at the

American Institute of Mathematics, Palo Alto, California

organized by

Anne Schilling and Monica Vazirani

The workshop schedule.

A report on the workshop activities.

**Lecture Notes:**

- Loehr 1: Introduction to Macdonald Polynomials
- Loehr 2: Quick Definition of Macdonald Polynomials
- Lam: Lascoux-Leclerc-Thibon (LLT) Polynomials
- Haiman: Macdonald Polynomials and the Geometry of Hilbert Schemes
- Zabrocki: Creation Operators
- Morse: k-Schur Functions
- Kedem: Kostka Polynomials and Fusion Products
- Schwer: Galleries
- Stembridge: Kostka-Foulkes Polynomials in Other Root Systems
- Descouens: LLT Polynomials, Ribbon Tableaux, and the Affine Quantum Lie Algebra
- Shimozono 1: Generalized Kostka Polynomials as Parabolic Lusztig $q$-analogues
- Shimozono 2: One-dimensional Sums for the Impatient
- Shimozono 3: Crystals for DUMMIES

- Installing ACE (Algebraic Combinatorics Environment for Maple) in unix .
- SF, posets, coxeter, and weyl (John Stembridge's Maple packages for symmetric functions, posets, root systems, and finite Coxeter groups).
- Maple code for computing generalized Kostka polynomials
- Mupad programs for computing generalized Kostka polynomials
- Tables of q,t-Kostka polynomials
- Information on a 'Q-function' analogue of Kostka polynomials
- Mathematica code for computing generalized Kostka polynomials
- Documentation for MuPAD-Combinat