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Working with Chris Dowson, microbiologist at
Warwick. 28 strains 469 nucleotides (also called
bases)

(Show only 64 bases, taken from middle of
469. Show only 2 strains)

First strain CTATCAGCCGACAG
CTGGCTGAAGAAATGGGCA
AGCTGCAIA|GAGCGCATCAC
GTCGACCAAGAAGGG

Second strain C TATCAGCCGACAG
CTGGCTGAAGAAATGGGCA
AGCTGCA|[G|GaACGCATCAC
GTCGACCAAGAAGGG




Use differences between sequences to make
"most likely" tree.
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Five different sites give five different trees.
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Applications

Bill Martin (Dusseldorf, Botany).
70 trees, each with 19 leaves.

Possible project: Automated search for hor-
izontal transfer of DNA fragments.

Multiple alignment: 19 sequences. How
reliable is the alignment?

Markov chain Monte Carlo. Measure vari-
ability of “best” trees.

Summary statistic from a posteriori distri-
bution of possible trees.
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Three leaves

x, y and z are positive numbers representing
number of mutation events.

unknown root
of tree

One tree is represented by one point
(z,y,2z) in ordinary (euclidean) space, with all
three coordinates non-zero and positive.



A single point in 3-dimensional space (left)
represents a tree with three leaves (right)
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I'wo indistinguishable and identical trees:

Monkey /Human
Gorilla Chimpanzee
B Gorilla
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Two different trees:
How different?

Quantify!!
Monkey
Human
Chimpanzee
Monkey
H
B Gorilla
Gorilla Chimpanzee



Moving from one tree to another.
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One internal edge

Suppress lengths of external edges.




Two internal edges
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Two internal edges
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Two internal edges
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The wrong permutation
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Geodesics

Edge common to two trees.
Compatible edges.

Weighted T7; and T (n + 3) leaves.
Assume no internal edges in common.
n internal edges — n coordinates.

Theorem. (Billera, Holmes, Vogtmann) La-
bel the positive axes in R"™ by the edges of T}
and the negative axes by the edges of T5. Let
t1 € R™ (all coordinates positive) represents
17, t2> (all coordinates negative) represents T5.
By choosing appropriate permutations of the n
positive axes, the geodesic from Ty to To goes
through the part of tree space in R™.
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Theorem. (Epstein, Ingram). Given Ty and
T> as before, one can find in time O(n?) a
permutation of the axes, such that

e All trees with the topology of 17 are rep-
resented by points in the positive orthant.

e All trees with the topology of T> can be
represented by points in the negative or-
thant.

e Each tree using any of the edges of Tj
and/or any of the edges of T> are repre-
sented by points in R™.

As a corollary, any geodesic in tree space from
any tree with the topology of Ty to any tree
with the topology of T> lies in R™,
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Edges in upper tree:

(ablcdef), (abc|def), (abcd|ef).

Edges in lower tree:

(bd, acef), (bdf|ace), (abdf|ce).
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The average of a finite set of points can be
defined in many ways.

Given t1,...,tyy be N points in tree space.

f) =d(v,t1)° + ... + d(v, ty)>.

Theorem. f has a unique minimum. This
can be computed in a time proportional to N
times the time taken to compute the distance
between two trees.
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