. It was given geometric form by
Chirivı́:

Theorem 3. [Ch] Let ν be a dominant weight ofG, andG/P ↪→ P(Vν) the orbit of the high weight
vector of the irrep Vν (e.g. the Plücker embedding, in the case G = GLn and ν fundamental).

Then there is an embedded degeneration of G/P to a seminormal union of toric varieties (each
an equivariant cover of projective space), with one component for each maximal chain inW/WP.

Note that this does not create any new T -fixed points. In particular, in the flag manifold
case the Chirivı́ degeneration is not more drastic than the Gel ′fand-Cetlin degeneration
(as was true on Grassmannians); they are incomparable degenerations.

Question: Is there a common degeneration of both?
Chirivı́’s proof is by analysis of Lusztig’s canonical basis for Vν. I believe that there

should be a more geometric proof based off of

Lemma 1. Let E ≤ Vν be the sub-N(T)-representation consisting of extremal weight spaces, and
Vν � E the T -equivariant projection. Then the composite

e : G/P ↪→ P(Vν) 99K PE
is globally defined (unlike the second map), and finite (makingG/P a “branchvariety” of PE [AK]).
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I suspect that there should be a straightforward Gröbner degeneration of the subvariety
e(G/P), withG/P itself degenerating as a branchvariety of PE. More specifically, we know
that G/P is defined by quadratic equations (the kernel of the map Sym2Vλ → V2λ) [D.
Garfinkel’s thesis, or findable in Brion-Kumar]. I conjecture that

• e is birational to its image, so they have the same degree
• (inite(G/P))red = SR(order(W/WP)) w.r.t. lex order of linear extensions ofW/WP.

The first example is λ = ρ for G = SL(3), where this initial ideal is

(b⊗x)(c⊗y)(a⊗z), (c⊗y)2(a⊗z)2, (b⊗z)(c⊗y)(a⊗z)2, (c⊗x)(c⊗y)2(a⊗z),
(c⊗x)(b⊗z)(c⊗y)(a⊗z), (c⊗x)(b⊗z)2(a⊗z), (c⊗x)2(b⊗z)(c⊗y), (c⊗x)2(b⊗z)2

with the correct radical 〈(c⊗x)(b⊗z), (c⊗y)(a⊗z)〉.
Questions:

(1) What is the ramification locus of e?
(2) Does the standard Frobenius splitting on G/P restrict to one on e(G/P)?
(3) These would explain why the degeneration of G/P is a seminormal union of semi-

normal toric varieties, each an equivariant cover of projective space. Why are the
components of Chirivı́’s degeneration actually normal?

6. CALDERO’S EXTENSION OF GONCIULEA-LAKSHMIBAI TO GENERAL G/P

For those who prefer degenerations that stay irreducible, one has

Theorem 4. [Ca02]

(1) For any G/P in any P(Vλ), there exist Gröbner degenerations of G/P to irreducible toric
varieties. (Their polytopes were already described in [BZ99].) There are many; they depend
on the choice of a reduced word for w0. Being Gröbner, they provide compatible degenera-
tions of all subschemes, e.g. the Schubert varieties.

(2) For any single Schubert variety Xw in G/P, one can ensure that init Xw remains irre-
ducible under this degeneration, by making sure that the chosen word is “adapted” to w.

(3) (O. Mathieu’s observation) There is no degeneration of G/P that works for all Xw simul-
taneously, since some Xw ∩ Xv can themselves be reducible.

The first is based on canonical basis techiques, the second a purely combinatorial fact.
Question: are there reduced words “adapted” to Richardson varieties (or even their

projections, as in §8)?

7. MY DEGENERATION OF KAZHDAN-LUSZTIG VARIETIES
TO STANLEY-REISNER SCHEMES

Lemma 2 (Kazhdan-Lusztig). The open set (v · N−B/B) ∩ Xw on Xw, centered at the T -fixed
point vB/B, is isomorphic to

Xw ∩ Xv◦ a Kazhdan-Lusztig variety

times a (generally irrelevant) vector space X◦v.

To understand the singularities of Xw, it’s enough to look near T -fixed points, and
thanks to this lemma it’s enough to look at K-L varieties.
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Theorem 5. [K, §7.3] Let Q be a reduced word for v, and consider the map

m : A`(v) → G/B

(z1, . . . , z`(v)) 7→ (∏
eqi(zi)rqi

)
B/B

where eq, rq are w.r.t. pinnings of the root SL2s in G. Then

(1) m is an isomorphism with Xv◦.
(2) lex init m−1(Xv◦∩Xw) is the Stanley-Reisner scheme of the subword complex∆(Q,w),

whose facets are the complements in Q of reduced subwords with product w.
(3) This lex init commutes with unions and intersections, applied to K-L varieties.
(4) [KnM03] Those subword complexes are homeomorphic to balls.

We can cast this in another way [K]. Given a (not necessarily reduced) word Q, there
exists a unique1 Bruhat maximum in {

∏
S : S ⊆ Q}, called the Demazure product. Then

the geometrically defined map

2Q → [1, v]

F 7→ min{w : lex init m−1(Xw) ⊇ AF}
is defined (those mins are unique, which uses part (3) of the above) and matches the De-
mazure product. This gives a partition of the simplex with face lattice 2Q into open balls,
whose closures are closed balls (subword complexes), whose combinatorics matches that
of the Bruhat order on [1, v].

7.1. Example: matrix Schubert varieties. If v = w0wP0 , then the composite Xv◦ ↪→ G/B�
G/P is an isomorphism with the big cell. If G/P is cominuscule, e.g. a Grassmannian,
then v has a unique reduced word Q up to commuting moves. (In type A this “fully
commutative” condition on v is equivalent to v being 321-avoiding.)

Under the graph construction, this big cell is isomorphic to k × (n − k) matrices. In
these matrix coordinates, the n− 1 Schubert divisors pull back to

• k− 1many NW determinants,
• the (n− k) − k+ 1many k× k determinants that use k consecutive columns, and
• k− 1many SE determinants.

Subwords ofQ correspond to pipe dreams, in which we either use a matrix entry to make
two pipes cross or forego the opportunity.

Then theorem 5 recovers many of the results of [KnM05] (at least over a field).

8. PROJECTED RICHARDSON VARIETIES, AND THEIR CHIRIVÍ DEGENERATIONS

The projections of Schubert varieties (B−-orbit closures) in G/B to G/P are exactly the
Schubert varieties inG/B. But the projections of Richardson varieties may not be Richard-
son: the intersection of projections is typically bigger then the projection of the intersec-
tion.

Theorem 6. [KLS1, KLS2]

1Most easily proven by observing that the image of a Bott-Samelson map must be an opposite Schubert
variety, and following the T -fixed points.
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(1) Projected Richardson varieties are normal and Cohen-Macaulay, with rational singulari-
ties.

(2) The set of projected Richardson varieties in G/P forms a stratification (the intersection of
two is a union of others), and its poset is ranked.

(3) The boundary of a projected Richardson variety (in this stratification) is an anticanonical
divisor.

(4) The projected Richardson stratification is the coarsest stratification by irreducible varieties
that includes the components of G/P’s boundary (i.e. it is “generated” by that anticanon-
ical divisor).

(5) Under the standard Frobenius splitting on G/P, the projected Richardson varieties are
exactly the compatibly split subvarieties.

(6) The projected Richardson stratification on Grk(Cn) is the cyclic Bruhat decomposition,
the common refinement of the n cyclic shifts of the Bruhat decomposition. Its strata are
called positroid varieties.

While (1) and (2) hold for the Richardson stratification of G/P, (3) and (4) hint that the
finer projected Richardson stratification is better, and simpler!

As for degeneration:

(1) Theorem [KLS2]: The Hodge degeneration of a positroid variety π(Xvw) ⊆ Grk(Cn)
is the Stanley-Reisner scheme of a ball, π(order complex of [w, v]).

(2) Theorem [KLS1]: For any G/P, π(order complex of [w, v]) is a shellable ball.
(3) Conjecture: The Chirivı́ degeneration of π(Xvw) ⊆ G/P is the Stanley-Reisner scheme

of π(order complex of [w, v]).

We know a bit more about the positroid case. Consider the degenerations

Grk(Cn) 99K TV(GC) 99K SR(order(W/WP)),

inducing maps backwards on posets,
positroids← {faces of GC}← {skew-tableaux}

The map from skew-tableaux to faces was explained in §2. The map from faces to
Richardsons was explained in theorem 1. From there we get a positroid variety as a
projected Richardson variety.

9. VAKIL’S DEGENERATION OF GRASSMANNIAN RICHARDSON VARIETIES
THROUGH INTERVAL POSITROID VARIETIES

So far the degenerations have been of projected Richardson (e.g. Richardson (e.g. Schu-
bert)) or K-L varieties

• in affine or projective space (Hodge, theorem 5)
• mapping finitely to projective space (Chirivı́, conjecturally)
• inside a bigger flag manifold (our interpretation of Feigin’s)
• or done as SAGBI degenerations (Gonciulea-Lakshmibai, Caldero).

and based on Gm-actions (AKA Gröbner degenerations).
Vakil introduced an embedded degeneration-in-stages of Richardson varieties in Grass-

mannians to unions of Schubert varieties, with two new features: after each stage, one has
to break into components (to avoid creating multiplicities), and it’s based of Ga-actions.
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In particular it requires an extra tweak, if one wants to compute the T -equivariant coho-
mology class of a Richardson variety, not just the ordinary cohomology.

9.1. Combinatorial shifting. The “shift” operation xi→j due to [Erdős-Ko-Rado] “turns
i into j, unless something’s in the way”. We’ll define the combinatorial shift for numbers
k, sets S of numbers, and collections C of sets of numbers:

xi→jk :=

{
k unlessm = i

j ifm = i (nothing can be in the way)

xi→jS :=

{{
xi→jk unless xi→jk ∈ S
k if xi→jk ∈ S : k ∈ S

}
=

{
S unless j /∈ S 3 i
S \ {i} ∪ {j} if j /∈ S 3 i

xi→jC :=

{{
xi→jS unless xi→jS ∈ C
S if xi→jS ∈ C : S ∈ C

}
Note thatxi→j preserves cardinality. The linear analogues of k, S, C will be basis elements,
linear subspaces, and subschemes of Grk(Cn), for which we define2 the geometric shift
as

xi→jX := lim
t→∞ exp(teij) · X

where eij is a matrix with only an (i, j) entry.
The combinatorial and geometric shifts are related by two constructions:{

collections C ⊆
(
n

k

)}
∼ {T -invariant subschemes X ⊆ Grk(Cn)}

XT fixfix X

C 7→ X(C) :=
⋂

S∈(nk)\C

{pS = 0}

where the elements of XT are coordinate k-planes, the set of whom we identify naturally
with

(
n
k

)
.

Theorem 7. [K2]

(1) For any C, X(C)T = C.
(2) For any reduced X, X(XT) ⊇ X.
(3) If X is a Schubert variety, then X(XT) = X (Hodge’s theorem from before). This also holds

for positroid varieties [KLS2].
(4) For any X, (xi→jX)T ⊆ xi→j(XT).
(5) If X = X(C) or is irreducible, then (xi→jX)T = xi→j(XT).

We will also need a sweep operation, which combinatorially is just Ψi→jX := X∪xi→jX.
The geometric sweep is

Ψi→jX :=
⋃
t∈A1

exp(teij) · X

2If such limits are unfamiliar, look ahead to the definition of “sweep” below.
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which is obviously the projection of a flat family

Ψ̃i→jX :=
⋃
t∈A1

{t}× exp(teij) · X ⊆ P1 ×Grk(Cn)

over P1. The shift is exactly defined as the fiber over∞, added in taking the closure.

Theorem 8. (1) In ordinary cohomology and K-theory, [X] = [xi→jX].
(2) In T -equivariant cohomology, with base ring H∗T = Z[y1, . . . , yn],

[X] = [xi→jX] + d(yi − yj)[Ψi→jX]
where d is the degree of the map Ψ̃i→jX� Ψi→jX (or 0 if X is xi→j-invariant).

(3) If d = 1 and Ψi→jX has rational singularities, then in T -equivariant K-theory, with base
ring H∗T = Z[exp(±y1), . . . , exp(±yn)],

[X] = exp(yj − yi)[xi→jX] + (1− exp(yj − yi))[Ψi→jX]
9.2. Reducedness properties of judiciously chosen shifts. Vakil gives a particular de-
generation order, an ordering ((ik, jk)) of the pairs {(i, j) : i < j} in which to do shifts.

We can state most of his results fairly quickly, in an abstract way. Let Vk be a set of
subvarieties of Grk(Cn), defined inductively as follows:

• V0 := {Xµλ : λ, µ ∈
(
n
k

)
}

• Vk>0 :=
⋃
X∈Vk−1

{components of xikjkX}

Vakil proved some important theorems about these varieties and their shifts:

Theorem 9. [V]

(1) For X ∈ Vk−1, the shift xikjkX is generically reduced, with one or two components (explic-
itly described, but not here).

(2) V(n2) is the set of opposite Schubert varieties.
(3) Hence, the homology class [Xνµ] is an explicit sum (with repetition but not explicit multi-

plicities) of classes [Xλ], which computes the Littlewood-Richardson coefficients positively.

I strengthened these in several ways:

Theorem 10. [K2]

(1) If one expands V0 to consist of interval Schubert varieties (defined below), then each
Vk ⊆ V0. In particular this gives equations for all of Vakil’s varieties (which he defined as
closures of certain locally closed sets).

(2) Each shift xikjkX is reduced (not just generically), and the intersection of any set of m
components is codimensionm and an interval Schubert variety (in particular, reduced).

(3) Each sweep is an interval Schubert variety, and its Ψ̃i→jX→ Ψi→jX has degree 1.
(4) Hence, the KT -homology class [Xνµ] is an explicit sum (with repetition but not explicit

multiplicities) of classes [Xλ] times factors exp(yj−yi) and 1−exp(yj−yi). This computes
several generalizations of Littlewood-Richardson coefficients appropriately positively.
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We now get around to defining interval positroid varieties. There is one for each upper
triangular partial permutation matrix f of rank n− k, defined by

Πf :=

{
rowspan(M) : M ∈Mrank=k

k×n , rank(columns [i, j]) ≤ |[i, j]|−
∑

i≤a≤b≤j

fab

}
Lemma 3. [K2]

(1) If f’s 1s run NW/SE, then Πf is a Richardson variety Xνµ, with µ determined by the rows
of f’s 1s and ν determined by the columns.

(2) In particular, if f’s 1s run NW/SE and are in the top r rows of f (where r = rank(f)), then
Πf = X

ν.

To actually derive a formula from these results one needs to index the elements of each
Vk, and determine the components of each shift (and their intersections for K-theory, and
the sweep for equivariant cohomology). Vakil indexes Vk by 2-dim “checkerboards”, so
that any single term in the answer is given by a (2 + 1)-dim “checker game”. I stream-
line the checkerboards to 1-dim objects, and the checker games to (1 + 1)-dim “IP pipe
dreams”.

It is unfortunate that these techniques apply only to interval positroid varieties, not
arbitrary positroid varieties, whose classes solve the Schur-times-Schubert problem. (This
problem has been solved combinatorially in [ABS].) Unfortunately, there are examples of
positroid varieties for which no shift is a nontrivial union of positroid varieties [Fo].

Question: Are there other Grk(Cn)-embedded degenerations of positroid varieties, per-
haps through some larger class, giving a geometric proof of the [ABS] formula?

One combinatorial motivation to do this is that geometric proofs typically extend to
equivariant K-theory, not just cohomology.

10. A FACT SEEKING A DEGENERATIVE PROOF

Consider the T -space
∏

β∈∆+
P(Cβ/2 ⊕ C−β/2), carrying the line bundle �∆+O(1), with

space of sections
⊗

β∈∆+
(Cβ/2⊕C−β/2). This T -rep is isomorphic toVρ, as is straightforward

to prove from WCF once you’re told it. More generally,

Proposition 1 (Kostant, personal communication). The T -spaces
∏

β∈∆+
P(Cβ/2 ⊕ C−β/2)

with this line bundle, and G/B ↪→ P(Vρ), have the same (multigraded) Hilbert function.

Consequently, Hartshorne’s thesis says that they can be connected by a flat family of
subschemes of P(Vλ). However, neither can degenerate to the other, as they are smooth
with different topologies.

Questions:

• Is there a common degeneration of both?
• Is there a flat family of T -invariant subschemes connecting them?
• (Together) Is there a T -equivariant degeneration of both?

For example, one could G-L degenerate P(Vλ) to the GC toric variety, and then construct
isomorphic tesselations of the GC polytope and the cube, the isomorphism compatible
with their maps to t∗. For GL(3), this is easy enough to do.
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