LS Galleries and MV Cycles

Stephane Gaussent (with Peter Littelmann)

G group	G^{\vee}
SL_3	PSL_3
SO_5	Sp_4

Fix A, P (the character lattice), P^{\vee} (the co-character lattice), (α_i) (the simple roots), (α_i^{\vee}) (the co-roots)

Path model for
$$G^{\vee}$$
 Littelmann, 1994 $P(X) = \mathbb{R}$ Bruhat-Tits building $P(X) = \mathbb{R}$ Lusztig-Ginzburg: $P(X) = \mathbb{R}$ Lusz

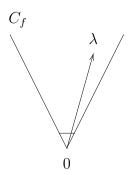
Remarks.

- 1. Mirković-Vilonen found cycles in $IH^*(Gr^{\overline{\lambda}})$ that give a canonical basis for $V(\lambda)$.
- 2. The first inclusion is combinatorial; the second inclusion is via geometry (inside the building).

To compare the two models, we need to replace the path model by the gallery model.

Combinatorics

Let
$$\lambda \in (P^{\vee})^+$$
 be regular.
(λ is a dominant co-weight, regular)

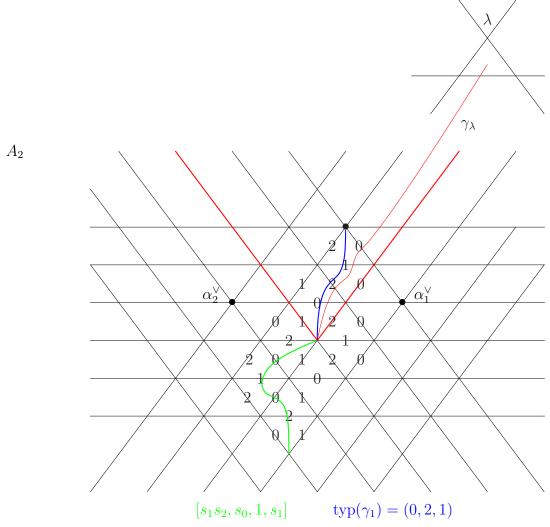


The apartment is $\mathbb{A} = P^{\vee} \otimes \mathbb{R}$.

The affine Weyl group is $W^a = W \ltimes Q^{\vee}$, where Q^{\vee} is the coroot lattice. An apartment is a Coxeter complex.

labelling of it

Fix a minimal alcove gallery γ_{λ} from 0 to λ .



If $\gamma_{\lambda} \leftrightarrow w_{\lambda} \in W^a$ has minimal decomposition $w_{\lambda} = s_{i_1} s_{i_2} \cdots s_{i_r}$, then $\operatorname{typ}(\gamma_{\lambda}) = (i_1, i_2, \dots, i_r)$ (this depends on the walls the minimal alcove gallery crosses).

Let $\Gamma(\gamma_{\lambda})$ be the set of all galleries in \mathbb{A} starting at 0 and having type $\operatorname{typ}(\gamma_{\lambda})$. Then we have a bijection

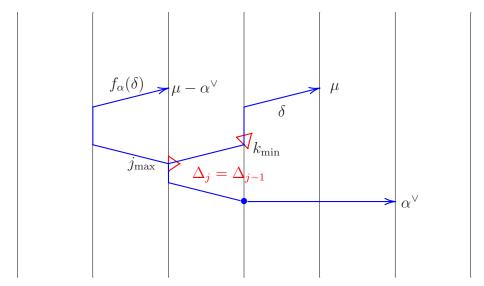
$$W \times \{1, s_{i_1}\} \times \cdots \times \{1, s_{i_r}\} \xrightarrow{\simeq} \Gamma(\gamma_{\lambda})$$
$$[\delta_0, \delta_1, \dots, \delta_r] \longmapsto (0 \subset \overline{\Delta}_0 \supset \Delta'_1 \subset \overline{\Delta}_1 \supset \cdots \Delta'_r \subset \overline{\Delta}_r \supset \mu) = \delta,$$

where $\overline{\Delta}_i$ denotes an alcove (more precisely, $\overline{\Delta}_i = \delta_0 \delta_1 \cdots \delta_i(\Delta_f)$, where Δ_f is the fundamental alcove), Δ'_j is a face of codimension 1.

Note that $type(\mu) = type(\lambda)$ and $\pi(\delta) = \mu$ (end of the gallery).

Root operators

Let α be a simple root, f_{α} , e_{α} .



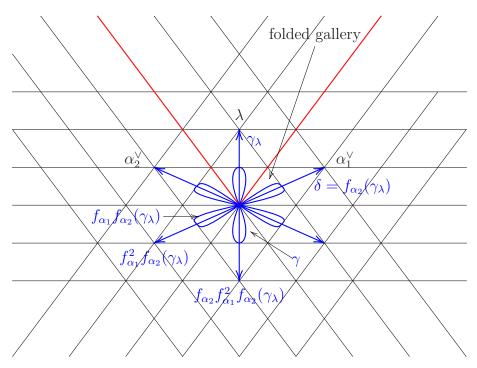
Let $H_{\alpha,m}$ with m minimum such that there exists j so that Δ'_j is in $H_{\alpha,m}$. Let j_{\max} be the maximum of the indices j such that Δ'_j is in $H_{\alpha,m}$. Let k_{\min} be the minimum of the indices k such that Δ'_k is in $H_{\alpha,m+1}$. Then $f_{\alpha}(\delta)$ is obtained from δ by reflecting the part of δ between j_{\max} and k_{\min} and translating the part after k_{\min} .

Define e_{α} in the same way. Then

$$\pi(f_{\alpha}\delta) = \mu - \alpha^{\vee}, \qquad \pi(e_{\alpha}\delta) = \mu + \alpha^{\vee}, \qquad f_{\alpha}(e_{\alpha}\delta) = e_{\alpha}(f_{\alpha}\delta) = \delta.$$

In the following example, $\lambda = \alpha_1^{\vee} + \alpha_2^{\vee}$ and we draw all the galleries in $\Gamma(\gamma_{\lambda})$.

 A_2



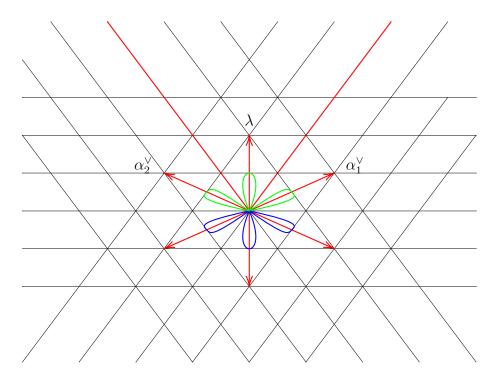
Remarks. See the definition of $\dim(\gamma)$ later.

1.
$$\dim(\gamma) = 1$$

- 2. $\dim(\delta) = 3$
- 3. $\dim(f_{\alpha_1}f_{\alpha_2}(\gamma_{\lambda})) = 2$

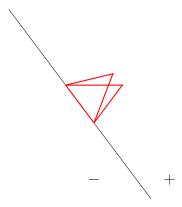
The operators preserve $\Gamma(\gamma_{\lambda}), f_{\alpha}, e_{\alpha} : \Gamma(\gamma_{\lambda}) \to \Gamma(\gamma_{\lambda}).$ Let $\Gamma^{+}(\gamma_{\lambda}) = \{ \gamma \in \Gamma(\gamma_{\lambda}) \text{ positively folded} \}.$ A gallery δ is positively folded if $\delta_{j} = 1 \Rightarrow \overline{\Delta_{j-1}} = \overline{\Delta_{j}}$ is on the positive side of the wall at j.

 A_2



not positively folded galleries

positively folded galleries



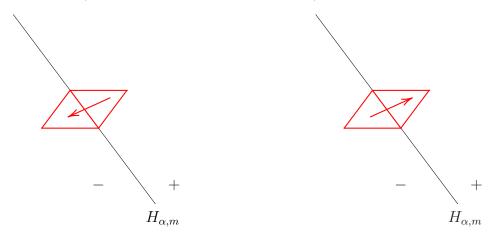
$$\overline{\Delta}_{j-1} = \overline{\Delta}_j \text{ in } \delta \leadsto \delta = [\delta_0, \delta_1, \dots, \delta_{j-1}, 1, \delta_{j+1}, \dots, \delta_r]$$

The operators preserve the set $\Gamma^+(\gamma_{\lambda})$.

Define LS galleries

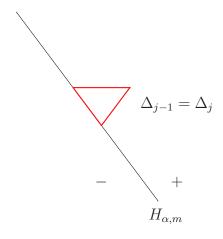
Let $\delta \in \Gamma(\gamma_{\lambda})$.

Then $\dim(\delta) = \#\{H_{\alpha,m} \text{ left positively by } \delta\}$, where $H_{\alpha,m}$ denotes an affine hyperplane.

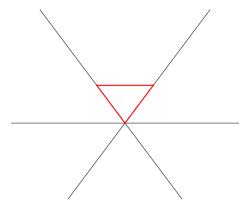


not counted in $\dim(\delta)$

counted in $\dim(\delta)$



counted in $\dim(\delta)$



Peculiar rule for the starting alcove: one looks at several walls going through 0

Proposition. If $\delta \in \Gamma^+(\gamma_\lambda)$ and $\pi(\delta) = \mu$, then $\dim(\delta) \leq \rho(\lambda + \mu)$, where $\rho = (\sum_{\alpha > 0} \alpha)/2$ is half the sum of the positive roots.

Definition. A gallery $\delta \in \Gamma^+(\gamma_\lambda)$ is LS if $\dim(\delta) = \rho(\lambda + \mu)$.

The operators preserve $\Gamma_{LS}^+(\gamma_{\lambda})$.

Theorem.

1. character formula:

$$\operatorname{Char}V(\lambda) = \sum_{\nu} \sharp \Gamma_{\operatorname{LS}}^{+}(\gamma_{\lambda}, \nu) e^{\nu},$$

where $\Gamma_{LS}^+(\gamma_\lambda, \nu)$ is the set of all LS galleries ending in ν .

2. The graph built on $\Gamma_{LS}^+(\gamma_{\lambda})$ with the root operators is isomorphic to the crystal graph of $V(\lambda)$ of G^{\vee} .

Remark. If λ is singular, there is still a well-defined alcove containing λ in C_f (the fundamental chamber) realizing the minimum distance to Δ_f and one can adapt the preceding to get the same result (with P. Baumann).

Geometry

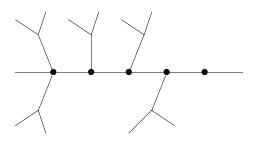
Let $G \supset B \supset T$ (be a borus as Jantzen is saying).

Then $B \supset U \supset T$, $U^- \subset B^-$, and $B^- \cap B = T$.

We have $\mathscr{B}^{\mathrm{sph}}$ (spherical building), $\mathscr{B} = \mathscr{B}(G, K)$ (affine building), and $\mathscr{B}^{\infty} = \mathscr{B}(G(K), B(K))$ (spherical building at infinity).

Note that $\mathscr{B}(G,K) = G(K) \times \mathbb{A}/\sim$ for some equivalence relation \sim , and

 $\mathscr{B}(G,K)\cong \{ \text{parahoric subgroups } P\supset I=ev_0^{-1}(B_{\mathbb{C}}) \}.$



Affine building of type A_1

Affine Grassmanian

$$\mathrm{Gr} = G(K)/G(\mathcal{O}) = \coprod_{\lambda \in (P^\vee)^+} \ G(\mathcal{O})t_\lambda G(\mathcal{O})/G(\mathcal{O}) = \coprod_{\mu \in P^\vee} \ U^\mp(K)t_\mu G(\mathcal{O})/G(\mathcal{O})$$

Mirković-Vilonen cycles: The intersections $U^{-}(K) \cdot t_{\mu} \cap G(\mathcal{O}) \cdot t_{\lambda}$ are of pure dimension $\rho(\lambda + \mu)$ (Mirković-Vilonen).

An MV cycle Z^{λ}_{μ} is the closure of an irreducible component in $U^{-}(K) \cdot t_{\mu} \cap G(\mathcal{O}) \cdot t_{\lambda}$ in $\overline{\operatorname{Gr}^{\lambda}} = \overline{G(\mathcal{O}) \cdot t_{\lambda}}$.

Suppose λ is regular (again, one can manage the singular case as well), and let $\hat{\Sigma}(\gamma_{\lambda})$ be the set of all galleries in the affine building \mathscr{B} starting at 0 of type $\operatorname{typ}(\gamma_{\lambda})$. Then

$$\hat{\sum}(\gamma_{\lambda}) \xrightarrow{\pi} \overline{\operatorname{Gr}^{\lambda}} = \overline{G(\mathcal{O}) \cdot t_{\lambda}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

Here the upper arrow is a Bott-Samelson resolution of singularities.

Remarks.

- 1. $G(\mathcal{O}) \cdot \gamma_{\lambda}$ is the set of all minimal galleries.
- 2. $\hat{\Sigma}(\gamma_{\lambda}) = G(\mathcal{O}) \times_I P_{i_1} \times_I \cdots \times_I P_{i_r}/I$, where $P_{i_1} = I\{1, s_{i_1}\}I$.
- 3. $\pi([g_0, g_1, \dots, g_r]) = g_0 g_1 \cdots g_r t_{\lambda_{\text{fund}}}$, where $\lambda_{\text{fund}} \in \Delta_f$ such that $\text{typ}(\lambda_{\text{fund}}) = \text{typ}(\lambda)$

Theorem.

$$U^{-}(K) \cdot t_{\mu} \cap G(\mathcal{O}) \cdot t_{\lambda} \cong \coprod_{\substack{\delta \in \Gamma^{+}(\gamma_{\lambda}), \\ \pi(\delta) = \mu}} C(\delta) \cap G(\mathcal{O}) \cdot \gamma_{\lambda},$$

where $C(\delta)$ is a cell of dimension $\dim(\delta)$ and therefore, each LS gallery gives an open of a unique MV cycle.