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We show that the entire function g(m)(s) has asymp-

totically
X/ (27) log(X/(2m))
zeroes with 0<t<X and (0<o<l. The zeroes of
£(s)=(1/2)s (s-1) 15/ 2r (s/2) 2 (s)

are coincident with those of ¢ (s) in the critical strip
0<g<l. Since &(1/2+it) is real, the proportion of zeroes of
E(m)(s) with real part 1/2 increases with m.

We show that the proportion of zeroes of g(m)(s) with

real part 1/2 is at least
1 - [log Fm(R)]/R
for any R>0, where 1

r
- 4 (Rrei(0))- [esz‘i'(x)dx.

N

Fm(R)=

0




Here
¢, (x)=0(x) (1-2x)™
where ¢ is an entire function which satisfies
b (x)+¢ (1-x)=1

and some other less important conditions. Also

i
¥(x)= 7; [0(x) 9" (x)-9" (%) ' (x)]1-2T ;¢ (x) ¢ (x)

and

1 1
I = f[P(x)]zdx r = [[P'(x)]zdx
1 4 3
0 0

where P is any real polynomial which satisfies
P(0)=0 , P(1)=1.
As a consequence of this theorem, we show that the propor-

tion of zeroes with real part 1/2 of

Z(s) exceeds .3585
E'(s) exceeds .7186

£" (s) exceeds .8209
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PREFACE

The topic of this dissertation is a generalization of
a method which N. Levinson used to show that the Riemann
seta-function has more than 34.7 % of its zeroes on the
vertical line passing through 1/2, the "critical" line.

We improve this result a pit and extend the technique to

show that g(m)(s) has a large proportion of zeroes on the
critical line for all m. (Levinson also considered m=1;

we improve his result in this case and consider the case

m=2.)

The first two chapters contain introductory material
and results needed later. In Chapter III we establish that the
zeroes of g(m)(s) are located in a vertical strip and give
an asymptotic formula for the number of zeroes up to a
given height. Hence it makes sense to speak of the
"proportion" of zeroes of g(m)(s) with real part 1/2. In
Chapters IV, V, vI,and VII wépmovetme main theorem and
Chapter VIII contains computations based on the theorem.

The method used here largely follows Levinson's
technique as presented in his papers listed in the biblio-
graphy. We also incorporate a simplification due to Pan.
The new features in this paper include a simple way to

derive the basic identity in §4.1, the use of an entire
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function rather than a polynomial in the identity, the use
of a more general mollifier in Chapter VIII and the treatment
throughout of all the derivatives E(m)(s) in a unified man-
ner which leads to Theorem 7.6.1. Of course, the computa-
tions and ensuing theorems of Chapter VIII are new, as well.
The derivatives E(m)(s) with m=3,4 were considered
using the mollifier with P(x)=x and the identity with
$(x)=1-x but led to poorer results than the case m=2,
though Rolle's theorem and the results of Chapter II imply
that the proportion of zeroes of E(m)(s) with real part 1/2
cannot decrease with m. There is good reason to believe
that the use of a second degree polynomial P(x) in the
mollifier would improve the result for m=3. Computations
with P(x) different from x have not yet been carried out.
It should be pointed out that with the exception of
Chapter IV, the first section of each chapter contains
results that are well-known, easy to prove, Or obvious

generalizations of Levinson's results.
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NOTATION

Let m be a fixed non-negative integer. Many of the
constants in the O-estimates depend on m, and results
stated for "a bounded range" of k are usually for ks<m.

We let T be a large fixed number,

T>T (m) .
Also, we use
L = log(T/(2m)),
v = 7/.°,
y = 71/2,120,
T = (T/(2'rr))l/2,
t,= ((m+w)/(2m) Y3,
n = (e/2m) 2,
1/2 - a = R/L , R>0.

Usually the above notation occurs in the text without

further reference. Also s and w are complex variables with

s = O+it
w = utiv.
We normally reserve s for use in the particular range

0<0o< 4 log L , TSt<T+U.
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CHAPTER I

THE GAMMA AND RELATED FUNCTIONS

1.1 Well-known properties of the gamma-function.

The formulae in this section are derived in Rademacher
[14, pp. 28-44].

As usual we take

(L.1.1) T(w) = w_lnﬁl<(l + n-l)w(l + wn_l)—l>.

Then T is a meromorphic function throughout the finite
complex w-plane. Ithas no zeroes and has poles only at 0

and the negative integers; these poles are simple. It satis-

fies the functional equation

(X:31.2) T(w)T(1l - w) = mCsSCTW.

Tt satisfies another functional equation known as the dupli-

cation formula,

(1.1.3) Py T (w + 1/2) =7 257291 (2w) .
Also
(1.1.4) T'(w + 1) = wl'(w),

and for n a non-negative integer

(1.1.5) I'(n + 1) = n!

It is well-known that from the Euler-Maclaurin summation
formula one can show that

(1.1.6) logF(w)=(l/2)log(2w)+(w—l/2)logw—w—Q(w)




is valid for w not on the negative real axis, where

<o

2

(x=[x]) "= (x-[x])

(1.1.7) Q) = (1/2) f s
0

(x+w)2

The logarithm on the right side of (1.1.6) is real for real
w>0, and the logarithm on the left side is real for real

w=21l. It is easily shown that

(8u)“l for v=0, u>0

(1.1.8) Q(w) | < -1
(8|v]|) ~Tarctan(|v]|/u) for v#0,

where
0 < arctan(|v|/u) = |arg w| < 7.

For u>0 the T-function is represented by the integral

1

(1.1.9) T(w) = {mexp(-x)xw- dx.

Using (1.1.5) and (1.1.6) one can derive Stirling's

formula. However, we only need the simpler estimate

(1.1.10) n! << (n/e)® (-m)

which can be derived by comparing the sum
n

% log i
with the integral

n+l
f log t d4t.
4

1.2 Three functions. In this section, we use results

from §1.1 to deduce some properties of three functions

related to the I'-function. Let

(1.2.1) H(w) = (1/2)w@-1)7 ¥/2r (w/2) ;



let

(1.2,2) x(s) = H(l-s)/H(s);
and let

(142 .:3) F(w) = H'(w)/H(w).

Then, H is regular and non-zero in the region u >0 excluding
the segment of the real axis between 0 and 1. H(u)>0 if u>1l.
Define arg H(w) in the region by starting from the value

arg H(3) = 0 and varying continuously along a path from

3 to w which does not leave the region. Then arg H(w) is
well-defined, and it is clear that for w in this region
(1.2.4) arg H(w) = Im log H(w)

where log H(u) is real for u>l.

Lemma 1.2.1 For |v|>1

arg H(1/2+iv)=v/2 log (|v|/(27))=-v/2+0(1).
Proof. By (1.2.1) and (1.2.4) we have

(1.2.5) arg H(1/2+iv)=Im(log(-1/4-v3-(1/4+iv/2) logn+
+log T'(l/4+iv/2))=-v/2 logm +0(l)+Im(log T (1/4+iv/2)).
By (1.1.6) and (1.1.8) we have

(1.2.6) Im(log ' (1/4 + iv/2))
—-1/4 arg(l/4+iv/2)+v/2 log|l/4+iv/2|-v/2+0(|v|™ 1)
=v/2 log(|v|/2)-v/2+0(1).
The Lemma follows from (1.2.5) and (1.2.6) .®

Lemma 1.2.2 For 0<0<4 log L and T<t<T+U we have

x(s)=(t/(2n))l/z-cexp(ﬂi/4—it log(t/(2me)) (1+0(1092L/TO .

Proof. By (1.2.1) and (1.2.2) and then by (1.1.2)




with w = (1l-s)/2, we have

s-1/2

(L .24..7) x(s) =m r(1/2-s/2)/T(s/2)

= 15%Y/2gc n(1/2-5/2) /(T (s/2)T (1/2+5/2)) .
By (1.1.3), with w = s/2, and (1.2.7) we have
(1.2.8) x(s)=(25"1n%sec 1s/2) /T (s).

It is clear that

(1.2.9) log|s|=log t+log|l-ic/t]

- log t + (1/2)log(l+02/t%)=log t + O(log’L/T?),
and

(1.2.10) arg s=arctan(t/c)=n/2-arctan(c/t) , 0¥0

= n/2-0/£+0(1og°L/T3) , 030.
Also, by (1.1.8) we have
(1.2.11) la(s)| = o™ h.
By (1.1.6), (1.2.9), (1.2.10),and (1.2.11) we have
(1.2.12) log T'(s)
= (1/2)log(2m)+(0c-1/2) log t-(m/2)t+i(t log t-t+(c=-1/2)1/2)+
+ o(logzL/T).
We have

(1.2.13) seds il f el 2 g TR

= 2e'“t/2ei”°/2(l+o(e"”t)).

The Lemma follows from (1.2.8), (1.2.12), and (l.2.l3).f
We now estimate F and its derivatives. First, observe

that for v#0 and k=1 we have

(1.2.14) j'[(x+u)2+v2]'kdx = |v|‘2kj'[1+(y/v)2]'kdy -
0
u




e <]

S '[ IR eT e
u/ | v|

o

<|VI1-2k‘f(l+x2)_ldx<<|v|

- 0O

1-2k

Lemma 1.2.3 For |v|>1 we have

F(w) = (1/2)log(w/(2m)+0(|v|™ 1),

and for a bounded range of k>1 we have
F&) (W) = 0(|v]'k).
Proof. By (1.2.1) and (1.2.3) we have
(1.2.15) F(w)=1l/w+l/(w=1)-(1/2) logm

+ (1/2)T'(w/2) /T (w/2).

By (1.1.6) we have

1

(1.2.16) T'(w) /T (w)=log w=-(2w) —=Q'(w)

where by (1.1.7) and (1.2.14) it is clear that

® (x- [x1) 2= (3= [x1) gy

(1.2.17) Q' (w) ==
fo (x+w)3

<< j[(x+u)2+v2T3/2dx<<lvl—2.
0

The estimate for F(w) follows from (1.2.15), (1.2.16), and

(1.2.17). By (1.2.16), for k21 we have

a\f r(w)
(1.2.18) —
dw T (w)

k-1

= DR k-1 R 12) (DR kTR I D)



where, by (1.1.17) and (1.2.14),

(1.2.19) o (K1) ()

- 2
(x-[x1) 2= (%= [x])
k+1 1 /2) (k+2) ! A5t

(x+w)k+3

= (-1)

<< f Lerm 240?17 D 2 o] T2,

By (1.2.15), for k21 we have

(1.2.20) r ) ()

1 e R |
= e1y R R e 1) K L gy S R02A2)
dw/ T (w/2)

since |v| <|w| and |v| < |w-1], (1.2.18), (1.2.19), and’

(1.2.20) imply the estimate for F(k)(w).l

1.3 A combinatorial lemma. We will need some inform=-

el (W) .

ation about H Because of (1.2.3) we can express
any derivative of H in terms of H and derivatives of F.

For example, by (1.2.3) we have

d
Y () =— H (w) F (w) =H (w) [(F (w))2+F" (w) 1.
W

Let p, be a partition (unordered) of n into positive

~ integers. Let pn(k) be the number of times k occurs in the

partition < For any p, let P(pn) be the number of ways
to partition a set S of n elements into a union of pn(l) sets

with one element in each, pn(2) sets with two elements each



and so on up to pn(n) sets with n elements in each; that

1'sl, P(pn) enumerates the ways to partition S "via" P,

Lemma 1.3.1 ILet H'(w) = H(w)F(w). Then

n
(1.3.1) g™ yerenz pep) 1 (F* D ) 1Pa k)
P, k=1

where the sum is over all partitions of n.

Proof. The proof is by induction on n. Since there is
only one partition of 1 the Lemma is true when n=l. Assume,
as the inductive hypothesis, that the statement (1.3.1) holds.
Under this assumption, we will show that (1.3.1) with n replaced
by n+tl is valid. We differentiate (1.3.1) and use

H'(w)=H(w)F(w) to see that

n - P, (k)
1.3.2) 8@V y=mwz re( 1 r* D wr ™)
Py k=1
J (1) (i-1)
'<F(W)+ Z p,(1)F (w)/F (W)> .
i=1
Let p_.4 be an arbitrary partition of (n+l). The coefficient
of x)
n+l " P k
geo) 0 (Y oy ot
k=1

in 8D (1) is, by (1.3.2), equal to

(1.3.5) I'P(p )+ I EI"P(p)p, (i)
Pn i=1 By

where I' is for all partitions p  of n with l+pn(l)=Pn+l(l)



and pn(k)=pn+l(k) for 2<k<n, and I" is for all partitions P,
of n for which pn+1(i+l)=1+pn(i+l), pn+l(i)=pn(i)-l, and
pn+l(k)=pn(k) for k#i, i+l. It remains to show that the
expression (1.3.3) is P(pn+l)‘

To evaluate P(pn+l)’ let S be a set with (n+l)
elements and suppose € S is a distinguished element. The
partitions of S via Pp41 MY be formed from partitions of
s-{«} via various partitions p_ of n, by (i) including «asa
singleton with pnthatsatisfythe conditions of I; or by (ii)
including o in a set of i>l elements with pnthatsatisfyzz.
In case (i), there are P(pn) partitions of S-{«} each giving
rise to a distinct partition of S. In case (ii) , for each
of the P(pn) partitions of S-{«=}, « can be added to any one
of the_pn(i) sets of i elements. Thus, P(pn+i) is equal to
the expression in (1.3.3).®

We can now replace H(n)(w) by a simple expression

which is a good approximation to it.

Lemma 1.3.2 Let

(1.3.4) H_ () =8 ™ () /H ) - [P 17

For 0 €0 £ 4 logL, T<t < T+U and a bounded range of n,

Hn(s)=O(Ln-lT_l), Hn(l-s)=o(Ln'lT'l).

Proof. Let p, be the partition of n for which pn(l)=n,

pn(k)=o for k#1. Then P(pn)=l and this partition gives rise

to the term HWHFWHn

on the right side of (1.3.1). For any other partition a

first or higher derivative of F must occur in the product



on the right side of (1.3.1). By Lemma 1.2.3, the next
largest term of (1.3.1) is a constant times

H(w) [F (w) 1"72F" (w) .
Therefore, by (1.3.4) and Lemma 1.2.3 if |v| > 1 we have

(1.3.5) H_(w) <<|log(w/(2m)) |*7?|v| 7.
For s in the indicated range we have

| log(s/(2m)) |<<L , |log(l-s)/(2m)) |<<L
so that the Lemma followsfrom(1,3_5),,
In the range of s we are considering, namely
0<0<4 log L, T<t<T+U, we have another estimate for F(s) and
F(l-s). Let

(1.3.6) L = £(t) = log(t/(2m)).

Lemma 1.3.3 For 0 <o < 4 logL, T <t < T+U we have

F(s)

L/2+mi/4+0((log L) /T) .

F(l-s)

L/2-mi/4+0((log L)/T).
Proof. For s in the indicated range, we have
(1.3.7) log(|s/(2m) |)=log(t/(2m))+log|l+ic/t]|

=2+ (1/2) log (1402 /t2)

=g+0(T"2

1092L).
Similarly,

(1.3.8) 1og(ll-sl/(zn))=2+0(T'210g2L).

Also,
(1.3.9) arg (s/(2m))=arctan(t/c)=n/2-arctan(o/t)

=1/2+0 (T T1logL)



10
and
(1.3.10) arg((l-s)/(2m))=-1/2+0(T ‘log L).

The Lemma follows from (1.3.7), (1.3.8), (1.3.9), and
(l.3.10).f



CHAPTER II

THE RIEMANN ZETA-FUNCTION

2.1 Well-known properties of the Riemann zeta-function

For u>l the Riemann zeta-function is defined by

n—W .

1

(2.1.1) z(w)=
n

Il ™ 8

Because of uniqueness of factorization of positive integers,
¢z (w) has an Euler product absolutely convergent for u>l,

(2.1.2) z(w)= T(1-p ")t

P
where the product is over all primes. By (2.1.2) we have
(2.1.3) z(w)#0, u>l.
It is well-known that z(w) is meromorphic in u>0 with a sim-
ple pole at w=1l, residue 1, and no other singularities.

(See Ingham E, Theorem 8] ). Hence for |w-1| small we have

(2.1.4) 1/2 (w)=(w=1) +0 ( |w-1]?)
and
(2.1.5) £ (w) /22 (W) ==1+0( |w-1]) .

It is shown in Ingham [5, theorem 10] that
(2.1.6) C (1+iv)#0.

Titchmarsh [18, equations 3.11.8 and 3.11.10] shows that

there is a constant A>0 such that for v>v0,

L1
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(2.1.9) 1/z (1+iv)=0(log V).
The 6-function, defined by

(2:.1.10) 8(x)=Z log p
pPsX

where the sum is on primes, is somewhat related to the
logarithmic derivative of the zeta-function. A well-known
elementary estimate due to Chebyshev is

(2.1.11) xX<<0 (x) <<x.

2.2 The Riemann-Siegel formula. Because of its

importance to this paper, we sketch a proof of a formula
found by Riemann and reconstructed by Siegel [16,51 and §3]
from Riemann's notes.

As a notational convenience let A1/2 signify a path
that is a straight line of slope + 1 passing through 1/2
with Im w increasing. Similarly, V-1/2 is a straight line
of slope -1 through -1/2 with Im w decreasing, and so on.

Let x be a complex variable. Let

(2.2:1) d(x)= j’ exp(—ﬂiw2+2ﬂixw)(—i/2)CSCﬂwdw.
RN1/2

We can evaluate ®(x) by using Cauchy's theorem in two
different ways. First

(24+2.2) ¢ (x+1) -9 (x)

= _[ exp(—ﬂiw2+2ﬂixw)(exp 2miw=1) (-1/2) cscmwdw

N1i/2
= fexp(_—Triw2+21rixw+Triw)dw
1/2
=exp(ﬁi(x+l/2)2) exp(-ﬂi(w—x—1/2)2)dw

1/2
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= exp(ri(x+1/2)?) [ exp (-miw®) dw
RRe (-x)

= exp(ﬂi(x+1/2)2) j' exp(-win)dw.
N1l/2

The integrand of (2.2.1) has a simple pole at w=0 with

residue (2mi)~ 1. Therefore, we have

(2.2.3) #(x)-1= /. exp(—niw2+2nixw)(-i/2)cscwwdw
R-1/2

= /- exp(-ﬂi(w—l)2+2nix(w—l))(-i/2)cscw(w—l)dw
R1/2

exp (~2mix) f/ exp (~miw2+2miw (x+1)) (-i/2) escrwdw
K’1/2

= exp(-2mix) ¢ (x+1).

Put. x=0 in (2.2.2) and (2.2.3) . It follows that
(2.2.4) j- exp(—ﬂiwz)dw=exp(3ﬂi/4)

R'1/2
as is well-known. We eliminate®(x+1l) from (2.2.2) and

(2.2.3) and use (2.2.4) to show that
(2.2:5) @(x)=(1—exp(—2ﬂix))-l-exp(wixz)(—i/2)CSCﬂx.

Let 0<0 and let x ° have its principal value in the
x-plane without the negative real axis. Let
e=exp(mi/4).
Multiply (2.2.5) by x ° and integrate from 0 to ex along a

straight line path. Now by (2.1.1), (1.1.9),and Cauchy's
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theorem we have

goo 5! = goo ) oo}
(2:52.6) f be s(l-exp(—2'rrix)) ldx=— f x ° I exp(2minx)dx
0 0 n=1
== I x ~exp(2minx)dx=- I (-27min) i s
n=1 { n=1 { Y @€ dy

= (271) 5 Yexp(mi(1-s) /2) £ (1-s) T (1-s) .
By (1.1.9) and Cauchy's theorem we have

eoo
(2.2.7) f%—s( j- exp(-niw2+2ﬂixw)(—i/2)cscwwdw)dx
° X1/2

o]

exp(—niwz)(—i/Z)cscﬂw( x_sexp(2nixw)dx aw

M

K172

o

oo

=(—2'rri)s-1 j- exp(—ﬂiwz)(—i/Z)(CSCﬂW)WS-1<.[ y_se—ydy>dw
R1/2 0

= (2m) 5 Yexp (i (1-s) /2) T (1-5) *

J( exp(-wiwz)(—i/Z)(CSCﬂw)wS-ldw.

K1/2

By (2.2.5), (2.2.6), and (2.2.7) we have

(2.2.8) (2m) S texp(mi(1-s)/2)T (1-s)*

(o]

-{z(1-s)+ J[ ws_lexP(_ﬂiwz) dw}=_'[.X-SeXp(nix2) o

21 sinmw 0 2i sinmx

R1/2



15

The integral on the right side of (2.2.8) is easily seen to

be

f w-sexp(wiwz)(—i/2)cscnwdw.

(2.2.9) -(exp(ﬂis)—l)_l
£ 172

Multiply both sides of (2.2.8) by -{exp(wis)-1). Then by
(L.2.8) 4 (2258} p and (2.2.9) we have

ws—lexp(-wiwz)

dw}

(2.2.10) (1/x(1-s)){z(1l-s)+
2i sinmw

N1/2

-S L2
w —exp(miw’)
= dw.
/1/2 2i sinmw

The integrals in (2.2.10) are convergent for all s. Therefore,

by (1.2.2) we have

Lemma 2.2.1 For any s

H(L-s) g (1-s)

w-sexp(niwz) ws_lexp(-—wiw?‘)dw
dw+H (1-s) :

= H(s) 2i sinmw

/1/2 2i sinmw N 1/2

Remark 1. Suppose that
I =j” f(w) dw
C

where C is a path in the complex w-plane. Then

i =j; E?%;dw
&
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where C is the path conjugate to C.

Remark 2. If f(w) is a regular function for w in some

region R of the w-plane, then f(w) is a regular function for

w in R where
R = {w:weR}.

We define the function f by

Ew) = £(w)
so that f is an analytic function when f is.
Let

w-sexp(ﬂiwz)
(2.2.11) f(s) = aw.

£1/2 2i sinmw

By the remarks above we see that

‘[ ws_lexp(-ﬂiwz)

v1/2 2i sinmTw

(2.2.12) £f(l-s) = dw.

Thus, from Lemma 2.2.1 and Equations (2.2.11) and (2.2.12)
we have

Corollary 2.2.2 For any s Wwe have the identity

(2.2.13) H(l-s)z(l-s) = H(s)£f(s)+H(1l-s)E(1l-s).
When s = 1/2+it, the above becomes

(2.2.14) H(l1/2-it)z(1/2-it) =




i)

= H(1l/2+it) £(1/2+it)+H(1/2 + it) £(1/2+it).

We take complex congugates in (2.2.14) and see that
(2.2 :15) H(l/2+it)z(l/2+it)=H(1/2-it)z(1/2-1it)

holds for all real t; hence by analytic continuation (2.2.15)

holds for all complex t. Inparticular, forall s we have
(2.2.16) H(s)z(s)=H(1l-s)z(1l-s);
hence, by Corollary 2.2.2, we have

Corollary 2.2.3 For any s

(2.2.17) H(s)z(s)=H(s)f(s)+H(1l-s)E(1l-s).

The above is the form of the Riemann-Siegel formula we

will use.

2.3 An estimation by the saddle-point method

Suppose that h(w) is a function that is regular in the
w-plane slit along the negative real axis, and that for

|w|>10 we have

(2.3.1) Ih(w) |<<|w|®|10g w|?
where

: -1
(2.3.2) 0<8<<L

and j is a fixed positive integer. For t>0 let

{2+.3+3) n =yt/2m).
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Let
(2.3.4)
w_sexp(niwz)
fl(s)= h (w)dw.
Z1/2 21 sinmw
Lemma 2.3.1 For 0<|c|<4log L, and T<t<T+U we have
(2«3 5) £, (s)= ¢ h(n)ﬁ—s+0(n—0L3+12).

1 n<n

Proof. ILet k = [n], and let r = k+3/2-n. Move the

path o f integration so that by Cauchy's theorem

(2.3.6) fl(s)=c0+cl+c2+c3+c4

where 7

(2.3.7) Co= I h(n)n >
n<k+1

is the residue from the poles passed over at the positive
integers <k+1, Clis the integralcn1L1={w=n+ep: -\2n>p>=-=},
with e=exp(wi/4), C, is the integral on L2={w=n exp (ia):
0>ao>a/-ﬂ/2}, Cc, is the integral on L3={w=n+r exp (iB) :
ﬂ/4>8>so>—ﬂ/4}, and C, is the integral on Lh={w=n+€p:
w>p>r}. (See figure 1).

The exact values of ao and Bo are not important. Let

(2.3.8) Y(w)=niw2-s log w.

Let

{2.3.9) A(w)=t arg w-2muv.
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L.

Fig.

l.--New Path of Integration
for fl(s).
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Then by (2.3.8) and (2.3.9) we have

(2.3.10) Re{y (w) =y (n) }=0 log|n/w|+A(w).

Since
Re y(n) =-0 log n ,

it follows from (2.3.4), (2.3.6), (2.3.8), and (2.3.10) that

(2.3.11) >\
% exp (o log|n/w|+2(w)) |h(w)
fl(s)=C0+O(n o] J( gl | [ | dw)_

| sinmw|
L,L,L,L
S

We will first show that

(2.3.12)- g A(w)=0(1) , wel , L, L, L.

Oon L1 it is clear that A(w)<0. On L (see figure 1) we have
2
(2.3+13)
-uv=area (OOABC)<2 area (40AB)=-n2arg w=-(t arg w)/(27).
By (2.3.9) and (2.3.13), A(w)<O0 on I;. On ste have

(2.3.14)

arg w=arctan(r sing/(n+r éoss))=(r sinB)/n+O(T—l

)

and

({2:..3:15) 2muv=27Tr (sinB) (n+r cosB)=2mrnsinf+0(1).
By (2.3.3), (2.3.9), (2.3.14), and (2.3.15), A(w)=0(1l) on La'
Let p=p/n. On :H we have

(2.3.16) A(w)=t[arctan(u/(u+J5))-u/Vi“uz/Z].
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It is an easy matter to check that for u>0 the gquantity on
the right of (2.3.16) is negative. Hence (2.3.12) is

established.

On L wehave [w|=n, so thatalog|n/w|=0. Thus, by (2.3.1),
2
(2.3.17) |h (w) | <<n® (logn)I<<L3,

Since |sinnw|>(eﬂlvl-l)/2 , -k follows from (2,3.11),%2.3.12),

and (2.3.17) that
(2.3.18) Cc <<n %3.
2

On L equation (2.3.17) is wvalid, | sinmw|>>1, and
: :
log(n/ (n+2))<log|n/w|<log(n/(n-2)) .

Therefore, exp(olog|n/w|) is between
(2.3.19) (n/(n+2))°% and (n/(n-2))°.

Both bounds in (2.3.19) are O(l) as T+~ for s in the range

considered. Hence it follows that

(2.3.20) C3<<n-OLj.

Also A(w) is larger and |sinmw| smaller on Lh than on L1'
while log|n/w| and h(w) are the same on L1 and L; Thusclis
majorized by C .

y

On L , with w=nt+ep, we have
N
(2.3.21) u=n+p/+2 and v=p/V2.

Therefore,

"V—l)/2>>eﬁp/4§-

(2.3.22) sinnw|>(e , WeLli .
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We split up the path L“ so that L; is for r<p<2n ,
and I" is for 2n<p<® . On L' the estimate (2.3.17) is wvalid,
L 4

as are (2.3.12) and (2.3.22). Also, on L; we have

1<log|w/n|<3 ,

so exp(olog|n/w|) is between e 9 and e-3c. Because of the

range of ¢ under consideration, in all cases we have

(2.3.23) exp (glog|n/w|) <Lt? (weL!) .
Hence
(2.3.24) Glecn Sp i TE2,

y

Finally on L" by (2.3.21) we have
u

(2.3.25) 2ﬂuv=np2+45npn , t arg w<tm/4.
Thus, (2.3.8) and (2.2.25) with p>2n imply that

2 "
(2.3.26) Alw) <=mp (weL“).
Also, if T is sufficiently large, T>T0=To(j), we have
(2.3.27) |h(w) |/|sinmw]|<<1 (weL!) .

Further, by (2.3.21) we have

(2.3.28)
clogln/w|=—(o/2)loglw/n|2=-(c/2)log(l+V§p/n+p2/n2),

and p>2n implies that

2 2
(2.3.29) 02/n2<l+430/n+p /n2<202/n

Thus, by (2.2.28) and (2.2.29), clog|n/w| lies between

(2.3.30) ~slog(p/n) and -clog(¥2p/n) .
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By (2.2.30), for any o in the considered range (|o|<4log L)

we have

(2.3.31) exp(olog|n/w|) <<L® (p/n) 0 (weL") .

Thus, by (2.3.11), (2.3.26), (2.3.27), and (2.3.31) we have

(9]

(2.3,32) che<r? fexp(-npz)p“’dp.
4
2n
Let
2. =0
(2.3.33) I= exp(-mp )p ~dp-.
2n

Suppose ¢>0. Then

@© <

2
{2.3,34) I< fexp(—‘n'pz)dp< fexp(—-np ) 2mpdp
2n 2n

= exp(-4nn2)=exp(—2t).
If g<0, then we integrate by parts to see that

{2.3.35)

N ” 2
I=(exp(~1p2) ot 9) /(1-0) | +(21/(1-0)) J[eXp(-ﬂpz)p 4,
2n 2n

5 —exp(-4mn?) (2m) 179/ (1-0) +(27/ (1-0) ) 4n°T.

BY (2.3.35) we have

(2.3.36)

g

I<lexp(-2£) (2n) 791/ 4t (1-0) 1<<exp(-2t) (2n) <<exp(-t).
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By {(2.3.32), (2.3.33), (2.3.34),and (2.3.36) we have

(2.3.37) C"<<L2exp(-t).
y

Hence.by:  (2.3:1)), (2,3:18), (2.3.20), (2.3.24), and
(2.3.37) we have

(2.3.38) £ (s)=c +0(n”9LI*12),
. 0

By (2.3.7) and (2.3.1)we have

S

(2.3.39) C - 3 h(n)n S=h(k+1) (k+1) S <<d (k+1) 7.

0 ngn

0]

Since n<k+lgn+l , it follows that (k+l) = lies between

n % and (n+1)7.°
Hence, we have
(2.3.40) (k+1) "9<<n 9.

The Lemma follows from (2.3.38), (2.3.39), and (2.3.40) .=

Corollary 2.3.2 For 0<o<d4log L, T<t<T+U, fl as in

(2.3.4), we have

E (1-s)= 1 h(n)n® L+o(n® 113ty ,

n<n
Proof. For s in this range, l-s=l-g+it is in the
range of Lemma 2.3.1. Therefore, we replace ¢ by l-o 11

Lemma 2.3.1 and find that

(2.3.41) fl(1—§)= 5 h(n)ns-l+o(n0-le+12x
n<n

The Corollary follows by conjugating (2.3.41) .=
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2.4 Estimates for ;(k)(w). For u>l, by (2.1.1) we

have

(2.4.1) ) =z (-1 ¥ (1og" ™",
n=1

For a bounded range of k and u>3, by (2.4.1) we have

(2.4.2) |;(k)(w)|<<l.
By (2.4.1) and Stieltjes integration, for uw> 1l we have

(2.4.3) -1) %z %) ()

N fil = =
= I (logkn)n w+j(1ogkx)x YWa(Ixl-x)+ J’(logkx)x Yax
n=1 N

N

N- - - —_——
=3 (logkn)n s 'f(k—w log x)(logk lx)x W l([x]—x)dx +
N

n=1

+ ‘[(logkx)x_wdx.
N

Let Pk(x) stand for a k degree polynomial if. 3%y not

necessarily the same at each occurrence. We integrate by

parts in (2.4.3)and see that for u>l we have

(2.4.4) -1 %z %) )

©

N - = —_— -
= I (logkn)n Y+ | (k=w log x)(logk lx)x H l([x]-x)dx +

n=1 N

l-w

N
3 ] Pk(log N)/(1-w)) .
(1-w)
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The expression (2.4.4) determines z(k)(w) for u>0 since the

integrals are convergent for uw>0. Hence, for 1/4<u, and a

bounded range of k.,

N
12 ) |<<(log"N) Z n’u+u‘kN‘qu_l((1og N) /u)

n=1
-k-1_-u N Len i ACTE |
|w|u N P, ((log N)/u)+Tz:;TE:TIPk(( og N)/(1-w))

<< (Logtn) (3 4/ 4 [ v Y 4n374 1w KL .

Take N=[|v|]. Then for |vI>v0 , k in a bounded range, and

1/4<u, we have
(2.4.5) lc(k) (w) | <<|v]

For estimations such as |z(w)-1] it is useful to

observe that for u>l ,

(2.4.6) 7
o = - -u _
E n~ U2+ ‘Ix dx=2‘u+21'u/(u—l)=((u+1)/(u-l))2 "

2



CHAPTER III

GENERAL LOCATION OF ZEROES OF E(m) (w)

3.1 Well-known properties of entire functions.

Suppose that f is an entire function, and f(0)#0. Let the
zeroes of f be arranged in order of increasing modulus
(3.-151) 0<|a1]<|a2|<|a3|< v

Let the exponent of convergence T of the sequence {lanl} be

defined by

t=g.1.b.{a:Z|a_| <=},
L on

Let k be the least non-negative integer for which

(3.1.2) %|an|_k_l<m.

For D a subset of the complex w-plane let

(3.1.3) M(£,D)=max| £ (w) |
weD

and let M(f,r) be an abbreviation for M(f,{w:lw|<r}).

The order w of £ is defined by

(353 . 4) w=1lim sup (log log M(f,r))/log r.
r—)OO

Suppose f is of finite order. Then by Hadamard's

factorization theorem (see Ingham [5, Chap. III, §ﬂ) we have

27
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K .
(3.1.5) £(w)=exp(g(w))T{(l-w/a_)exp( I i‘l(w/an)l)}
n i=1

where k is as in (3.1.2), g is a polynomial of degree h, and
(3.1.6) w=max{t,hl}.

The product is absolutely convergent for all w.

If f is an entire function of order w, then f' is
entire and also has order w.

Let D be a region of the w-plane, and suppose f is

regular throughout D. Let
(Bl N (£f;D)

be the number of zeroes of f inside D, counting multiplicity.
For discs D we can bound N(f;D) in terms of M(f,D) by
Jensen's theorem. We need only the following simpler

theorem which is proved in Ingham [5, theorem D].

Lemma3.l.1 Let f be regular in |w—w0|<r2, let r <r,

and let
M= max | £(w) | .
|w-w0|<r2

Suppose f(wo)#o. Then,

(3.1.8) N(f, |w—w0 ]<r1)<(log M-1log| f(wo) l)/log(rz/rl) .

3.2 The strip of zeroces of g(m)(w). We define

(3:2.1) E(w)=z(w)H(w)

where H(w) is defined in (1.2.1) and ¢ is Riemann's function
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of §2.1. The simple pole of ¢(w) at w=1l is cancelled by the
factor (w-1) of H(w). Since H(w) is regular for u>0, &(w)

is regular for u>0. Equation (2.2.16) implies that

(3.2.2) £(w)=g(1-w) .

Hence ¢ is an entire function. Since (w-1) g (w) has no zeroes
for uw>l, and (wI'(w/z))Tr-w/2 has no zeroes anywhere, g(w) has
no zeroes for usl. Hence, by (3.2.2), the zeroes of g(w) are
in O<u<l.

It follows -easily from(l.1.6), (2.4.5), £ 3. 1.4);
and (3.2.2) that ¢ has order 1; this result is well-known
(see Ingham [5, Theorem 17]). Hence g(m), the o= |

derivative of g,also has order 1.

Lemma 3.2.1 For m»0, if £™ (w)=0 then the real part

u of w satisfies
(322 3) O<u<l.

Proof. The proof is by induction on m. The case m=0
is demonstrated below (3.2.2). Suppose, as the inductive
hypothesis, that equation (3.2.3) is true. We will show
that (3.2.3) with (m+l) replacing m is also true. By

(3.2.2) we have

(3.2.4) £ @ ()= (-1) "™ (1-w) .

Therefore, for any m,
(3.2.5) g(2m+1) (3 /2)=0,

Suppose g(m)(w) has a zero at w=1l/2 of order n. Then
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0=£™ (1/2)=g ™) (1/5)= | —g(mn=1) (o,
but

(3.2.6) £ (™) (1 2y 40,

By (3.2.5) and (3.2.6), (m+n) is even. Let
(8.2.7) g (w) =™ (1/2+iw) s,
Then Z(0)#0 and by (3.2.6) and (3.2.7) we have

(3.2.8) E(w)=E(-w),

that is, £ is an even function of w. Therefore, there

exists an entire function A, A(0)#0, such that
25
(3.2.9) AwT)=5(w).

It is clear from (3.2.9) that

(3.2.10) M(A,r%)=M(E,1) .

By (3.2.10), the order of A is 1/2 of the order of . By
(3.1.4) and (3.2.7), E has order 1 since E(m)(l/2+iw) does.

Thus A has order 1/2. By (3.1.5) and (3.1.6) we have
(3.2.11) A(w)=A(0) T(1-w/P)

P
where the product is over the zeroes P of A. By (3.2.11),

(3.2.12) A" (W) / A(w)=Z(w=-p) L.
0

By (3.2.7) and (3.2.9) we have

(3.2.13) £ (3 /24iw) =wDA (w?) .
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By (3.2.12) and (3.2.13) we have
(3.2.14) ig ™) (1 /241wy 7e ™ (1/2+iw)

1

= n/w+2wh’ (w2) /A (wP) =w (2 (w2-p) "Lensw?) .

Let w and w be complex variables,
5 ¢ 2

(3.2.15) w1=l/2+iw . w2=w2.
Then
2
(3.2.16) =—(w.=1/2)".
2 +
By (3.2.13) and (3.2.15) we have
(3.2.17) g(m)(w1)=wnA(w2).

Let a typical zero of A(w ) be denoted by p =B +r£amidenote»
2 2

the corresponding zero of E(m)(wl) by p =B +iy_ . Let
S G | 1

(3.2.18) R1={w1:0<u1<l}.

By the inductive hypothesis each p1€H1' Under the mapping

(3.2.16) the region Rl of the wl—plane corresponds to the

region
(3.2.19) R ={w :u >v2-l/4}
2 2 2 2
of the w2 plane. Therefore, each pzeBz. It is sufficient

to show that the zeroes of

(3.2.20) 23 (wz-p2)-l+nw-l
2

are in Rz' For then by (3.2.14), the zeroes of E(m+l)(w1)

are in R1’ which is what was to be proved.

The region Rz is a convex, (parabolic) region which
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includes the point w2=0. Therefore, (3.2.20) is of the form

g(wz-p)'l

where all the p lie in Rz (some are repeated). Let wﬁRz.

We will show that
-1
(3.2.21) g(w—p) #0

and that will conclude the proof. Let £ be a line passing
through w but not intersecting RZ. Such a line exists since
&2 is convex and wiRz. Let £' be the line passing through
the origin which is parallel to £. Then all the vectors

w-p) "L,

when attached at the origin, have their heads on the same
side of, but not on, £'. Therefore, their vector sum is not

0 and (3.2.21) is established.!

3.3 The quantity of zeroes of g(m)(w). For X>0 let

N(m)(x)

(m)(

be the number of zeroes pm=3mfiym of ¢ w) which satisfy

0<ym<x.

Lemma 3.3.1 For any m, and for X>3 we have

(3.3.1) N (x)=(x/(27)) log (X/ (2m) ) -X/ (2m) +0(log X) .

(m

Proof. We apply the argument principle to £ )(w) on

the rectangle E which has vertices 3%ix, -2*iX. Then, since
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(3.3.2) £ (M (5)=¢ (™ (),

the argument principle implies that

(3.3.3) tparge ™ ) 15 = amn™ (0 +0(1) .

The O(1l) is to account for zeroes of g(m)(w) on the real

axis. Let E1 be the path which consists of two line seg-

ments: 3+iv, 0<v<X, followed by u+iX, 3>u>1/2. Then,

use of (3.2.4) and (3.3.2), it follows from (3.3.3)

beca
that
(3.3.4) [Aargg(m)(w)]El = ™ (x)+0(1).
We differentiate m times in (3.2.1) and have
(3.3.5) g(m)(w)=kgg(i>c(k)(w)H(m"k)(w).

By (1.3.4) and (3.3.5) we have

m /m\ _
(3.3.6) a(m)(w)=n(w)ki0<k>c("(w)([F(w)]m Ko, )

It follows from

m(3)=31"32r (3/2)2(3)>0,

that arg H(3)=0. We let arg H(w) vary continuously along El

from 3 to 1/2+iX. Then by Lemma 1.Z.1 we have

(3.3.7) [bharg H(wW)Ig = (X/2) log (X/(2m)=X/2+0(1) .
1
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It is easily checked, ( see(1.2.15), (1.2.16) and

(1.2.17)) that F(3)>0, so that
arg F(3)=0.

Then by Lemma 1.2.3 we have

(3.3.8) Barg(F(w)) ™My = m arg F(1/2+iX)
1

1

= m arg(log(l/2+ix)+O(X- ))

= m arctan[(n/2+0(x—l))/(logl1/2+ix|+0(x_l)]
<< 1/log X.

It remains to estimate the change in arg G(w) along El'

where

m

m

(3.3.9) G(w)=2 <k>(; ) () /17 () 154, () /TF 1) 17).
k=0

By (1.3.5), for v>vo we have
(3.3.10) H_(3+iv)<< (log W2y
and by Lemma 1.2.3 for v>v0 we have

F(3+iv)>>log v , v>v0.

Hexe v ie an absolute constant. From (2.4.2), (3.3.9), and

(3.3.10) for v>v0 , it follows that

(3.3.11) |G(3+iv)-1]< £ n >+0(1/log V).
n=2
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Thus, by (2.4.6) and (3.3.11) we have

(3.3.12) |G(3+iv)-1]<1/2 (v>v )
where v is an absolute constant. By (3.3.12) we have

1

(3+.3:13)
v=X V=V, v=X
[Aarg G(3+iv)] =[parg G(3+iv)] +[Aarg G(3+iv)]
v=0 v=0 v=v

1
< 0(1)+w=0(1) .

We shall apply Lemma 1.3.2 to estimate the change in
arg G(w) on the second part of E;- For X>X , it follows
0

from (1.3.5) that

(3.3.14) H_(u+iX) << (log x) P72 /% (0<u<6 , n<m)
and Lemma 1.2.3 implies that

(3;3.15) F(utiX)>>log X (0<u<hb) .
Equation (2.4.5) implies that for X>Xoand k<m we have
(3.3.16) £ KD (urix) <<x (1/4<u<6) .

By (3.3.9), (3.3.14), (3.3.15), and (3.3.16) we have

(3.3.:17) G (ut+iX) <<X (X>Xo' 1/4<u<6) .
Let
(3.3.18) M= max |G (W+iX) +G(w=-1X) |.

|w-3|<11/4

Then by (3.3.17) we have
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(3.3.19) M<<X.

In (3.3.12) with v=x we take real parts. Since G(w)=G(w), we

have

(3.3.20) |G(3+iX) +G(3-iX) |=|2Re G(3+iX) [>1.

Therefore, by (3.3.18), (3.3.19), (3.3.20) and (3.1.8)

with r2=ll/4 p, r1=5/2 we have

i 0 - -
[Aarg G(u+iX)] <t (1+N (Re G(u+iX) , 1/2<u<3))
u=1l/2

< (14N (G (w+iX) +G (w-iX) , |w-3]<5/2))
<7 (1+(log M-log|G(3+iX)+G(3-iX) |)/1log(11/10))
<<log X.

Thus, by (3.3.13) and (3.3.21) we have

(3.3.22) [Aarg G(w)]E = 0(log X).
1

Hence, by (3.3.6Y5 (33:7)y (3:3:8), (3.3.92),and

(3.3.22) we have

(3.3.23)
(aarge™ (w1 = (¥X/2)1og(X/(2m))-X/2+0(logX) .
1

The Lemma follows from (3.3.4) and (3.3.23) .=

It follows easily from Lemma 3.3.1 that

10

(3.3.24) N(m)(T+U)-N(m)(T)=UL/(2W)+O(UL- ).
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Let

N (X)

be the number of zeroes of g(m)(1/2+iv) with 0<v<X.

The Riemann hypothesis is
(3.3.25) w0 (x)=n, (%)

for all X>0. Now (3.2.4) and (3.3.2) imply that £ ‘™ (1/2+iv)
is real if m is even and purely imaginary if m is odd.
Therefore, Lemma 3.3.1, eguation (3.3.25), and Rolle's

theorem imply that

Nm(X)=N(m)(X)+O(log X)

if Riemann's hypothesis is true. What we intend to show is

that
(3.3.26) Nm(T+U)—Nm(T)>Bm UL/ (27)

for a reasonably good value of Bm‘ In light of (3.3.24),

it follows from (3.3.26) that
(m)
(3.::3..27) Nm(X)>BmN (X)

if X is sufficiently large.

Levinson [8] proved that one can take 60=.3420. He
also sketched a proof that 80=.3470 is admissible [11], and
gave an indication [9] of how one could obtain B1='7l72°
The method used here is a generalization of Levinson's

method. (See also [101]).



CHAPTER IV

THE BASIC IDENTITY

4.1 The identity. We begin with the Riemann-Siegel

formula of (2.2.17), which by (3.2.1) is
(4.1.1) £(s)=H(s) f(s)+H(1l-s)E(1-s).

Here f is given by (2.2.11), and f by (2.2.12). We differ-
entiate the above m times, and since the integral for £
converges uniformly in any compact range of s, we may

differentiate under the integral sign. Thus we have

(4:.1:2)
-S .o
m w exp(riw®) _
g(m)(s)= ) (E H(k)(s) Jr (-log w) ™ kdw
k=0 2i sinmw
£1/2
m oo ws_lexp(-niwz) mk
k. (k) (log w) aw .
* _Z_<k>(—l) i (1=} f 2i sinmw
k=0
y1l/2

Let C#0, and let ¢ be an entire function of w which

satisfies the conditions

(4.1.3)
6 (W)=6(W), o(w)+¢(1-w)=C, ¢(0)=1, |¢(w)|<<exp(d|w])

38
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where

d<min{R,1}.
For w not on the negative real axis, let
K -1 -1

(4.1.4) c(w)=¢(L “log w) , d(w)=¢(1-L “log w).
By (4.1.3), for |w|>3 we have

1/L
(4.1.5) c(w)<<exp((d/L)log|w|+(d/L)arg w)<<|w| :
Similarly, we see that

(4.1.6) d(w)<<exp(d+dL_l|log w})<<|w|l/L.

Define the function Q by

(4.1.7)

M /m w-sexp(ﬂiwz) ek

Q(s)= & <k>H(k)(s) 21 sdmmw (-log w) c(w) dw
k=0

¥1l/2

o m Ws_lexp(-ﬂiwz) -k
+ I ( >(-l)kH(k)(l-s) (log w) d(w)dw.

Tew® k 21 sinmw

y1/2

Then by (4.1.2), (4.1.3), (4.1.4), (4.1.7), and Remarks 1 0 |3

and 2 of §2.2 we have
(4.1.8) ce (™ (s)=0(s)+(-1)™ B (1-s)

which is the basic identity. Its significance is for

s=1/2+it when
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(4.1.9)  ce™ (1/24it)=q(1/2+it)+(-1)™ O(1/2+1E)

which expresses CE(m)(l/2+it) as a sum, when m is even, and

a difference, when m is odd, of complex conjugates.

4.2 The argument of Q(s). The function Q(s) is

regular for s not on the negative real axis. Since C#0,
it ‘is c.lear that the zeroes of g(m)(1/2+it) occur

precisely when

(4.2.1) o Q(1/2+it)=0

/2 mod ™ if m is even
or arg Q(l/2+it)=

0 md m if m is odd.

Since arg Q(l/2+it) is well defined mod 2w Gf Q(1l/2+it)#0),
the conditions (4.2.1) are independent of how one defines
arg Q(s). We are interested in how often (4.2.1) holds
with T<t<T+U.

Suppose that T is such that Q(1/2+iT)#0, Q(1l/2+1i(T+U))#0.
Starting with some value of arg Q(1/2+iT), we determine
arg Q(1/2+i(T+U)) by letting arg Q(s) vary continuously on
the path s=1/2+it , T<t<T+U. If Q(l/2+it0)=0 for some

T<t <T+U we detour around 1/2+it on the semicircle
0 0

]s—(l/2+it°)l=€ , Re s>1/2
where >0 is so small that
(i) no zeroes of Q(s), except those at 1/2+it , are
0

in |s-(l/2+ito)l<e ;
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(ii) no points 1/2+it, t#to, for which (4.2.1) holds

are missed because of the detour.
With this definition we claim that

(4.2.2)

Nm(T+U) -Nm(T)>(l/1r) (arg Q(1/2+i(T+U))-arg Q(1/2+iT))-2.

The only difficulty in showing (4.2.2) arises from the
detours, so we deal with them. Suppose l/2+it0 is a zero of
Q(s) of multiplicity n . Then by (i) and the argument
principle we have
6=1/2
[Aarg Q(1l/2+it +eexp(if))] +>Tn
0 f==1/2 0

as £+0. Thus the detour contributes n to the right side of
(4.2.2). But 1/2+it is a zero of 0(1l-s) of multiplicity
n0 and by (4.1.8) it is a zero of E(m)(s) of multiplicity
at least no. Thus, the zero of g(m)(s) at l/2+it0 contri-
butes no to the left side of (4.2.2), and (4.2.2) is

valid.



42

Let
(4.2.3) e
1
-s 'n'iw2
nmy L (clog W)™ K (w) dwx (s)
- ————(-1log W c(w s)
i kiJ(k>(F (s)+H, (S)) | 55 sinmw

v 'h

.
s=1 -Tiw
w =

k=0 & ‘/1.

Then by (1.2.2), (1.3.4), and (4.1.7) we have

(4.2.4) Q(s)=H(s)Q1(s).

Theanisregular for s not on the negative real axis. By

(4.2.4) we have
(4:2:5) arg Q(s)=arg H(s)+arg Ql(s).

Since H(s) has no zeroes or poles for ¢>0, t>0, we define
arg H(3)=0, and arg H(s) may be obtained by continuous
variation as in Equation (1.2.4). Then by Lemma 1.2.1,

T+U -10
(4.2.6) [Aarg H(1/2+it) ] =UL/2+0 (UL

-

) .

Thus, by (4.2.2), (4.2.5),and (4.2.6) we have

(4.2.7)

t=T+U 10

N_(T+U)-N_ (T)2UL/(2m)+(1/7) [Aarg Q (l/2+it)] +0 (UL~
X m 1 £=T

. ? i (-1)k(Fk(l- )+H, (1-s)) ——— (log w)m‘kd(w)dw.
k S k S 2i sinmw

)



43
where arg Ql(l/2+it) is determined as above (4.2.2).

4.3 A more tractable function. We can use Lemma 231

to simplify Q (s) considerably. Let cn=c(n) and dn=d(n).
1

With h(w)=(log w)™ ¥c(w), it follows from (4.1.5) that

(2.3.1) is satisfied with =L T and j replaced by m-k.

Thus, by Lemma 2.3.1 we have

w_sexp(niwz) =k
(4.3.1) (log w) c(w) dw

21 sinmw
v1/2

= . g cn(log n)m’kn—s+o(n-°Lm?k+12)

n<n

for 0<g<4log L, T<t<T+U. Similarly, by Corollary 2.3.2,

(443.2) ws—lexp(-ﬂiwz) ek
(log w) d(w) aw

2i sinmTw

y1/2

- - - -k+
= "1 dn(log n)™ k.® l+O(Tl0 A ¥ l2)

n<n

also for 0<c<4log L, T<tST+U. Let

(4:3:3) £,(s)=  c (F(s)-log a3 B "
< n
n<n

(4.3.4) £,(s)= I d_(log n-F(1-8)) % L.

n<sn
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Lemma 4.3.1 For 0<o<4log L, T<t<T+U we have

Ql(s)=f1(s)+x(s)f2(s)+0(T-c/sz+12+T_l/2Lm).

Proof. By Lemma 1.2.2, for 0<o<4log L, T<t<ST+U,
(4.3.5) Ix(s) | << (t/2m) /2701720

Then by Lemmas 1.2.3 and 1.3.2; and (4.3.12) the errxor in
replacing the integrals of (4.2.3) by the sums in (4.3.1)

and (4.3.2) is
(4.3.6) <<n-oLm+12+nl—cho—le+12=n-oLm+12.
By (4.1.5) and (4.1.6) we have

(4.3.7) cn<<l ; dn<<l for 1sn<<T.

Thus for 0<o<4log L we have

(4.3.8) £ c_(log py TR B e IR B D
n<n n ns<n
and
(4.3.9) & d_(log n)m—kns-l<<Lm—k 5 pO Lleepktl o
n<n ° n<n
Thus, by Lemma 1.3.2 and Equations (4.3.5), (4.3.8), and

(4.3.9), the error in ignoring Hk(s) and Hk(l—s) in Equation

(4.2.3) 1is
(4.3.10) << I pk-1p-1  m-k  1-20 m-k+l o)

k=1

<<Lmn-l

for 0<o<4log L. The Lemma follows from Equations (4.3.6)
and (4.3.10) .%
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Corollary 4.3.2 For 0s0<4log L, T<t<T+U we have

Ql(s)<<Tl/2Lm+l<<T.
Proof. For s in this region
(4.3.11) F(s)<<L , F(1l-s)<<L.
By (4.3.3), (4.3.7), and (4.3.11) we have
(4.3.12) fl(s)<<Lmn.
By (4.3.4), (4.3.5), (4.3.7),and (4.3.11) we have
1-20.m_o I

(4.3.13) X(s) £ (s)<<n 1P O™ 4y,

The Corollary follows from (4.3.12) and (4.3.13) .=

Corollary 4.3.3 For 3<o<4log L, T<t<T+U we have

Q, (s)=[F(s) 1™+0(27%L") .

Proof. It follows from (4.1.3) and (4.1.4) that

C1=l. Therefore, by (4.3.7) and (4.3.11) we have

(4.3.14) £ (s)=[F(s)1™o0@® = n~
X 2<n<€n

By (4.3.4), (4.3.5), (4.3.7), and (4.3.11) we have

1-20.m_0o©

(42 3515) X(s)f2(5)<<n L'™n <<Lmn—2 .

The Corollary follows from (2.4.6), (4.3.14), and (4.3.15) .=
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4.4 The argument principle. Let D be the indented

rectangle with vertices 1/2+iT, 00+iT, o +i(T+U), and
0
1/2+i(T+U) and with small semicircular indents on the left
side centered at zeroes of Q (1/2+it) as described in (i)
1

and (ii) above (4.2.2). Here we have

(4.4.1) o =21og L.

Then by the argument principle we have
(4.4.2) [Aarg Ql(s)]D=2wN(Q1(S),D)-

By Lemma 1.3.3, Corollary 4.3.3, and Equation (4.4.1),

for T<t<T+U we have

(4.4.3) Q (00+it)=(2/2+ﬂi/4+0(T_llog L))m+o(Lm-Zlog2)
1

=(2/2)m+0(2m-l)+O(Lm_l)=(2/2)m+O(Lm-l)

By (4.4.3) we have
t=T+U
(4.4.4) [Aarg Q (o +it)] <T.
B t=T

We use Lemma 3.l.1 on the upper and lower sides of D. Let

(4.4.5) M= max |Q (s+iT)+Q (s+iT)
|s-o |<oo . !
0

By Corollary 4.3.2 and Equation (4.4.1) we have

(4.4.6) M<<T.

By (4.4.3) we have

(4.4.7) |Q (co+iT)+Ql(go+iT)T=21Re Q1(00+1T)|>>Lm.
1
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Then using (3.1.8) it follows from (4.4.5), (4.4.6), and

(4.4.7) that

(4.4.8)
o=0
0

[Aarg Q (0+iT) ] <m(14N(Re Q (0+iT),1/2<0<0 ))
’ g=1/2 b »

<ﬂ(l+N(Q1(s+iT)+Q1(§+iT), |s—ooisoo-1/2))

<1 (1l+(log M-m log L)/log(oo/(oo-l/z)))<<L log L.

The same argument works to show that
0=0

0
(4.4.9) [Aarg Ql(o+i(T+U))] 1/2=O(L log L).
o=

By (4.4.2), (4.4.4), (4.4.8), and (4.4.9) we have
t=T+U0

(4.4.10) [bAarg Q1(1/2+it)] =—2ﬂN(Q1,D)+O(L log L)
t=T

where the expression on the left of (4.4.10) signifies
arg Q1(1/2+i(T+U))-arg Q1(1/2+iT)

where arg Q1(1/2+it) is defined as above (4.2.2).

By (4.2.7) and (4.4.10) we have

Lemma 4.4.1

Nm(T+U)—Nm(T)>UL/(2ﬂ)—2N(Q1,D)+O(UL—10).
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4.5 Littlewood's lemma We apply Littlewood's lemma

(see Titchmarsh [17,83.8]) on the rectangle D1 which has

vertices a+iT, 00+iT, 00+i(T+U), a+i (T+U) to the function
m.-m
2L Ql(s)w(S)-

Here we define the mollifier

(4.5.1) ' Y(s)=E bj/jS
ISy

where

(4.5.2) b1=1, lbjlgl

We may think of ¢ as an approximation to l/Ql(s).

The result is

(4.5.3) 2nrdist =
T+U T+U
= log|(2/L)mwQ1(a+it)ldt— ][ 1og|(2/L)mwQ1(co+it)ldt
T T
(0] (o]
0 0
+ j’ arg((Z/L)mle(c+i(T+U)))dG—‘/—arg((2/L)mwQ1(0+iT))d0,
a I a

where ¢ dist is the sum of the distances of the zeroes of
2" ™y (s)Q (s) from the left side of D,.

We estimate the last two integrals of (4.5.3). Clearly,

(4.5.4) arg 2™1L7 =0,
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Recall, that arg HQ1(1/2+iT) was arbitrary mod 2m. We
have determined arg H(3+it) below (4.2.5). We now deter-
mine arg Q1(S) by first specifying

(after Corollary 4.3.3) that
(4.5.5) |arg Q1(00+iT) |<n/2.

Then by (4.5.5) and a slightly more general version of

(4.4.8) we have
(4.5.6) |arg Ql(c+it) |=0(L log L)

uniformly for g>a, t>T. Therefore,

o]
0
(4.5.7) [ ars(@ (ovim)do=o(L log?L)
a
and
o
i 2
(445 .8) farg(Q (g+i (T+U) ) dg =0(L log L).
1
a
By (4.5.1), for 020 and for any t we have
(4.5.9) |y (s) |<Tt/2.

Also by (4.5.1) and (2.4.6), for g=>2 and any t we have

(4.5.10) |y (s)-1]<3-279.

Therefore, for o022, it follows from (4.5.10) that

(4.5.11) Re y (g+it)>1/4.
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By (4.5.10), for 022 and any t we have
(4:5.12) |arg(y(s)) |<m/2.

Now suppose a<cJ<2. Then for any t, by (4.5.9), (4.5.11),

and (3.1.8) , we have
o=2

(4.5.13) [pAargy(o+it)] <t (1+N(Re y(o+it), o <o0<2))
1

g=0
1

sn(l+N(w(s+it)+w(s—it), |s-2l<7/4))
<<L.
By (4.5.12) and (4.5.13)we have

(4.5.14) argy(s)=0(L) , o>a.

By (4.5.4), (4.5.7), (4.5.8), and (4.5.14) the last two
integrals of (4.5.3) are o(L logzL).
We now deal with the second integral of {4.5:3)

By Lemma 1.3.3, Corollary 4.3.3, and (4.4.1), for T<t<T+U,

(4.5.15)

(Z/D)le(00+it)=[2/L+ﬂi/(2L0+o(T—l)]m+O(L—Zlog2)

1 1

= o/ ™o (™Y =(1+1 " log (£/T) ) THO (L)

= 1+0(L'1).
It follows from (4.5.14) that for T<t<T+U we have

(4.5.16) 1ogl(2/L)mQ1<co+it);<<L’1.
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By (4.5.10), for s=c°+it we have

(4.5.17)

log|y(s) |=log|1l+(y(s)-1) |

o)

= log(1+0(2 70 ))

-2log2 1

log (1+0(L ) €L,

By (4.5.16) and (4.5.17) we have

(4.5.18)

T+U

J[-}(2/L)mwQ1(co+it)|dt=O(U/L).

T

The zeroes of (2/L)mle(s) inside D1 include the zeroes

of Ql(s) inside D. The zeroes of Ql(s) inside D are a

distance at least (1/2-a) from the left side of Dl.

Therefore,

(4.5.19)

it follows that

z dist?(l/Z—a)N(Ql,D)-

Since log is a concave function, it follows that

(4.5.20)

T+U
}Gog[(Z/L)mle(a+it)]dt

T

T+U

< U 1og(U'l ][ l(2/L)mle(a+it)|dt).

T
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By Egqguations (4,5,3), (4.5.18),

(4.5.19), (4.5.20), and the assertion below (4.5.14) we have

(4.5.21) 27N (Q ,D)
T+U
< (1/2-a) 71U 1og(u7t f |(2/L)m\pQ1(a+it) | dt) +0 (u) .
T

Thus our concern is now for evaluating the integral

™U
[] (2/L) m\le (a+it) | dt.

T



CHAPTER V

THE SIMPLIFICATION OF THE INTEGRAND

5.1 Useful tools. A typical assertion in this chapter

will be that

T+U T+U
(5.1.1)  I=| j' |y, (a*it) | dt- jr |vQg (a+it) |at |
Q| T

is small, since we shall replace Q1 by a string of simpler
functions. The ideas for these simplifications are due to
Levinson [12] and Pan [13].

The main device we use involves the triangle inequality
and the Cauchy-Schwarz inequality. By the triangle

inequality and (5.1.1) we have

T+U

(5.1.2) Is.jr [v(arit) | | loy (arit) |- log (a+it) [|at
T

T+U

< jr |w(a+it)IlQa(a+it)-QB(a+it)|dt.

T

If we let

Q (atit)=f (£)+X,(£)E ,(t)

53
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and similarly for QB(a+it), then by (5.1.2) and the triangle
inequality we have
T+U
5 I< i -
(5.1.3) ][ l(atit) | |£ ,(B)-£ g(t)]dat +
T

T+U

+ jf |w(a+it)|]xafza(t)-xsfze(t)ldt.
T

Then the Cauchy-Schwarz inequality may be applied to

(5.1.2) or to (5.1.3). For example by (5.1.2) we have

= (5.1.4)
T+U T+U
5 \1/2 5 \1/2
1<< |v(atit) | d%) < IQa(a+it)-QB(a+it)| d€> .
T T

To estimate the integrals of squares of Dirichlet
polynomials, we have the following lemma due to Levinson

[8, Lemma 3.2],

Lemma 5.1.1 Let 1<A1, A2<Tl/2

and suppose (Al, A2)=l.

Suppose that a, satisfies

(5.1.5) ll/2—a1|<<L"l.

Then we have
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(5.1.6)

sz §2 5 /|log(3 A /(3 A))|=0(Tt
2 2. 2 p e |

Jed €y 2
1 2

/24 .
j A #j A
1 1 2r =2

We apply Lemma 5.1.1 to estimate the integral of

|¢|2. We have

Lemma 5.1.2 For a and ¥ as usual we have

T+U
J( |w(a+it)|2dt=O(UL).

Y

Proof. We use Equation (4.5.1) and interchange

summation and integration to see that

T+U
(5.1:7) 2
|p(atit) | “dt
T
T+U
=  II s Bl B bj bj exp(it log(j 3 -l))dt
SR 4 2 1 72 8
3 2 T

= Uz |bi|?37%®0( =z |by by |37 373 /|log(3 /301
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The Lemma now follows from (4.5.2), Lemma 5.1.1 with

A1=A2=l and a1=a, and the fact that

(5.1.8) jTaaql/2-ay=1/2

=172
j 7
for j<<T. ®

5.2 Simplifying the integrand. We first replace

(2/L)le(S) by

(552:1) Q_(s)=(2/L) (£ (s)+x(s) £, (s))

where £ and f are defined in (4.3.3) and (4.3.4). Then
1 2

by Lemma 4.3.1 and the fact that

(5.2.2) 1<<tl/27a. 1 (£<<T)
we have for T<t<T+U that
(5.2.3) ](2/L)mQ1(a+it)-Q2(a+it)|<<T—l/4L12.

Thus, by (5.1.1), (5.1.4), Lemma 5.1.2, and (5.2.3) ;

(5.2.4) P4y

(2/n) Jr |vQ (a+it) |dt

T

T+U

7/8L8

= ]( lez(a+it)|dt+O(U ) .

T

Next, let us define
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(5.2.5) £* (s)= T c_(&/L+mi/(2L)-2L tlogn)®n™S
1 ngn n

and

(5.2.6) f£* (s)= I a_ (25} 1logn+mi/(20)-2/L) PnS"L,
2 n<n 2

Then by Lemma 1.3.3, (4.3.3), (4.3.4), (5.2.2), (5.2.5),

(5.2.6), and (4.3.7), we have for T<t<T+U that

(5.2.7)
't (atit)-£*(arit)<< £ n 2 (e/L™ v ln hog Leer™H/22
By (4.3.5) we have for T<t<T+U that
(5.2.8) | X (a+it) [<<1.
Thus, as in Equation (5.2.7) we find that
(5.2.9) IX(a+it)l!fz(a+it)-f;(a+it)l<<U‘1/2L5,

Therefore, if we define
(5.2.10) Qs(s)=ff(s)+X(S)f;(s),
then by (5.1.4), Lemma 5.1.2, (5.2.1); (5:2:7),; and (5.2.9),

(5.2.11)
T+U T+U
jr |wQ2(a+it)|dt= J[ IWQa(a+it)[dt+o(U

T T

3/4L3).
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Now let
. : -1 m -s
(5.24.12) g (s)= L c_(1l+mi/(2L)-2L “logn) n
1 ngn n '
and
(5.2.13) g (s)= I a (2L logn+mi/(20)-1)"n5"L,
2 nsn n

Further, we define
(5.214) Q“(S)=gl(8)+><(s)<912 (s) .

This time we use (5.1.3). First observe that by the

binomial theorem we have

{5.2.15)

(8/L#1i/ (2L) - 20 Tlog n) P (1+7i/ (2L) 20t

logn,)m

m

m
= 3 <k>(1ri/ (21) -2 Y109 m) ™ K [ (a/1) K-11.
k=0

Therefore, by (5.2.5), (5.2.12), and (5.2.15) we have

(5+2+15) ft(a+it)—gl(a+it)

1 -s

m
m e =
= I <k>[(2/L)k—l] z cn(ﬂi/(zL)-ZL logn)™ kn .

k-0 n<n

By (5.2.15),the Cauchy-Schwarz inequality, and Lemma

5.1.2 we have
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(5:.2.,16)
T+U
j]¢(a+it)||fj(a+it)-gl(a+it)|dt
T
T+U
= Z (m>[<£> ll(Jr lp|| = [ _ 2log n}m_kn-a-itldg
n<n “n L

T+U ' _— i
< (D) -nem f 3 (B - 2y e

For the moment, let
(5.2.17) an=cn(ni/(2L)-217110gn)“Pk.

Then for 1<n<n, it follows from (4.3.7) that

(5.2.18) an<<l.
We define

(5.2.19) T1=max{T,2ﬂj? ; 2njf}, 'rl=(('I‘+U)/(21r))l/2

Then by Lemma 5.1.1 with A1=A2=l, (5.2.16), ard (5.2.19)

we have
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T+U
_ —.-a .-a . o
= 3y a. a. j j J( exp(it log(j /3 ))dt
s 2 1
T
1

2.- -a - L
=(T+U-T ) £ |as|"] 23,0( 1z 7% 3572 /|1og(3 /3 ])
A J 53 K- ¥, 12 2. "8
1 1 1 i)
e 5
= O(UuL).

For T<t<T+U, k<m we have

1

(5.2.21) (2/0) ¥-1= (141" 10g (£/T) ) ¥-1

I

o s .

1 1

<<L T1log(t/T)<L ~log((T+U) /T)<<L

Therefore, by (5.2.16), (5.2.17), (5.2.20), and (5.2.21),

T+U

-10

(5.2.22) jf |w(a+it)||f§(a+it)-g1(a+it)ldt=O(UL ).

T
Because of (5.2.8), the same argument shows that

(542 5 23) T+U

fl.xpx(a+it) | [f’z*(a+it)—g2 (a+it)| at=0(UuL™
i v

lO)'
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Hence; by (5:2.10); (5.2.14), (5.2.22),(5.2.23);, and (5.1.3),

(5.2.24)
T+U T+U
j’ |40, (a+it) |dt= }f IWQq(a+it)|dt+O(UL_lo).
T T
Let
(5.2.25)

1/2-a

X(t)=(t/2m) exp(ri/4-it log(t/(2me))).

By Lemma 1.2.2, for TSt<T+U we have

(5.2.26)
x(a+it)=x1(t)(l+O(T-llogzL))=x1(t)+O(T—llog2L).

Now let

{5.2.27) Qs(a+it)=gl(a+it)+x1(t)gz(a+it).

By (5.2.13) we have

(5.2.28) gz(a+it)<<nl/2<<Tl/2.

Then by (5.2.14), (5.2.26), (5.2.27), and (5.2.28)we have

(5:2.29)

Ql+ (a+it) —Q5 (_a+it)=<;r2 (a+it) (x(a+it) -X, (t)) <<T'l/210g2L.

Thus by (5.1.4) , Lemma 5.1.2, and (5.2.29) we have
T4+U T+U
fleq<a+it)Jdt= f|¢Q5(a+it)|dt+O(U3/4L4).

T T

(5.2.30)
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Now let

(5.2.31)
X*(t)=(T/(2n))l/z_aexp[ﬂi/4—it log(t/(2me)) 1.

For T<t<T+U, it follows from the mean value theorem that

(5.2.32) |
t (I_ (t-T) S B
(= CONNRLS ez | (1/2-2) (37)
<<yr~ip7iap L,

It follows from (5.2.25), (5.2.31), and (5.2.32) that for

T<t<T+U we have

(5.2.33.) | x* (£)-x (£ =0 (L),
Let
(5.2.34) QG(a+it)=gl(a+it)+x*(t)gz(a+it).

By (5.2.27), (5.2.33), and (5.2.34), for T<t<T+U we have

(5.2.35) IQs(a+it)—Q6(a+it)l<<L-ll|g2(a+it)
For 0<x<l let

(5.2.36) 0% (x) =6 (x) (1+7i/ (2L)-2x)"

where ¢ is described in (4.1.3). Let

X

(5.2.37)  c*= ¢*(L Tlog n) , dx=¢*(1-L "log n)

so that by (4.1.4) and (5.2.36),

£5.2538)

1

c;=cn(1+ni/(2L)-zL‘llog m™ , d*=d_(217"log n + wiz (23~



63
For n<<T, by (4.37) and (5.2.38) we have
* *
(5:2.39) cn<<l : dn<<1.

By (5.2.12) and (5.2.13) we have

(5.2.40) g ()= c*n™® , g (s)=t d;ns-l.
3 n<n - n<n

By Lemma 5.1.1, and Equations (5.2.39), (5.2.40),(just as

in (5.2.20)) we have
T+U

jr Igz(a+it)]2dt=O(UL).

T

(5.2.41)

Therefore by (5.1.4), Lemma 5.1.2, (5.2.35), and (5.2.41)

we have
T+U T+U

i5is2ta 420 J[ |ve_(a+it) |dt= J[ {wQs(a+it)|dt+O(UL_lQ).

T T

In our final simplification, we define

(4.2.43) 'r=(T/(27r))l/2

and

(5.2.44) g*(s)= T c*n™S , g*(s)= £ a1,
1 n<t R n<t O

Let

(5.2.45) Q*(a+it)=g?(a+it)+x*(t)g*(a+it).
2
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For i=1,2 let

(5.2.46) G; (£)=g, (a+it)-g¥(a+it).

Then by (5.2.19), (5.2.40), (5.2.41), (5.2.39) and

Lemma 5.1.1 we have

T+U
(5.2.47) 5
IGl(t)I dt
T
T+U
IR ) - cx c¥ 5 3372 Jr exp(it log(j,/j ))dt
1<y 3 &v Iy I 72 ?
1 2 i | T

—o(u ¢ i h+o(rl/?

T<Is<T
1

L)

10

=0(U log(Tl/T))+O(Tl/2L)=O(U log (1+U/T) ) =0 (uL™ 1Y) .

The same argument works to show that
T+U
Jf |G2(t)|2dt=o(UL'l°).

T

(5.2.48)

By Lemma 5.1.2 and the fact that
(5.2.49) x*(t) <<l ,

it follows from (5.1.5), (5.2.34), (5.2.45), (5.2.46),

(5.2.47), and (5.2.48) that
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(5..2:50)

i T+U

j' |¢Q6(a+it)|dt= jr IwQ*(a+it)|dt+O(UL-9/2).
1 T

Hence by (5.2.4), (5.2.11), (5.2.24), (5.2.30) ;

(5.2.42),and (5.2.50) we have

(5.2.51)
T+U T+U

9/2

j- ](2/L)m¢Q1(a+it)|dt= jﬁ | pQ* (a+it) [dt+0O (UL /%) .

Ak T

By the Cauchy-Schwarz inequality we have

(5.2.52)
T+U T+U
1/2 2 . \/?
| YQ* (a+it) |dt<U ( | pQ* (a+it) | dt)
T T
et T+U
(5.2.53) = jr |yo* (a+it) | 2at.

T

We assume for now, as we will later show, that

(5:2.54) J=0(U) .

It follows from Lemma 4.4.1, (4.5.21), (5.2.51), (5.2.52),

and (5.2.53) that
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(5.2.55) N_(T+U)=N (T)>(UL/2T) (1-R L1o0g(J/U))+0(U) .

In the next two chapters, we will evaluate J explicitly.



CHAPTER VI

THE TREATMENT OF THE INTEGRAL

6.1 Some lemmas. We state some lemmas which are of

use in calculating J. The first is the special case a=1/2

of Lemmas 3.3 and 3.4 of Levinson [8].

Lemma 6.1.1 Let

T+U
(6.1:1) T(r)= j- exp(it log(t/(re)))dt.
P

Then for T<r<T+U we have

I(r)=(2ﬂr)l/zexp(—ir+ﬁi/4)+E(r)
while for r<T or r>T+U we have
I(r)=E(x) ,

where in any case 1t is true that

E(r)=0(1)+0(T/ (| T=x|+/T))+0 ((T+U) / (| T+U-r|+JT+U ) .

Next we have summation by parts.

Lemma 6.1.2 Suppose {vn} and {y'} are two seguences

n
and

67
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Then
N N N+1 N
| — -
E,YnYn_ EMYn(Cn+l Cl* B v aCym B Gy
n=M _ n=M+1 n=M
N

= I

W Crn e 1™V YO Y M M1

M

Third, we have a lemma about a geometric series. With

(6i.1.2) e (x)=exp(2mWix)

we have

Lemma 6.1.3 If 1<p<g then

L e(-jp/q)<<qg/ptq/(g-p)
j<n

uniformly in p, gq, and n.

Proof. We have

.£~e(—jp/q)=e(-p/q)(e(-np/q)-l)/(e(-p/q)-l)
jsn

< 2/]e(-p/q)-1| =csc(np/q)<(2/r)max{q/p, 1/(1-p/q)}

from which the Lemma follows.®

We quote Lemma 3.6 of Levinson [8].

ILemma 6.1.4 Let k=(k],k2)=gcd (k ,k ). Then
1 2.

£ k/(k k)=0(logy)=0(L>),
kl,k2<y- 3 2

We have the Euler-McClaurin summation formula.



69

Lemma 6.1.5 If f has a continuous derivative then

X f(n)

x SnSx
1 2

X
2 2

X
=./'-f(x)dx+ J(f'(x)([x]—x)dx+f(x Y ([x J-x )-£(x ) ([x=]-x_).
2 2 2 i 1 1
X

X
1 1

Proof. By Stieltjes integration we have

XZ XZ
5 f(n)=f £(x)d([x]-8)+ j' £ (%) dx.
x Snsx
4 ¢ x= X

1 1

The Lemma follows by integrating the first integral
by parts.®

Corollary 6.1.6 If f has a continuous derivative,

then s f(n)
x Sn<x
1 2
X X
2 2
=ff(x)dx+0(f |f'(x)|dx)+0(|f(x1)|)+O(|f(x2)|).
X X

1 1

Corollary 6.1.7 Suppose that

2]
Jrlf'(x)|dx<w.
1
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Then there is a constant K such that

D 4 (o]
2
z f(n)= f(x)dx+RK+0(|£( x ) |)+0O( jr | £' (%) | dx) .
1Sn<x, 2 J
1 2

Proof. Take x1=l in the Lemma. Then

K= j’f'(x)([x]—x)dx+f(l).!
1

Finally we have estimates for the derivatives

of ¢ and ¢*.

Lemma 6.1.8 For 0<x<l and k>l we have (mniformly)

16 %) (x)ec & VK,

Proof. By Cauchy's formula and (4.1.3) we have

k-1

16 (x) |=|kt/ (2m) | b (w) (w=x) 5" Law

|w-x|=k/d

<< k! (d/k) Kexp (A(k/a+1)) <<k! (e/k)Fd"

from which the Lemma follows by (1.1.10).®

Corollary 6.1.9 If 0<x<1, then uniformly for all k=21

o (8) () | <M/

uniformly for all KkK2>1.
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Proof. By (5.2.36) we have

¢*(k) (x)

min{m,k}
i j§o (§)¢(k'3) (x)m(m-1) ... (m-3+1) (-2) 7 (1+ T -23) ™7

min{m,k}

<< jio (?)[¢(k—j)(i)|

min{m,k}

SRR (g?)ak'j,/}rj

3=0

<< km+l/2dk.l

Lemma 6.1.10 If w is any complex number, then

| " (w) |<<exp(d|w]) .

Proof. By Cauchy's theorem and (4.1.3) we have
2w|¢'(w0)|=| d/— ¢(w)(w—w0)-2dw|
|w-w |=1
0

€< exp(d(|w0|+l))<<exp(d|w0|).l

corollary 6.1.11 For any w we have

[¢*'(w)|<<exp(d|w|)(l+lw|)m.
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Proof. By (5.2.36) we have

q)*'(w)=q>'(w)(1+'rri/(2L)—2w)m-2<1>(w)m(l+'rri/(2L)-2w)m_l

<< exp(leI)(l+lwl)m.p

6.2 A first look at J, We square out (5.2.53) to

see that

(6.2.1) J=J +J +2Re J
1 2 3

where

(6.2.2) T+U T+U

J = |¢g*(a+it)|2dt y J = J[ |X*(t)¢g*(a+it)|2dt,
1 1 2 2
T T

T+U

= Jr pg* (at+it) pg* (a+it) x*(t)x*(t) dt.
3 1 2

T
Since JlandJ;are real, we may write (6.2.1) as
(6:2.3) J=Re (J +J +2J ).
1 2 3

We treat J first. We replace y and gt by the sums
1

which define them (see (4.5.1) and (5.2.44)), use the

fact that

|¢g*(a+it)|2=¢g*(a+it)¢g*2a+1t5 ;
1 24 1

and interchange summation and integration to see that
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(6.2.4) "
bk bk c* c* Ll 4
1 2 31 J . Jzkz
J = e sl R exp(it log )dt .
Lk Jk.gy a.a 7 i <1 @ =8 j k
’ o kl k2 31,]2 Jl 32 T I 1
Let
(6.2.5) k=(k ,k )
1 2
and
(6.2.6) k =kA , k =kA
1 1 3 2

It follows that

(6.2.7) (A ,A )=1.
1 2

We write

(6.2.8) J =J +J°
¥ 11 Al

where J consists of those terms for which
11

(6.2.9) j1=jA ’ j2=jA

for some j. In J' we have those terms for which
11

(6.2.10) JlAl#jzAz.

InJ the integrand is 1, by (6.2.9) . With
11

6.2.11 =max{A ,A }, A_=min{A ,A
( ) mFmax{A A}, B =min{a ,A }

we have
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(6.2.12) bk bk
e 2a E: -2a
J =u 2: —— 'k o o¥. §7%3,
11 ik <y k42 k2@ jet/n, B, IR,
1 2 1 2 M

We apply Lemma 5.1.1 to J),. Then, by (4:5.2)  (5.2:.2);

(5.2.34), (6.2.7), and (6.2.10) we have

(6.2.13)
J! <<§: E: Nl z: E: 2 37%/|10g9(3 A j—lAfl)l
11k Lk <y 5 ,J <T 2 2 271 1
1 2
j A #3 A
b - | 2 2
172 E: -1/2 . 1/2 -9
<<T L k << Ly=UL ~.
k gy 1
1
Thus, by (6.2.8) and (6.2.13) we have
(6.2.14) 3 =3 +0(UL’Y).
1 11
It is clear from (5.2.31) that
(6.2.15) I (0) | 2= 1/ (2m) T2 27 %2

The treatment of J is really no different from that of J
2 1

We use (4.5.1), (5.2.44), and (6.2.15) to see that

(6.2.16) d* d* T+U :
E 2 E 2 2
J =t 2-4a j{: 1-a = a.f;xp(it log ) dt,
< K Y k k j J <t jk
2 T 11

We use (6.2.5),(6.2.6), and (6.2.7) and let

{6.2x317) J =3 +J

2 21 21
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where, as for Jl, the terms with (6.2.9) are in J and
21

the terms with (6.2.10) are in J' . Then we find that
21

Ee ZE: ZE: bklbk ZE:
_r2-4a 2 . 2=2a 2a-2
J =UT S '] * . 2a
de d§A2 | .

44 kK ;K € k k =
1’2y 3 2 JT/A-M

Just as for J' ,we find by Lemma 5.1.1 that
2 e |

(6.2.19) J' =o(ur"?).
2.3

Hence by (6.2.17) and (6.2.19) we have

(6.2.20) J =J +o(UL'9).

2 21

6.3 The integral Ja The treatment of J is more
3

difficult than that of J or J yet considerably easier
1 2

than Levinson's treatment because of the simplifications
(5.2.31) and (5.2.44). We use (4.5.1), (5.2.31), (5.2.44),

(6.1.1), and (6.2.2) and we interchange summation and

integration to see that

(6.3.1) ZE: j{: ZE:
J _ 1 2a -w1/4 "“‘jf"l(r)

k<Ykk ',J<r
where
(6.3.2) r=273 j k /k .
1 2 1 2
Then by (6.3.1) and Lemma 6.1.1 we have

(6+:3x3) J =3 +J'
s~ 41 &1
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where by (6.3.2) we have

(6.3.4) 31

by by
=2 1-2a 1 2
=4TT

kl,k2<y k?-1/2 Kat1l/2 ji,j2<r

T<r<T+U

and by (4.5.2) and (5.2.39) we have

(6350 g0 ) 5 T 5 E:

42 k Ik <Y L . l] <T
1 2

c¥ 4a*
3
2

3
1

.a=1/2
j /

1

s /2=
J /272
2

E(r).

exp (-ir)

We estimate J' . Recall in Lemma 6.1.1 that E(x)

31

is a sum of three terms. We estimate the contribution of

each of these terms to J' . By (6.3.5) and (5.2.2)

3:d

contribution of the O(l) part of E(r) to J;1

{6 .35
2 2
<< k 1/2 Z j"l/2 <<y1:<<TL-'20
k <y ! j gt !
1 1
Also, if
(6.3:7) r<3T/4 or r>5T/4
then by Lemma 6.1.1 we have
E(r)=0(1).

The case (6.3.7) is taken care of by the estimate

If

£6.::383) 3T/4<r<5T/4

is

v~ 10,

the

(6.3.6).
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then by (6.3.2) we have

(6.3.9) k12 k72 312 337 = (3152k1/k2) 7@ k322 52371

Ta - - - -
=(r/2m)) k22a jga lecm 1/2 k2l

Thus by (6.3.5) and (6.3.9) the contribution to J' of the
31

o(T/(|T-x|~T))

part of E(r) is

(6.3.10)
Tko/(27]2k 1)
<< -1/2 -l 173
K1, ko<y J1ed2%T /2 k,
I | e
21Tj2k1 2TTj2k1

We estimate the inner sum on j; of (6.3.10). If the
term in absolute values in the denominator of (6.3.10)
is <1/2 then the quotient of the innermost summand of

(6.3.10) is

(6.3.11) ' <erl/2,

There are 0O(l) such terms. For the rest of the values

1/2

of j; we ignore the term T k»/(21j.k1) of the denominator

of (6.3.10) so that the sum on j; in (6.3.10) is

(6.3.12) <<t 2mk, 55T k1T Z =1
j1<T Jl
<<Tl/2+Tk2j-2-l k:l Tors
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Now we sum on j,,ki;,and k, and use (6.3.12) to find

that the expression in (6.3.10) is

(6.3.13)
<<Z Z kZlZl+T LZ Z
ki, ka<y ja<T klrk2<y ja<t
1/2 -7

<< ytL+T Ly (log y)logt =O(UL 7).

In just the same way we find that the contribution to
J' of the
31

O((T+U) / (| T+U-x | +/T+0))

part of E(r) is

(6.3.14) <<UL_7.

By (6.3.6), (6.3.13),and (6.3.14) we have

(6.3.15) J;l=O(UL—7

)o
Hence by (6.3.3) and (6.3.15) we have
7

(6.3.16) J,=J,,+0(UL ).

Now we use (6.2.5) and (6.2.6) as with J; and J;

to obtain the main part of Jj;;. We write
(6-3-17) J31=J32+J;9

where J;, is that part of (6.3.4) for which
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(6.3.19) Aljzsj mod A2 ’ l<j<A2-l.

We treat J' first. We consider the inner sum on Iy 8
32

let

(6.3.20) J" =g

.1/2- o 5
c¥ 3 S e(=j,i/a,)
32 jl 1

31
where we have used (6.1.2). By (6.3.2) and (6.3.4), the

conditions of summation on j1 are given by
(6.3.21) Tkz/(znj2k1)<j 1<(T+U)/(27Tj Zkl) ’ l<j1<T-

We see that the sum on j; is for all integers in a certain

interval. We apply Lemma 6.1.2 with

(6..3:22) Y, =c¥ j}/z-a v 'Y! =a(=§13/8,:) .
31 Ja Ja

Then by (6.3.19), (6.3.22), and Lemma 6.1.3 we have

(6l 23) Co=. 2 e(=313/R:)<<hy/J+A, /(B,-]) .
jis<n

To estimate Yn-1-Y n’ first observe that for n<t, by the

mean value theorem and Lemma 6.1.8 we have

(6.3.24) an,kl

log(n-1) N log n _
‘¢<_———————) loqk(n—l)(n-l)l/2 a—¢(—————)(logk n)nl/2 a ]
L

L

max
n-1<&<n

log™E -1 k ¢'(L-1109£)
ggmj ¢ (L logd))(mg +l/2—a) t y I

<<Lk_l/n.
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Then by (4.1.4), (5.2.38), and (6.3.22) with the definition

of D

0ok implicit in (6.3.24) we have

{6 ¢3+25) Y = Y

=<I>(L-'llo-g(n—1))(1+1ri/(2L)-2L'l log(n—l))m(n-l)l/z“a _

¢ (L t10g n)(1+ni/(2L)—2L-llog n)Ppl/2-8

m
- (B asmizE) ™ 0" by

<<1/(nL) .

Thus, by Lemma 6.1.2, (6.3.20), (6.3.22), (6.3.23), and

(6.3.25) we have

ol (Az/j+A2/(Az-j))j1—l

(6.3.26) J" o<<n”
32 ]

1

<<Az/j+A2/(A2-3]) .
We sum next on j2 in J;z where we have the restriction
Y B P

as described in (6.3.19), We observe that j, runs through
at most T/A, sets of successive integers, each set contain-

ing A,-1 successive integers, and for each set j runs from

1 to A,-1. Thus, by (6.3.4), (6.3.20), and (6.3.26)

we have
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.a=1/2

(6.3.27) : |a |3; (a,/3+8,/ (A, ~3))
2
Az‘l
<< (t/3;) _Zl (s /348, / (Bo=3))
J"—"

1/2

<<tlog A,<<T L.

Finally, we sum on k; and k,. Then by (6.3.4), (6.3.19),

(6.3.20), (6.3.26), and (6.3.27) we have

(6.3.28)

- <<Z Z xl/2-a  ~1/2-a 11/2 oo 0n1/2 12 ;-8
32 kl,k2<y

Hence by (6.3.16), (6.3.17),'and (6.3.28) we have

7

(6.3.29) J3=J32+0(UL ).
In J32 let
(6.3.30) j2=3jA,

Then by (6.3.2) and (6.3.30), exp(-ir)=1, so that

(6.3431)
J32=2ﬂTl-2a§: E: by bk kl/2—a k—1/2—a A<‘:21-l/2 21
ki,kosy Ly 4 :
where
{6:3.32) Li=p, Y. c* ax j,1/2-a ja-1/2
§ 03,02 250
1

The conditions of summation on ji: and j are

T<r<I+U I lgj 1rs jAz <T
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which is, by (6.3.2), the same as

(6.3-33) . T2 T% T
(i) -— €j1j€— , (ii) 1<j€— , (iii) 1<],<rt.
A] Al AZ

Conditions (i) and (iii) imply that
(6.3.34) i>t/Aq -
Conditions (i) and (ii) imply that

(6.3.35) j,>1A,/A,.

By (6.3.34) and (6.3.35) we may replace Conditions (6.3.33)
by
T T TA2

D A, - B L ¢ ) e isentlt L £ S <3,<T.
A Ay A, As A,

Note that the region defined in (6.3.36) is empty if ka2>ki
(see (6.2.6)).Thusin(6.3.3l) the double sum on ki,k2 may

be written as
(6.3.37) l<k2< k1<y.

We will show that I, is a good approximation for Zi,

where

(6.3.38) T,= ak ja-l/2 5 ok j1/2-a_
5 jAz . 3| 1
3 Ja 1
The conditions of summation on j and j, are (iv) and (i)

of (6.3.36). To show that Z:-Z, is small we consider two
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cases.

First, suppose
(6:.3.39) A,/A,<1+U/T.
Then (iv) and (6.3.39) imply that
2 3
(6.3.40) 11/ (A13)>T .«

By (6.3.32), (6.3.36), (6.3.38), (6.3.39),(6.3.40),
and since the lower bound for j,; of (i) is never smaller

than the lower bound of (v) we have

(6.3.41)21_2 =_Z ax. §2-1/2 . jl/2-a
. IR, R E
T

L+ 1<y <—=
A; A, -V

T T
{g - )3/~ =(1/Bm /Ay (ei=e)

10

= <(A1/A2-l)/A1) Ul 2n ) actts ~° fBa s

In the second case we have
A,/A,>1+U/T.
Then, since
r<c?/(a3) for j« X/ (At)

and

2 . .
Tl/(A1j)<T for ]>T?/(A1T)r

we have
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(6.3.42)
E .a=1/2 z 1/2-a
Z "Z -— * a c*
1 2 5 ]AZ J T% ]ljl
it T3 .
A SSEnm Lo

2
<< (T?/(AlT)—T/A1)(T%/T'T)=(T%‘Tz) /(T2A1)

10

<< Uz/(TAl)=UL_ /A,.

Thus, in either case (6.3.41) or (6.3.42) we have

(6.3.43) z,-5,=o(ur" a7l

Let

(6.3.44) JTy5=2nct 722 E: E: by by j1/2-8 571 xl/2=a ¢ |
Ik, Kkyky. . = F

Then by (6.3.31), (6.3.43), (6.3.44), and Lemma 6.1.4,

(6.3.45) J32-J33<<§Z: E: k}l A}l gr 9
kll k2<y

- z Z k/(k1k2)=O(UL-7).
klrk2<Y

By (6.3.29) and (6.3.45) we have

(6.3.46) T4=J4,+0 (UL ).
Let
(6.3.47) 5 4= c* .1/2-a
) ) Ji1J1
—1*<j1<LL—



85

Then by (6.3.38) we have

(6.3.48)
- § oF .a=1/2
Zz . dJAz J 23.
LTgg L
A, J A,

We would like to replace the sum f,; by the length of the

interval of summation times the value of the summand at

the lower limit. For convenience, let

(6.3.49) %=t/ (3,3) , Xi= 12/(2,3).

Observe that by the mean value theorem and Lemma 6.1.8

(just as in (6.3.24)), for X,;<j< X; we have

(6.3.50) D' =
| 31'k|

- _ . , =1 - k .
=| ¢ (L llog Jl)(logk 31)3}/2 a-¢(L llog Xo) (log XO)X}/2 &

<< (j 1-X0 ) Lk-l/XO

where D; K has been defined implicitly. Therefore, for
1. 9

X,<j<X;, by (6.3.50) and (5.2.36) we have

(6.3.51) |ox 31/2723

] —¢*(L’llog xo)xl/z'a
b |

’ |

m

- m . m-k .,k k1
=z () eri/ @)™ 1" 2/0 D] |

<<(j1-Xo)/(LX0) .
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Thus, by (6.3.47) we have
(6..3.52)
Zs=¢* (L og %)% /273 ((12-1%) /(a13)+0(1)) 40 (Z4)

where by (6.3.49) we have

(6.3.53)
E: 1 §: 1 5
Iy= (F1=Xo) /(LXo) <<— J1<<—(X1-Xo)
Xo<J18X, LX, 318X 1-Xo on

= (u/(21a,3)) 2/ (/a9 <<z M/ @ 9) .

By (6.3.49), (6.3.52),and (6.3.53) we have

(6.3.54) e
U e, 2 [ 2 11/2-a uL™ ]
T a= ¢*<L 1og—l—) uiE +0 (1) +0

2mA1 ] Aj7|A1] S

- - -
722 v a-3/2 =i oLt
= ——— (A1]) ¢*(1-L ~log(A;j))+0(1)+0
2T ALj

T1—2a " s —_
= — (A13) d* +0(1)+0
2M jAl Alj

By (6.3.48) the contribution of the O-terms of (6.3.54)

to £ is
2

(6.3.55) <<t (agt-aihyeur Yagt £ 570

J

<<Tl/2+UL_lO/A1.
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By (6.3.48), (6.3.45), and (6.3.55) we have

(6.3.56)

1-2a

i 2 p3-3/2 ds - aan g2Amy

4 jA, JA,

10

+ o3y +o(ur™ /a0 .

By Lemma 6.1.4 the contribution of the O-terms of

(6.3.56) to (6.3.44) is

(63«5 7)

<<§: E: k;l(Tl/2+UL—lo/A1)<<Tl/2yL+UL_10§: E: k/(k,k,)
Ky K88 k ok <y

=O(UL—7).

Therefore, by (6.3.44), (6.3.46), (6.3.56), and (6.:3:57) +

(6.3.58)
- 2-2
J3=12 s U k a E{: a g% j2a-2
1k, ki <y kikp T T JA, TIA,
—SjS—
A "B
+ o(ur™7).

6.4 Replacing sums by integrals. We will use the

Euler-Maclaurin formula to approximate to the inner sums

of Jl,Jz, and J3. But first we have a simplification.

The summand of (6.3.58) is symmetric in k; and k,
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We can replace the conditions of summation on ki1 and

k, by the conditions

Ik1<k, <y

and have another expression for J,, provided we interchange

A, and A,. Thus, by (6.3.58) and these remarks we see that

(6.4.1) S’
ki'k
g, =r2 28 gy ¥ Rz e Z ar, ar, 37372+
ki, k,<y  kike o ot SR e
N PA T
M m
7

+ o(uL ).
Now J, and 2J3'combine nicely. We have by (6.2.1)
(6.2.12), (6.2.14); (6.2.17), (6.2.18),and (6.4.1) that

(6.4.2) J=Re (J,+35)+0(UL™")

where
b, b
kik, 2a j{: .=-2a
(6.4.3) J,=U —_—_k chx chz 3
R eo< 2a , 2a i<t /A
1 2Y kl k2 j /M

and

(6.4.4)
b, b
klkz o Z -
J=1~2‘4auzz kR et ax, ax 32372,
JA,

5 . A
kk, k ik, 3<T/Am e
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We apply Corollary 6.1.7 with

(6.4.5) f(x)=¢*(L_llog(A1x))¢*(L—llog(A2x))x_2a

By (6.4.5) and Corollary 6.1.11 we have for large x the
estimate

(6.4.6) |f'(x)|<<x2/L‘l'2a(1og %% e Mt

Also, by (6.4.5) we have

(6.4.7) f(‘r/AM)<<AM /T .

Therefore, by Corollary 6.1.7, (6.4.5),(6.4.6), and (6.4.7),

.—2a
(6.4.8) c# c* j
jg.r /A'M ]AJ JAZ
/A
3 -2a
= j' c*(vA;) c*(vAy)V dv+K, +0 (Ay /T

1

where
% =,

{6<4.9) c*(x)=¢ (L ~log X)

and K, is a constant.

In a similar way, we can use corollary 6.1.7 to

E: ar. ax. 232

J
i< ]Al ]Az
T /Ay

show that
(6.4.10)

T/Am
% j’ <3.*(VA1)<°1*(VA.?_)vza_2 dv+K5+O(Am /T)

1
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where

(6 8511 a* (x)=¢* (1-L Tlog x) .

When the O(AM /t) term of (6.4.8) is accounted for

in (6.4.3) the resulting contribution to J, is

(6.4.12) ot L) i k:nl<<UT—lyL<<UL_19.

kl rk2<Y

‘

Here we use the notation
(6.4.13) km=min{k1,k2} and kM=max {k,/ky}-

In a similar way, the O(A.m /1) term of (6.4.10) contributes

<<UL-19

to Js.

Therefore, by (6.4.3), (6.4.4), (6.4.8), (6.4.10) ,

and (6.4.12)we have

(6.4.14)
b, b /By
kl kz 2a dav 7
J,=U —— k c* (VA,)c* (VA)—>7 +K,|+0 (UL ),
k,,ko<y k%a kga 1 v
b b T/Am ad
3. =2 43y K1 K2 2-2a f a* (vA,) d* (VA N
=T 1 2 o 5
5 1'k2< klkz V2 2a

1

3. (UL ')«
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6.5 Replacing integrals by sums. We now integrate

the integrals of (6.4.14) by parts. It will be convenient

to let

(6.5.1) b4 (x)=0*(x)

so that the superscripts indicating derivatives will be

more prominent.

Let
T/AM
o =1 =] -2a
(6.5.2) Iy= jﬂ 0, (L "log(vAi1)) ¢, (L “log(vAz))V dv
1
and
'r/Am
T j’ <1>*(1-L-J‘log(vA1))ct),,c(l—L_llog(vAg))Vza_2 av.

1

Note that ¢,(w) is an entire function (see (4.1.3) and

(5.2.36)). We integrate (6.5.2) by parts N times toQ see

that
1-2a
(6.5.4) Iy= ‘l’ .
-z
N
. (- 1/L) (3) { log(vAa (n-3 log(vAg)
nZ0 ()¢* LoglvRal, (73 ( )

(1- 2a)

* Ry




where

N
RN=__(_‘_}_)__.. I; (J)<109 (VA1)> (N-j)< log(vA; )) av
t¥(1-2a)N j=o\J . L = Eil

By Lemma 6.1.9 we have

(6.5.6) Z N)¢(J) (L_llog(vAJ» iN—j) (L_llég(vAZD
<<dN N2m+1 E (N) 2d)N N2m+l
3=0
for l<v<t. Recall that
(6.5.7) (1-2a) L=2R .
Thus by (6.5.6) and (4.1.3) we have

(6.5.8) RN+0 as Nu o,

Moreover, if we let N»= then the infinite sum we get for I
is absolutely convergent by (4.1.3) and (6.5.6). Thus,

since logt=L/2, we have

(6.5.9) I,=
128, gaey O =gy ® 3) (n-3) [ 1 By

I 5 GaE () 6830 (1/2) 04 2 log x— )=
1-2a n=0 (2R) M

@

Br B ENT B (50 (shea el (et
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The same treatment works for Is. We integrate by parts

to see that

(6.5.10)
2a-1 © n n : . TA
£ lamt s " plm2a o (8D 5B st p\n=d) (1-% 10g —H+
5 (1-2a) m s (ZR)n j=0(3) * (2) * L Am

i iy (0% s Lo JER S5 G B =1 k&
1-2a n=0 (2R)n 3=0 3) * k

*

(n'j)(l-L’llog§£).

It is clear that

8 B k;2a k;Za kZa Tl-2a Aié—l _ Tl—2a k;Za kil X,
and
(6.5.12)

2-4a ., -1 .,-1 ,2-2a 2a-l 1-2a 1-2a ,-2a . -1
T k,” k" k T Am T km kM k.

Also we have

L

- -1
(6.5.13) 1-L7"log(tA_ /Ay) =L "log(tAy /By,

Hence, by (6.4.14), (6.5.2), (6.5.3), and (6.5.9) through
(6.5.13) the terms in J, and Js which involve km and kM as
introduced in I, and Is are negatives of each other, and
so cancel when brought together in J as in (6.4.2).

Therefore, we have

7

(6.5.14) J=Re (J,-J4)+0(UL ")
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where
(6.5.15)
b, b
2R ki k2 E
3 ,=28 E: E: el A 2a«l-za)K5+
1-2a ki,k2sy kik2
> (=n*" 1 1. k

+ I : (D)old (1~ Hogth o™ (1- flogft))

n=0 (2R)® 3= o

and

bk 1bkz
v 5 2a
U v 7a & ¢
ki,kosy k & e
(o]
- (J) (n=4)
((1-2a)K,+ = 3 ¢ n=3) 1liaa82
( n=0 (2R) j= 0< ) * (f lng ). b# (Llogk )>'

In the above we have used the fact that

In the next chapter, we specify the coefficients

b. of the mollifier and we evaluate J, and J,



CHAPTER VII

THE MOLLIFIER

7.1 Further lemmas. The following lemmas will be

useful in evaluating the sums J; and Jg.

Lemma 7.1.1 If f is an arithmetical function, then

£ (k)= % (

_ D w@EE/d) .
jlk

d|3
Proof. Here py is the Mobius function. It is

multiplicative, -1 on primes, and 0 on prime powers higher

than the first. Also (see Apostol [1, Theorem 2.1])

1 if n=1

z u(d) = .
d|n 0 if n>1

Thus, by (7.1.1) we have

f(k)= 2 f(n)< Zk u(d)>= T p(d) £(n)
n|k dn|k

n

from which the Lemma follows whenwe let dn=j .®

Lemma 7.1.2 Suppose that

A(w)= g a(n)n_w
n=1

is absolutely convergent for u>l. Then if c>1l+g we have
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for £>1 that

Cct+iw
2 Q0 w-0o
(7.1.2) g Al o xyt 1 [ Aw) R
n<x n% 3 2Ti (w_a)z+1
c-iw

Proof. The right side of (7.1.2) is

e}

(7.1.3) gy ¢ 2 7y
n=1 n®
where
c+i®
1 W= 0
I(Y)"—'—- f _L_—E-}-_l dw ;
27i (w=a)
c-i

the interchange of summation and integration is justified

by absolute convergence. By Cauchy's theorem

ci1tiew
(7.1.4) I (y)=—— f vWow L aw
27i
Cl-i°°

for any c;>l. The integrand of (7.1.4) has a pole of

order (2+1) at w=0 with residue
2,00
(log y) /%

Suppose y>l. Then by Cauchy's theorem and (7.1.4)

we have




7

(7.1.5) oy
I(y)= lim B J( wa-SL-l aw
X>o 2mi
Y0 ci1-iX
—0=31X ci1+iY
=(log v) /21+11m ——— ( J[ yWow T aw + J[ v w1l dw)
X*n 2mi
—-o4+iY
Ci
=(log y) /2'+llm O((X T l) fyu du)
K>
Y—)Q) -0

=(1log v)t/21.

Suppose 0<y<l. Then alter the path to u-iX, ciSus*® and

ut+iy¥, « >u>c; to see that in this case
(7.1.6) I(y)=0.
The Lemma follows from (7.1.3), (7.1.5), and (7.1.6).8

Lemma 7.1.3 For j<y and |u-1l|<<1l/log L we have

5 p @ log p<<log L,

p|J

Proof. Let g, 92, 93+ .- =2, 3, 5, ... be the

sequence of primes. Suppose that

q19z---9,.83<d192 - -y,
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Then by (2.1.10) we have

qr
(7.1.7) £ p Yllogp<< i p 2logp = ]’t’u ae (t)
1

p|3] pP<q,.
qr
=e(qr)q;u -u f 9L g(¢) at.
1

By (2.1.11) we have

(7+1.8) qr<<6(qr)=log(q1q2...qr)slog 2Ty,
By (7.1.8) and the hypothesis on u,we have for t<q. that

(7.1.9) t—u=t_1 tl_u<<t-l Lc/log L<<t—l

The Lemma follows from (7.1.7), (7.1.8), and (7.1.9).m

Lemma 7.1.4 Let

£(r)=1 £(p) , £(p)=1+0(p °)
plr

(4

where c>0. For 4 a fixed non-negative integer, let

24 o
Jg(x)= % MR £(r) (logx) .
r<x i of

Then

d+1
(7.1.10) Jd(x)=n(1+£iEl:l) (1-p~2) 199" "X L6(10g%) .
p p+l d+1
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Proof. The case d=0 is Lemma 3.11 of Levinson [8].

For d>1 we apply Lemma 7.1.2 with

a(n)=p° (n) £(n)

and

o 2
(7:1.11) agw)= g L (IEn) g (1+£(B))
n=1 n P P

—conn (ERIZD £(p)
P P P

The product on the right side of (7.1.11) is absolutely
convergent for u>l-c/2 and A(w) is analytic in this region
except for a simple pole at w=l with residue

(7.1.12) 1 (1+ ZRI=L _ EB) g (14 £(p)-1) (1572,
P p P P ptl

Also A(w) is majorized by z(w) for u>l-c/2. By Lemma

7.1.2 we have

3+iew
! w=-1
(7.1.13) 3 () == J[ A(w) X a
2ri a+1
. (w=-1)

The integrand of (7.1.13) has a pole of order d+2 at w=l.
By (7.1.12) the residue is the expression on the right
side of (7.1.10). The Lemma follows when we shift the path

of integration to the line w=l-c/2 +iv, =-w<v<e and use

the estimate

A(w)<<g (W) << (1+]v]) 172 ,

which is valid on the new path by the equation before (2.4.5).
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Lemma 7.1.5 Let a=1 or o=2a. Let

(7.1.14) £ (p) = (1-p2%~228) / (1-p2"1/270)2

Let

(7.1.15) Y(a)=N (1+(f(p)-1)/(p+1)).
P

Then we have

(7.1.16) (I (1-p 2))Y¥(a)=1+0(|1/2-a|).
p

Proof. By (7.1.14) we have

(7.1.17) £(p)=1+0(p )
where

=min{2a-2a, atl/2-a}.

It is easy to see that Y(a) is an analytic function of

a for |a-1/2|<1/4. Therefore, for |a-1/2| small we have
(7.1.18) Y(a)=Y(1/2)+0(|1/2-a]) .

By (7.1.14) with a=1/2 and o=2a=1 we have

1

(7.1.19) £(p)=(1-p 1) /(1-p 1) 2=141/ (p-1) .

By (7.1.19) we have

2 2 . 71
(7.1.20) 1+(£(p)=1)/(ptL)=p“/(p°-1)=(1-p ") .

By (7.1.15) and (7.1.20) we have

=1

2) .

(7.1.21) Y(1/2)=I (1-p
P
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The Lemma follows from (7+19) 4o (7:2:13), and (7.1.16) .=

7.2 The choice of the mollifier. Because of

logt=L/2
we have
&1 iy “y
(7.2.1) 1-L log(E—)=l/2-L log(ki/(kr))
and
(7.2.2) L-llog(ki/k)=l/2+L-llog(ki/(kT)).

Now we consider ¢, as a Taylor series expanded around 1/2,

and we obtain the derivative ¢£J) by term differentiation

of the Taylor series. Then by the above, the inner sums

of (6.5.15) will involve sums of

g § -1 =
(L "log(ki1/(kT))) " (L “log(k2/(kT)))

for various r,,r,. Thus we are led to consider the sums

(7.2.3)
b, b
k;k, r I,
- -1 -1
e ] P fo=0= 28 op log%%) (L loggl)
Rerie ki/k,<y k1 k3 i
Then J, involves the sums S (1) and Jg the
r,.,r,
sums Sr1,r2 (2a) .
For convenience, let
(7.2.4) Yy=20-2a.

We apply Lemma 7.1.1 with
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£y ro
= Y }&. k2
(7.2.5) f(k)=k (logkr) (logp:
Then we see that
I ro
(7.2.6) £(k)= 12 37 z p@da’’ kjd (1og1;§d)

jlk 4|3

=. JY E: 1= ( X;Y)@og (109 ) 95 (rJ'11+r2‘ler)

11—-0

where

=Y e
(7.2.7) g.(e,y)= ¢ u(@d (log d) .

] dl]
Let
(7.2.8) M. (i a)=z b <1oq )
J ! kl<y kl
k;=0 mod jJ

We use (7.2.3), (7.2.4), (7.2.5), (7.2.6), (7.2.7), and

(7.2.8) and recall that k=(k,,k,). We interchange

the sums on k,,k, with that on j and have that

r1+r2 =
(7.2.9) L Srlrrz(a)

E: E: ( )E:jj g (r1-11+r2-12,y)M (11,a)M (i,,a).

In (7.2.8) make the change of variable k,=nj and let

(7.2.10) x=y/3.
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Then

(7.2.11) Mj(i,a)=j %5 b_.n"® 1ogt(n/7)

- i i i i- B A
=57 <—1>le§0(é)(L/2>l (=) <nix ®n3" )

Now we specify bj' More general than Levinson's choice

[4, equation 2.4], we take the mollifier coefficients

to be

(F.2,12) p.=—b) (log(y/j)>
J jl/z a log y

where P is a polynomial which satisfies

P(0)=0., P(1)=1.

Let
(7.2.13) B=o0-a+l/2.

Then for a=1 or a=2a we have

(7.2.14) (g ) ees .
Let

- - -8 log(x/n)
(7.2.15) G(a)=G(a,]) nix p(n)n P(—I%Ej;—— .

(n,j)=1
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Then by (7.2.12), (7.2.13), and (7.2.15) we have

(7.2.16) P b a e (31422 cta).

We will use Lemma 7.1.2 to evaluate G(a) which can then be

used to evaluate Mj(i,a) which is essential to Srl r?_(OL).
f 3

Let

(7.2.17) F(j,w)=1T (1-p ).
pl3

Then, for u>l, by (2.1.2) and (7.2.17) we have

o

(7:2:08) " & p(n)n =1 (1-p ")=1/(g(wW)F(3,w)).

n=1 P
(n,3)=1 p/j

Hence, by (7.2.15), (7.2.18),and Lemma 7.1.2 we have

2+ie
P(l)(O) 1 j’ xw_B dw .
co) (W) w-g) ¥t

(7.2.19) G(a)= I

221 2mi

logly 2=ic

We want to evaluate G(a) for the values

(7:24+20) a=2a , o=1,

7.3 The evaluation of G(e) (a) . The integrand of

(7.2.19) has a pole of order %+1 at w=8. We move the path

of integration to the other side of the pole and use

Let P, (o) be the residue of the
let P;(a) be the integral on w=l+iv, —w<v\—Llo,

P, (o) be the integral on w=u—iLlo, 1-b<u<l, let P;(a) be

lo<v<LlO and let P, (a¢) and

’

Cauchy's theorem.

pole, let

the integral on w=(1l-b)+iv, -L
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P: (a) be the integrals on paths conjugate to the paths of

P,(a) and P, (a) respectively. Here b is given by
(7«3l b=1/(M log L)

where M is a large constant. By (2.1.9) and since

z (w)=z (W) ,
we may use the estimate
A S N 1/¢ (1+iv)=0(log|v])

in P, and P;. As long as M is sufficiently large, by

(7.3.1), (2.1.7),and (2.1.8) we have that
(75 3:3) 1/z (w)=0(log L)

is valid for the paths of P,, P,, and P,. For u>0 we have

(7.3.4) PG |= 1 |1-p" V[>T |1-p U[=F(3,w).
P[] P|3

Let

(7.3.5) Fi(3,w=T (4+p 1.
P|3
Then if u>3/4 we have

i 0 S

Py w G w= T (1-p 2> T(1-p 72 =1/2(3/2) > 1.
PIJ D

Hence (7.3.4) and (7.3.6) imply that for u>3/4 we have

(7.3.7) 1/F(j,w)>>F1(j,u).
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It-follows. from (7.2:19) 7 (7.3:2) % (7s3.3); (7:3.5); and

(7.3.7) that the integrals Pi(a) are uniformly convergent

for
(7.3.8) [a—l|<l/5.
Therefore,

(e) 2 (e)
{(7.3.9) G (u)=‘2 Pi ()

i=0
where the derivatives Pie)(a) may be computed by differen-
tiating under the integral sign.

By Cauchy's theorem and (7.2.13) we have

(7.3:10)

e w=8 w-z+a-1/2
) X _ el X -e-1
i) < 1) 2 [ eriae) e

(W-B)2+ -1 (w=2z+a-1/2)

| z-a| =L
For |z-oc|=L—l it follows from (7.2.20) and (7.2.10) that

(7.3.11) | imEtaml/2| w1

For {z-a[=L-l and w on the new path of integration described

above (7.3.1), it follows from (7.2.20) that
(7.3.12) Iz taml/2 P s f tuedy 2ip2 g SE R /2,

By (7.3.10), (7.3.11),and (7.3.12), for any e we have

e
w-8
”'3'13)(3—2) x ceetr®x L /[ (um1) 24v2] BFD /2
(w-g) ¥+



Let
(7.3.14) §=1/log L.

BY (7.3:2), (7:3:7), (7.3.13),and (7.3.14) for 1=l we have

o

(7.3.15)  p{®) (q)<<etl®F (3,1) Jf v 21og v av

L10

e-10 e-9

<<e!F, (j,1)L log I<<e!F,(j,1-26)L

Here we have used the fact that u;<u, implies that

(73 16) F,(3,u,)>F;(3,u,).

(

The estimate obtained in (7.3.15) is valid for Ple)(a) as
well., By {7:3.1) €7<3.3) ¢ £7.3.7) , {7:3.33)5 (7+:3:14); and

(7.3.16) we have

(7 3T

p{®) (4)<<ce11®b(log LIL 20k, (§,1-b) <<e11®"20F, (5,1-25),

(

and the same estimate holds for Pze)(a). Observe that

by (1.2.14) we have

LlO

(7.3.18) -
J[ dv <&B Q.
—Llo (V2+62)(2+l)/2

Therefore, by (7.2.10), (7.3.1), (7.3.3), (7.3.7), (7.3.13),

(7.3.14), (7.3.16), and (7.3.18) we have

(7.3.19) P (a)<<err® 3P y7P F, (5,1-26) 1og* " L.
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Let

(7.3.20) zZ(w)=1/(F(j,w)T(w)).

The residue Py (@) is given by the coefficient of (w-B)-l

in

N0 o (q) [e) n _ n
(w=8) % l[ z i_ﬂ(w_e)(ﬂ [ T (log x)  (w=8) ]
q=0 q! n=0 n!

From (7.2.13) and the above it follows easily that

)
(7.3.21) % ()= =

[’} L-q ., (g+e)
(log x) % (B).
L1 q=0(q>

By (2.1.4) and (7.3.20) we have

(8-1)+0(|8-1]2)
F(j,8)

(7:3.22) Z(R)=1/(F(3,B)C(B))=

By (7.3.20), (2.1.4),and (2.1.5) we have

(7.3.23) 2 (B) = <— Fl3,8)- %—(B))
F(3j,B)z(B) F
=1 4 0(F1(j,1-28)|8-1|log L) ,
F(3,8)

since by (7.2.17), (7.3.14), and Lemma 7.1.3,
(7.3.24)
1
g—(j,w)=gw log F(j,w)= L 5%3—3 << . % log p <<log L
. 1 u
pij p'=1 pli P
for |w-1|<<8 and j<y.
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It is clear that Z is regular for |w-1|<l1/4. Therefore, by

Cauchy's theorem, (7.3.14), and (2.1.4) we have

(7.3.25) 2 k) gyl Jr z (w) (w-8) =L aw
2ri
|w=8| =8

<<k!F; (§,1-268) (log L)X,

By (7.3.21), (7.3.22), (7.3.23), (7.3.258),and (7.2.14),

(7.3.26) Po (o) =

>-+O(F1(j,l—26)L2_210g L);

= L ((loglx)(g-l) + (log%-lx)
F(3,B) 2 : (2-1)!

2
(7.3.27) P'(a)= —ITX 4 o(r,(5,1-28)* L10g 1),
’ LIF(3,B)

and

(7.3.28) p{®) (y=0(etL¥ (109 L) 1F,(§,1-26)).

In summary, by (7.2.19), (7.3.15), (7.3.17), (7.3.19),

(7.3.26), (7.3.27),and (7.3.28) we have

(7+3.29)

6% () =D_ () +0(e!F (3 ,1-28) L2

1og2L(1+L(j/y)b)
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where
(Do (a) = — = | (g-1)p(12L %X\ 4 _1 p.flog x
F(j,B) log y log y log y
< - ils log x
D, (Ot) = |
(7.3.30) F(5,8) (log y)
\Dg (@) =0 , e22,

A convenient estimate for G(e)(a) valid for all e follows

from (7.3.29) and (7.3.30) and is given by

(7.3.31) c‘®) (a)<<etF, (3,1-26) 18 L10g2L.

7.4 The evaluation of S_ (a) . By (7.2.9) we must
2

10T

consider Mj(il,a)Mj(iz,a). By (7.2.11), (7.2.16), and

(7.2.13) we have

2,5 i,+4+1
(7.4.1) M, (i;,0)M. (i,,0)= Y (§) (=1)~17 72
j j o
j
Ly L i Vi . :
- X 0 L o(e%;?w/zﬂl‘el“fez cle1) (gycle2) (o).
e,=0 e,=

We would like to sum on j in (7.2.9); rearrange the order

so that the sum on j is innermost in (7.2.9). By (7.2.4)

and (7.2.13) we have

(7.4.2) Y-2f=20-2a-2 (a-a+1/2)=-1
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regardless of whether a=1 or a=2a. Therefore, by (7.2.9),

(7.4.1),and (7.4.2) we have
[

(7.4.3)

I, I,
R o s Z Z riyray_qyiatiz
srlrrz (@)=L (ilx}-:z)( 1

i1=0 i2=0

1i iz
al i - i -
2 <e1><e2>@/2)11 S - (@)
e1=0 e2=0 1 2 rl-ll+r2-12 ’el ’ez

where
(7.4.4)
29 (e;) (e,)
Vs s (a)=.2 E—f—— gj(e,2a-2a)G 1 (0)G*"2%7 ()
R iy J
It is 'V (a) that we will now evaluate.
e,e;,e,

By (7.2.7) and (7.2.17) we have
(7.4.5) gj(O,Y)=F(j,Y)-
By (7.2.7) and (7.4.5) we have for e>0 that

(7.4.6) gjle,=(-1) (Y) g;(0,7)

=1>() 5

By (7.4.6), Cauchy's formula, (7.3.7), (7.3.14),and (7.3.19),

(7.4.7)
F(j, i
gj(e,y)—( 1) St Jf ?i%;%%II dw<<e!F1(j,l—26)logeL.

W= | =8
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To deal with the sums V (o), we make use of
e,e1,e:2

Lemma 7.1.4. Let
(7.4.8) £(p)=(Px (p,1-26)) >

for primes p. By (7.2.17) and (7.4.8) we have

(7.4.9) £lp)y=1+0{p™ 1720},

and for squarefree r, by (7.2.17) we have

£(r)= T £(p)
plr

so that (7.1.6) is valid. Then by Lemma 7.1.4 we have

2 (3)

(7.4.10) J(y)=1 F3(5,1-26)=K log y+O(1)

iy

for some constant K. For €>0 let

(7.4.11) 3 (y)=I B0 p3(5,1-26)35.
iy
Then by (7.4.10) we have
y y
(7.4.12) Js(g)=f veaT (v)=y°-J (y)-¢ f v la (v av
1- 1

y ¥
=Ky€log y+O(y€)-e J[Kve_llog v dv+0 (e Jf ve—ldv)
& 1

=O(y€/€).
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Suppose that e>0. Then by (7.3.35), (7.4.4), (7.4.7),
and (7.4.10) we have
el""ez_l(log L)e+4.‘

!
(7.4.13) Ve,el,ez(a)<<e!e1'e2!L

Let i=i,-e;+i,-e, and let r=r,-i;+r,-i,. Let

1 I
r r 0 0
(7.4.14)E (0‘)=Z Z (il)(i2>(_l)11+12 ~ri-ra .
WS i.= i.= 1 2
3 2

(i1'i Y (x 5k, )
E: eg; < l ( ) Ve el,ez(“)'

Then by (7.4.3) and (7.4.14) we have

+
(7.4.15) S, r2(a)=(-l/2)rl T2
’
1Ye, .
E: }Z (2/1)S17%2 v (q) +E (o) -
el_() e,= ( )( ) / 0,87/, = r,,r, C.
To estimate Er i (o) we use the easy inequalities
17X
(7.4.16) E: ( )e1!2
e;=0
i,
il 2: 281/(i,~e,) !=i,! E: 211781 je 1ec2t iy
e,=0 e,=0
and
(7.4.17)

r!=(r1fi1)(rl-il)!(rz-iz)!<2r(r1—i1)!(r2-i2)1

where r=r,-i,+r,-i,. Thus by (7.4.13), (7.4.14), (7.4.16),

and (7.4.17) we have
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s Erl,rz(a)<<L log L
£
Z ( )( (ry-i,) (rZ_iz)!iJ!i2!<£-_9_g__L,>
11—0 12 >
(11112)*(r1,r2)
I

gL 8
= -—-L—(lo 4L) rllrzl Z '——_L s Z ———L
L i,=0 \2log L i,=0\2log L

=2

«<L Y (1og%L)r, 1x, ! ((1- (210g L) /L) ~%-1)

<<r1!r2!L_ZlogsL.

We now need to estimate V (a) . When e;22

0,e1,e,

or e,>2 we will show that V,
AR ASY)

i,-r,

() is small. Suppose

that e;>2. Then for G(el)(a) we use the estimate (7.3.29)

and for G(ez)(a) we use (7.3.31). Then by (7.4.4),

(7.4.5), (7.4.10), (7.4.11), and (7.3.1) we have

1 e1+e2'—'3
(7.4.19) volel’ez(a)<<e1.e21L

e log4L , €122,

<<e;le,IL !

Of course, the same estimate is valid if e,>2. Let

(7.4.20) r;=min{l,r1}, r;=min{l,r2},

log3L(J(y)+Ly_b

Jb(y))
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Let

*
(7:4.21) Erl,rz(a) =

(-1/2) %17 F, Z Z (e)(ed) armerer vy ()

e1=0 ey=0
max{e1,e2}>2

so that by (7.4.15) and (7.4.21) we have

(7.4.22) Srl,rz(a) &=
r,+r e1t+e?
(i Fatee 2;0 e§;0 (Z )(_ )(2/L) Vo ey e, (@)
*
+ Erl,rg(a)+Er4,rz(a)'

By (7.4.16), (7.4.19),and (7.4.21) we have

%

(7.4.23) Erllrz(a)

zg2 T ey 2log.LE: 2: 251%T2 ¢ i,y
e,;=0 e,=0

<<r1!r2!L‘2log4L.

We now evaluate VO (a) when max{e,,e,}<l. By
el’eZ

(7.3.7), (7.3.16),and (7.3.30) we have

(7.4.24) De(a)<<Le_l Fi(3,1-26) .

Since b>0 and x>1 it follows from (7.3.29) and (7.4.24)
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that for el,ezﬁl we have

(7.4.25) G(el)(u)G(eZ)(a)-Del(a)Dez(a)

e;te,~3 b

<<F2(5,1-28) L (logr) (1+15°y7P).

Hence, by (7.2.10), (7.3.1), (7.4.5), (7.4.10), and (7.4.11)

the error in replacing G(el)(a)G(ez)(a) by Do (OL)De () in
1 2
(7.4.4) is

(7.4.26) <<Le1+e2—3(log4L)(J(y)+Ly-b Jb(y>)

<<Lel+e2_21095L.

Now by (7.4.4), (7.4.5),and (7.4.27) for e,,e,<l we have

(7.4.27) Y0,e,,e, (@) =

uz(j) e1+es-2 5
g 22JL F(§,2a-2a)D_ (a)D_ (a)+O(L-1" "2 log L),
fg J el €2
IRy
We now apply Lemmas 7.1.4 and 7.1.5 to evaluate the
main term of (7.4.27), keeping in mind (7.2.10), (7.2.13),

and (7.2.17). Since

1
n+l
(log vy) = (i6e ) ‘[tn at,
(n+1) (log y)n 0

we have
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( Y, 00 (@) =r, (8-1) %1og y+I,2(g-1) +

T's
+

+ o(L'zlogSL)
log y

-1. 5
(7.4.28) Voop(a) = Vg la) = Iri(g-1)log y+r,+0(L ~log~L)

e 5
\ VOll(u) = I';log y+0(log”L)

where
(7:4529) "1 1 i
Ty jr[P(t)lzdt, Ip= ‘[P(t)P'(t)dt, T 3= JfIP‘(t)Jz dt.
0 0 0

Equations (7.4.28) can be substituted into (7.4.22) and

Sr r (o) is then evaluated. Observe that
Y042

(7.4.30) log y=log(Tl/2 /L20)=L/2+O(log L).

To simplify the expression we get for S. (o) , let
2

1.,¥X

'y 2

(Al(a) E—(B-l)2 L™+2T, (B=1) L+2T

(7.4.31) 9A,(a) = I';(g-1)L+2r,

A3(OL) = 2F1 .

\

Then by (7.4.18), (7.4.20), (7.4.22), (7.4.23),(7.4.28),

(7.4.30),and (7.4.31) we have
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(7.4.32)

(_l)rl+r2 4

S (o) = (AJ(C!)+(r_1+r2)A2(G)+r1r3A3(OL)) +

X I
1r=2 2r1+r2 L

+ O(rllrz!L‘_2 logSL).

7.5 The evaluation of J. We want to include the result

(7.4.32) in the equations (6.5.15). By (7.2.3) and (7.4.32)
with
r=r,=0 ,

the portions of J¢ and J; which involve K, and Ks are

(7:5.1) <<UL_1.
We have _
(7.5:2) o, 1= I o) (1/2) (w-1/2)/r1.
' r=0

We differentiate j times in (7.5.2) to see that

(7.5.3)
63 (w)=

b

.¢ir)(l/2) r(r-1) ... (r-j+1)(""'1/2)}:“j /x!
J

I o1 8

8

= Zo¢ir+j) (1/2) (w=1/2)F /rt.
r=

Therefore, by (6.5.15), (7.2.1), (72.2), [7.2.3), (7:5.1),

and (7.5.3) we have

2r co n
(7.5.4) Ty =08 P = S

(1-2a) n=0 (2R)"

(1)

= 2 . X S
0 % r,=0 r,=0 r! r,! (-l)r1+rz

I a3

3
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+ O(UL ")
and
o n
(7.5.5) P s 5 _(_:D_n_ 5
(1-2a) n=0 (2R)
(oo} (oo} .
n (r,+3) (r,+n-3j)
E( Z Z b (1/2) ¢x (1/2) 5 (2a)
= = =0 rll rZ! l1r+2
+ O(UL LY.
The contribution of the O(rL!rZ!L-zlogSL) term of
Srllrz(a) to J; and J, 1is
=7 g D s
(7.5.6) B s = 1= o il 70 ) i
n=0
n r,+r,+n m+1l/2
.3 ()Z aF1+T2* D [ (r,4n) (rp+n) ]
j=0 r,=0 r2—0
<<UL-llog5L 2 (d/R) (n+l)2m+l 4
n=0
e} o«
. 5 (r1+l)m+l/2dr1 5 (r2+l)m+l/2dr2
r1=0 r2=

<<UL-llog5L
by Corollary 6.1.9 and Egquation (4.1.3). Let

(7.5.7) Jr r (G)=A1(@)+(r1+rz)A2(d)+r1r2A3(a)
122 *
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Then by (7.4.32), (7.5.4),(7.5.5),(7.5.6), and (7:5:7),

7:5.8) o
J 7= =
2R n=0 (2R)

goe})i DO SEACLREVZ Y skl e VAR

B g g WL}
] g 2¥1r 1 2%2r,1 nE T
5 O(UL-llogsL),
co n
J6=.1J_ Z _(—_ll_ﬁ -
2R n=0 (2R)
- = (r,+3) (r,+n=-j)
S DD N a1 (1/2)
1= Xy Tpm0n oy T el =2) T2 s
-1 5
: Jrllrz(Za)+O(UL log™L).
Now it is clear that
(7.5.9)
(ry+3) . ®  (r,+]) .
s b (1/2) _ {9y , g & 17T (a/2) _ (3) (o)

ry=0 21 r;! r,=0 (-2)7! r,!
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and
(FeB:0d0)
(rat+3) (r1=1+3
o ® 1=1+3+1)
; Iids W/2) o1 5 g« (1/2) _1 4(3+1) (4,
r,=0 2 ril ri=1 2r1-l (xr1=-1) ¢ 2
5 (rl+j)(1/2) 1, (3+1)
s Libx T R (TP
ri=0 (-2)%' r! Fa e

Thus we use Equations (7.5.7), (7.5.9), and (7.5.10) in

(7.5.8) and have

2R =2 n n n
(7.5.11) g =t 1 =1y I <j)
2R n=0 (2R)n 3=0
. A, (1)
-[¢£3)(1) 5 (3) (1) a1+ {3 (1) 4773 (1) 22 ¥

: P A, (1) A5 (1)
gl (I gy L eI (1) 4 2T ) 34 ]*
+ o(UL'llogSL)
and
JG=H— XL z ( )[ (0)4 (= 3)(0)A (2a) -
2R n=0 (2R)
; o A, (2a) : L A, (22)
5 (1) (0yp (=3 (0) 2 "2 4 (30 0y (3% (0) : +
2a 2a
: . As(2a) _
~ ¢£J+l)(o)¢in-3+l)(o) ; ] + o(uL t10g7L) .

4
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We can eliminate the I+ term from ¢, as follows. Let
2L

(7.5.12) ¢§x)=¢(x)(l-2x)m )

By (5.2.36) we have
0 my i X m-k
Wpm Rl i ny LUt (G L T (k) ) (-2m

Then by Lemma 6.1.8 we have for 0<x<l and any j that
(7.5.14) 03 ) - 0 () =

EAORRLNSCIONCEND

<<jmdj—mJ§ L-l<<L-ldjjm+l/2.

By Corollary 6.1.9, (7.5.11),and (7.5.14) the error in

replacing ¢£J) by¢§3) in J. and J7 is

o n n
(7.5.15) <<y I _l__ﬁ gip2mtl =1 5 (j)
n=0 (2R) j=0
vzl £ (a/R) PnZ™lecunt.
n=0

By (7.2.13) and (7.4.31) we have

/
Ay (1)=(T1/2) R2+2T ,R+2T 5
Ao (1)=T 3 1R+2T,, A3(1)=2T;

(7.5.16)) ) (2a)=(T1/2) R2-2T ,R+2T 5

\Az (2a) =-T 1R+2F2 ’ A3 (2a) =271
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Consider J; and J, e 2R (with ¢, replaced by ¢,) as

series in powers of R. Now we use Egquation (7.5.16).

_ s
The coefficient of R- in — is
U
2
(7:5:17) (¢, (0))°T,/4.

The coefficient of R? in Je /U is
(7.5.18)
T3 (§2 (0) 2+ (T 1/2) 41 (04! (0)= (T 1/4) 4, (0) 4 (0)

= -1, [91 (0) 154 (1 /4) ¢, (0) 4! (0) .
For n>1, the coefficient of R Min J¢/U is

(7.5.19) _, o+l n+l /ntly . S
.(_.__.l_)_____ T (j ¢1(J)(0)¢§n+l ]) (o)rl/z

2n+l j=0

(?)(¢fj)<0)¢§n‘j)<0)<—zr2)-

n
z

2 3=0

<¢fj+l’(o)¢§n’j)(o)+¢fj)(0>¢fn+l'j)(0>>('F1/2)>

n-1 n-1l/n-1 : o
e Zo< j:><:53)(0> 6s77173) (0) 2r,-
2 j=

(0831 (0) 6@ 173) (044 3 (0 6 {773 (o)) T,

1

3 g3ty ¢§“‘j’(0)r1/%>.



It is clear that

-1
( j >(aj+l 3-1-3%35%-3)

|| e =]

j=0

B J<(n l) (3—1» g (?)ajan—j

The terms involving r,in (7.5.19) cancel out. The terms

involving T'; in (7.5.19) simplify to
(7.5.20)

e iEl BEl . s
rl<i_&L___ 2 (Pt 63) 0y ¢{P*1m3) (o) (-1/2) +

PRI =t A
Dol -1y, (5+1) (n-j+1)
+ 23 (7] )¢13 (0) o7 (0))
3=0 :
Let
(7.5.21) o1 (x)=[01(x)1% , 05 (x)=[0 (x)1°

Then by (7.5.19), (7.5.20) ,and (7.5.21) the coefficient of

R™® (n>1) in J¢/U is

(7522}

(n- l)( ¢§n—l)

(-1/2)™1 (™) (0) r./8 - of 0) T./2 - (0) 2751,

T .. 1. - .
In a similar way, the coefficient of R™ in Jve 48 /U is

(7.5.23) (61(0))°%T1/4;

the coefficient of RO is
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(7.5.24) Ty 63 (1) 1%+ (T1/4) 61 (1) 6] (1)
and the coefficient of R © (n>1) in Jye-ZR/U,is

(7:.5:25)

-1/2)" {1 (yr,/e - o™V (yr2 - oY (uyar,d.
Let
(7::5:26) W(X)=®;’(X)I‘1/8 ‘(I>3(X)F1/2 = @1(}() 2T ;3
'
ity [¢1(x)¢f(X)-¢;(X)¢;(x)]—2fa¢(x)¢(X)-
Then by (7.5.25) we have

= (7.5.27)

W(n'l)(x)=¢fn+l)(x)F1/8 - ¢§n'l)(x)r1/2 = ®§n-l)(x)2ra-

Let
(7.5.28) F(R)=(RT,/4) [e2Rp2 (1) =42 (0)] +
1.| (
+ 1, (2’2 (143 (0)+ — [e7Fo (1) o! (1)=40) 6] (0)]

n

1 - Rg=1 2R (n) (n)

- = I \ss [e™ Ty (1)-v (0)1.
2R n=0<2R>

Then by (7.5.11), (7.5.15), (7.5.17), (7.5.18), (7.5.22}),
(7.5.23), (7.5.24), (7.5.25),(7.5.27), and ( 7.5.28) we have

(7.5.29) J,-J¢=UF (R)+0 (UL *1log°L) .

Since UF(R) is real, we have by (6.5.14) and (7.5.29) that
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1

(7.5.30) J=UF (R) +0 (UL 1og°L) .

7.6 A theorem. We gather the results together.

By - (3.3.26) (3,352, " (4.2, 3); (5.2.305; (5-2.54) . (5.2.55),

(7.5.28), and (7.5.30) we have proved the following

Theorem 7.6.1. Let C#0 and R>0, and let ¢ be an

entire function of w which satisfies
d(w)=0wW), d(w)+¢(l-w)=C, ¢(0)=1, |¢(w)|<<exp(d|w])

where

d<min{R,1}.

61 (W) =0o(w) (1-2w)™
and let P(x) be a polynomial which satisfies

P(0)=0 , P(1)=1 .

Let

1 1 1
F1= 2 - — ' — [} 2

[.[P(X)] dx, T,= fP(X)P (x)dx, T's= f[P (x)]“ax.
0 0 0

Let

(i

¥(x)=g—[01(x) 7 (X) =] (%) ¢ (%) 1=2T 3¢ (%) ¢ ()

and let

F_(R)=(RI/4) [e2R 4% (1)-1]

F'i op
[e

+T5(e2R g% (1) +1) +- 1R 4(1) ¢! (1) =41 (0) ]



n
IR o DUTRE 0 e L ) ST Y
- = z(x=) [e°7¢'" (1) Y
2Rn=0(2R)

Then the proportion of zeroes of g(m)(s) with real part 1/2

is at least

1-[log Fm(R)]/R.

It should be noted that the infinite sum in Fm(R) can

be written as an integral. We integrate by parts to see

that
(7.6.1)
l N . ( (n)
2Rx 1 -1 2R . (n) n
e y(x)dx = — ¢ [— [e" "y (1) - v (0) 1+
f 2R n=0<2R> R
0
where 1
N+1
(Tube2) RN+1=££)——— [eZRXqJ‘N*l) (x) dx.
2™t 7

By Corollary 6.1.9 and Equations (7.5.14) and (7.5.26),

Ry+1 0

as N»». Thus we can express Fm as
FL (R =RL1(e7R 16, (1)12-1) 4T, (e*F14: (1)1%+1)

1

2R ¢1(1) 02 (1) =0} (0) I- f e? ¥ y(x) ax
0

T,

- &
4
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in the Theorem. If C=1, then ¢1(l)=0 and Fm(R) further

simplifies to
1

(7.6.4)  F_(R)=O- 12 (Re¢? (0))- [eZRX ¥ (x) dx.
m 4 3,

0



CHAPTER VIII

COMPUTATIONS

8.1 Generalities. To obtain Levinson's result [8]

that >34.20% of the zeroes of the zeta-function have

real part 1/2, we use

P (x)=x, ¢1(x)=l—x, R=1.3
and the computation is a simple matter. To obtain
Levinson's result [9] that >71.72% of the zeroes of the
g'-function have real part 1/2, we use
P (x)=x, ¢1(x)=¢(x)(1—2x)=(1—x)(1—2x), R=1.1 .

We will carry out computations in the cases m=0,1,2.

In all three cases we use
P (x)=x

so that by (7.4.29) we have

(841 «1) Iy =173, Ts=f2; Fa=Lls

In our calculations we will use the following notation.
$1(x)=LB %"

(8.1.2) ‘P(,X)=ZYixl

v (=5, v™ o) = ¢

129
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Thus, given the Bi’ we have by (7.5.26) and (8.1.2) that
£8:1.3)

S [§(3+1) (35428545835~ (#1085, (1-3+108;_5.1]

= 2T 3ZBjB.

B
[
v [§(23-1-3)38j8i+2_j] ‘2F3§Bj31-3

Then by (8.1.2) we have

oL =n! i+ ;
(8.1.4) S v )i(lin Yien
and
(8.+d:e5) en=niY

Then,as in Theorem 7.6.1l, we have

(8.1.6) F_(R)=15 [o 2R 2 (1) -11+1/21e2R £ (1) +1] +

1 2R Y i -
+ 55 [ 9o} (-¢1(0) 1= 53 %2@

_2R
12 8=

-8

Clearly we have

(8.1.7) $1(1)=E8,, ¢!(1)=EiB,,¢!(0)=8,.

In the computations,we use a calculator which rounds

in the 1l4th digit. The values of Yn,6 » and € in the

n

Tables 1, 2, and 3 and the values we obtain for Fm(R)

and [log Fm(R)]/R are truncates of the actual values.
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8.2 The case m=0. We take

(8.2.1) i () ST =1 (i 43 s) O o= % s

Then it is easily checked that the conditions of Theorem
7.6.1 for ¢ are satisfied, provided that

a+as#2.
We take
(8.2.2) 01=1.279, a3;=-.265, R=1.49.

We give a table of values obtained from (8.1.2), (8.1.3),

(8.1.4), (8.1.5), and (8.2.2).

R Bn Yn an E:I'l

0 1 -2.2845 -.0236 -2.2845
1 -.484 2337 .09373 23377
2 -1.159 5.4701 -1.6016 10.9402
3 1.06 -6.7564 15.4548 -40.538
4 -3.2849 -78.838 -78.838
5 6.7416 -808.992 808.992
6 -2.2472 -1617.984 -1617.984

Table 1-- Intermediate

Also by (8.1.7) and Table 1 we have

(8.2.3)

computations for F, (R).

¢, (1)= -.014, ¢;(l)= -.484, ¢;(O)= -.484.
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By Table 1 and Equations (8.2.3), (8.2.2), and (8.1.6)

we have
Fo (R)=2.6006429 ...
so that
(8.2.4) [log Fp(1.49)1/(1.49)=.6414488 ....

By Theorem 7.6.1 and Equation (8.2.4) we have

Theorem 8.2.1 The proportion of zeroes of z(s) with

real part 1/2 exceeds .3585.

8.3 The case m=1l. To calculate a lower bound for the

proportion of zeroes of E£'(s) with real part 1/2 we take

(8.3.1) d(x)=1l-ax
so that
(8:.3+2) $1(x)=(1l-ax) (1-2x).

Then the conditions of Theorem 7.6.1 for ¢ are satisfied

provided that
af2.

We take

(8.3.3) a=.991 , R=1.09.
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By (8.1.2), (8.1.3), (8.1.4), (8.1.5), (8.3.2), and (8.3.3)

we construct the following table.

n n Yn $n €n

0 1B =2.4151 -.0820 =2 . 43151

i ~2:991 12.9520 -.2863 12.9520

2 1.982 -26.474 -4,953 -52.949

3 23.712 -46.283 142,275

4 -7.8566 -188.559 =188.559
Table 2 -- Intermediate Computations for F,(R)

Also, by (8.1.7) and Table 2 we have

(8.3.4) $1(1)=-.009 , ¢{(l)=.973 i ¢;(0)=—2.99l .
By Table 2, (8.3.3), (8.3.4), and (8.1.6) we have
(8.3.5) FitRY=1.358859 ..

and [log F1(1.09)1/1.09=.281326 ....

By Theorem 7.1.6 and (8.3.7) we have

Theorem 8.3.1 The proportion of zeroes of &' (s) with

real part 1/2 exceeds .7186.

8.4 The case m=2. As with the case m=1 we use

(8.4.1) Hx)=1-0x , af2.
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Then we have

(8.4.2) b, (¥)=(1-0x) (1-25)°.
We take
(8.4.3) 0=.974 , R=1.38 .

By (8.1.2), (8.1.3), (8.1.4), (8.1.5), (8.4.2), and (8.4.3)

we construct the following table.

. Bn Yn 6n €n

0 1 -2.745 -.0808 -2.745

s -4.974 24.493 -.5100 24.493

2 7.896 -91.456 -7.031 -182.91

3 -3.896 182,937 -106.293 1097.62

4 -206.003 -1106.67 -4944.07

5 123.051 -7091.343 14766.1

6 -30.357 -21857.4 -21857.4
Table 3 -- Intermediate Computations for Fz(R)

Also, by (8.1.7) and Table 3 we have

(8.4.4)

By (8.4.3), (8.4.4), Table 3,and (8.1.6) we have

so that

FZ(R)=l.28O29 aiie

¢l(l)=.026 , 94 (1)==.87 , ¢;(0)=-4.974 .
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(8.4.5) [log F,(1.38)1/(1.38)=.179049 ....

By Theorem 6.7.1 and (8.4.5) we have

Theorem 8.4.1. The proportion of zeroes of £"(s)

with real part 1/2 exceeds .82009.
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