REES CRITERIA

BERND ULRICH

ABSTRACT. These are notes on the author's talk given at the workshop on Integral Closure, Multiplier Ideals and Cores, AIM, December 2006.

Let (R, \mathfrak{m}) be a Noetherian local ring, equidimensional, universally catenary, of dimension d.

Theorem 0.1 (The Rees Criterion). Let $J \subset I$ be \mathfrak{m} -primary. Then J is a reduction of I if and only if e(J) = e(I).

Remark 0.2. Ratliff showed this property is equivalent to R being equidimensional and universally catenary.

1. The ideal case

Let I be an ideal, and let $G=\operatorname{gr}_I(R)$. Consider $H^0_{\mathfrak{m}}(G)$ which is the set of all elements of G killed by some power of the maximal ideal \mathfrak{m} of R. This is a finite G-module. Therefore, it is annihilated by a uniform power t of \mathfrak{m} , $\mathfrak{m}^t H^0_{\mathfrak{m}}(G)=0$. Hence it's a finite graded module over $G\otimes_R R/\mathfrak{m}^t$, which is standard graded over an Artinian local ring. Therefore we can talk about Hilbert function, Hilbert polynomial, multiplicity, etc.

Definition 1.1. The j-multiplicity of the ideal I is defined as $j(I) = e(H_{\mathfrak{m}}^0(G))$ if dim $H_{\mathfrak{m}}^0(G) = d$, and zero otherwise. Note that j(I) = 0 if and only if the analytic spread $\ell(I) < d$.

Remark 1.2 (Achilles-Manaresi). $j(I) = \Sigma_{\mathfrak{P} \in Min(G), \mathfrak{P} \supset \mathfrak{m}} \lambda(G_{\mathfrak{P}}) \cdot e(G/\mathfrak{P}) = e(G'),$ where G' is obtained via:

$$\begin{array}{cccc} \operatorname{Proj}(\mathcal{R}(I)) & \longrightarrow & \operatorname{Spec}(R) \\ & \cup & & \cup \\ \operatorname{Proj}(G) & \longrightarrow & V(I) \\ & \cup & & \cup \\ \operatorname{Proj}(G/\mathfrak{m}G) & \longrightarrow & V(\mathfrak{m}). \end{array}$$

Now $\operatorname{Proj}(G')$ is the largest subscheme of $\operatorname{Proj}(G)$, none of whose irreducible components are contained in $\operatorname{Proj}(G/\mathfrak{m}G)$.

Theorem 1.3 (Flenner-Manaresi). For $J \subset I \subset R$ the following conditions are equivalent:

- (1) J is a reduction of I.
- (2) $j(J_{\mathfrak{p}}) = j(I_{\mathfrak{p}})$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$.
- (3) $j(J_{\mathfrak{p}}) \leq j(I_{\mathfrak{p}})$ for all $\mathfrak{p} \in V(J)$ with $\ell(J_{\mathfrak{p}}) = \dim R_{\mathfrak{p}}$.

Proposition 1.4. If a_1, \ldots, a_d are general elements in I, with R/\mathfrak{m} infinite, and $\mathfrak{a} := (a_1, \ldots, a_{d-1})$, then

$$j(I) = \lambda(R/(\mathfrak{a}: I^{\infty}, a_d)) = \lambda(R/(\mathfrak{a}: a_d^{\infty}, a_d)).$$

2. The module case

Let E be a submodule of a free module $F := R^e$. Then we have the induced map of symmetric algebras:

$$\operatorname{Sym}(E) \longrightarrow \operatorname{Sym}(F) = R[t_1, \dots, t_e] = A$$

$$\mathcal{R}(E)$$

Definition 2.1 (Buchsbaum-Rim multiplicity). If $\lambda(F/E)$ is finite, then for n large enough we have

$$\lambda(F^n/E^n) = \frac{br(E)}{(d+e-1)!} n^{d+e-1} + \text{ lower terms}$$

Theorem 2.2 (Kleiman-Thorup). Let $U \subset E \subset F$, with F free and $\lambda(F/U)$ finite. If d > 0 then $U \subset E$ is a reduction if and only if br(U) = br(E).

3. General module case

This part is based on joint work with Javid Validashti. Consider the containment $E^n \subset F^n$. If we take the length of $H^0_{\mathfrak{m}}(F^n/E^n)$ it may not behave like a polynomial for n large. Instead, we consider the following filteration:

$$E^n \subset E^{n-1}F \subset \ldots \subset EF^{n-1} \subset F^n$$
.

Then consider the function

$$\Sigma_E(n) := \sum_{i=0}^{n-1} \lambda(H_{\mathfrak{m}}^0(E^i F^{n-i} / E^{i+1} F^{n-i-1})).$$

For n large enough, it turns out to be a polynomial of the form

$$\frac{j(E)}{(d+e-1)!}n^{d+e-1} + \text{lower terms.}$$

Remark 3.1. The *j*-multiplicity of E depends on the embedding $E \subset F$.

Example 3.2. If $\lambda_R(F/E) < \infty$ then $\Sigma_E(n) = \lambda(F^n/E^n)$, therefore j(E) = br(E).

Example 3.3. If E = I is an ideal in the ring F = R, then

$$\Sigma_E(n) = \sum_{i=0}^{n-1} \lambda(H_{\mathfrak{m}}^0(I^i/I^{i+1})),$$

which is the first sum transform of the function defining j(I), thus j(E) = j(I).

Definition 3.4. For $1 \le i \le d$ we let $j_i(E) = \sum_{\text{ht } \mathfrak{p}=i} j(E_{\mathfrak{p}})$

Theorem 3.5. If $U \subset E \subset F$, with dim F/U < d. Then TFAE

- (1) $U \subset E$ is a reduction.
- (2) $j(U_{\mathfrak{p}}) = j(E_{\mathfrak{p}}) \text{ for all } \mathfrak{p} \in \operatorname{Spec}(R).$
- (3) $j(U_{\mathfrak{p}}) \leq j(E_{\mathfrak{p}})$ for all \mathfrak{p} with $\ell(U_{\mathfrak{p}}) = \dim R_{\mathfrak{p}} + e 1$.
- (4) $j_i(U) = j_i(E)$ for all $1 \le i \le d$.

Remark 3.6. The analytic spread $\ell(E)$ of a module E is defined as dim $\mathcal{R}(E) \otimes_R k$.

Remark 3.7. The main idea to show $\Sigma_E(n)$ is a polynomial is to use an "internal grading". Let $E \subset F$ be R-modules. Let $I = E \cdot A$ be the ideal generated by the image of E in $A := \mathcal{R}(F)$, a standard graded R-algebra. Now consider $\mathcal{R}_A(I) = A[It] \subset A[t]$ and assign degree 0 to t. Let $G = \operatorname{gr}_I(A)$ and define the "internal grading" on G by $[G]_n = \bigoplus_i [I^i/I^{i+1}]_n$. Since I is generated by E in degree 1, we can write this sum as

$$[G]_n = \bigoplus_i [I^i/I^{i+1}]_n = \bigoplus_i (E^i F^{n-i}/E^{i+1} F^{n-i-1}).$$

With this grading, G is a standard graded algebra over $G_0 = R$. Let $D := \dim G = \dim A$ and consider the homogeneous ideal FG which is a finite graded module. Hence, for t large enough $H^0_{\mathfrak{m}}(FG)$ is a finite graded module over G/\mathfrak{m}^tG , a standard graded ring over an Artinian local ring. Therefore, we can talk about its Hilbert polynomial which is indeed $\Sigma_E(n)$. Therefore, $j(E) = e(H^0_{\mathfrak{m}}(FG))$ if $\dim H^0_{\mathfrak{m}}(FG) = D$ and zero otherwise.

Remark 3.8. Note that in previous remark we do not need F to be free and we can define the multiplicity j(E|F) of a pair of modules.

To prove the implication $2 \Rightarrow 1$ of the main theorem, we pass to the integral closure of U in E to assume $\lambda(E/U)$ is finite and we prove the following result:

Theorem 3.9. Let $U \subset E \subset F$ be R-modules with the length $\lambda(E/U)$ finite. If d > 0 then

- (1) $j(U) \ge j(U|E) + j(E)$
- (2) If j(U) = j(E) then j(U|E) = 0, which implies $U \subset E$ is a reduction.

Proof. For part (1), consider the following diagram of containments

$$\begin{array}{cccc} U^iF^{n-i} & \longrightarrow & E^iF^{n-i} \\ \uparrow & & \uparrow \\ U^{i+1}F^{n-i-1} & \longrightarrow & E^{i+1}F^{n-i-1}. \end{array}$$

By left exactness of $\Gamma_{\mathfrak{m}}$ (-) we have

$$\lambda_R(\frac{E^iF^{n-i}}{U^iF^{n-i}}) + \lambda_R(H^0_{\mathfrak{m}}(\frac{U^iF^{n-i}}{U^{i+1}F^{n-i-1}})) \geq \lambda_R(H^0_{\mathfrak{m}}(\frac{E^iF^{n-i}}{U^{i+1}F^{n-i-1}})).$$

By exactness of $\Gamma_{\mathfrak{m}}$ (-) on short exact sequences where the left most module has finite length we get

$$\lambda_R(H^0_{\mathfrak{m}}(\frac{E^iF^{n-i}}{U^{i+1}F^{n-i-1}})) = \lambda_R(H^0_{\mathfrak{m}}(\frac{E^iF^{n-i}}{E^{i+1}F^{n-i-1}})) + \lambda_R(\frac{E^{i+1}F^{n-i-1}}{U^{i+1}F^{n-i-1}}).$$

Now, summing up these inequalities for i = 0, 1, 2, ..., n - 1 we get

$$\Sigma_U(n) \ge \lambda_R(E^n/U^n) + \Sigma_E(n)$$
.

Therefore $j(U) \ge j(U|E) + j(E)$. This proves (1).

For part (2), if j(U|E)=0 then $\lambda(E^n/U^n)$ is a polynomial of degree at most d+e-2. Let $B=\mathcal{R}(E)\supset J=UB$, and let $G=\operatorname{gr}_J(B)$, with the internal grading. Then $\lambda(E^n/U^n)=H_{EG}(n)$. Therefore $\dim_G EG \leq d+e-1 < \dim G$. Thus EG is a nilpotent G-ideal (G is equidimensional), hence $E/U \subset B/UB$ is nilpotent. Therefore $U \subset E$ is a reduction.