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On the Distribution of the Zeros of the
Riemann Zeta-Function
J. B. Conrey

In this article we shall describe recent results concerning
the zeros of the zeta-function. In particular we are inter-
ested in the proportion of zeros of {(s) on the %-line, the
proportion of simple zeros of ¢{(s) on the %-line, and ex-
treme gaps between the ordinates of consecutive zeros of

£(s) . Some of the results we quote are conditional; this
will be appropriately indicated.

Selberg [19] was the first to show that a positive propor-
tion of the zeros of {(s) are on o0 =%. Levinson[1ll], by
a different method, showed that this proportion, which we
shall denote «, exceeds 0.3420. We briefly describe
Levinson's method and then indicate modifications of it which
have led to small improvements.

The starting point of Levinson's method is the identity

H(s)¢(s) = H(s)G(s) + H(1-s)G(1l-s) (1)
where
H(s) = Xs(s- 1)x ®/2p (5
and
X W i) 1
G(s) §(s) X' (8) ° (2)
X
Here
Xl g lel Al
X (s) = log o + 0( Itl ) (3)
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T
arg HG(% + it) E-E mod 7 .

Now
arg H(ks + it) = % log %#£ + 0(1)

so that a bound of the shape

T+U[ < g L%:

[arg G + it)l =T

where

implies that

a=>1-8.

(It is easier to work on the interval [T, T+U] than on
[0, T].) To obtain the bound (6) we use the argument princi-

pal on the rectangle with vertices 2 + iT, 2+ i(T+U),

%5+ i(T+U), % + iT. This leads to (6) with
ﬁm,=4ﬂNG

is the number of zeros of G(s) in o >,

To bound NG

h
where NG

T<t<T+U.

Y G on the rectangle with vertices 2 + iT, 2 + i(T+U) ,

a + iT where

Y(s) = =  b(o)n S
n<y

i1s a Dirichlet polynomial with b(l) = 1, b(n) €1, and

Ry 0.
2 L

This leads to

for some fixed R > 0.

we apply Littlewood's lemma to
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T+U Heath-
2m (5 - a)N, < + i
(s - a)N, fT log| ¥G(a+it)|dt ; P
i (12)
; T+U Thus
| U 1 2
B <3 log(ﬁf | ¥ G(a+ it)|“dt)
\\ T
Il
i so that ) T4+U : " :
il log(ifT | ¥ G(a+ it)|“atc Lol gt
| a=1 - ~ : (13) L-line.
Lou [!
Levinson evaluated the integral in (13) in the case that
where V¥
s -20
| y=T°1 (14) :
| ¥, ()
and
‘ This leas
‘ _#(m) logy/m ]
| b(n) S g (15)
n
and obtained .
s T+U ) Levin
1 = f | ¥6(a+ it)|“dt ~ F(R) (16) generali
L " can writ
where
e s 1 R T
= R T T T T
R R e Z4R) T3 T g2 2R 12712 L)
s because
With R = 1.3 this led to
a > 0.3420. (18)
where
Subsequently, in an attempt to optimize the coefficients
of the mollifier Y(s), Levinson [13] was led to the choice
1-2a 1-2a
_ K@) =5
b(n) Toma 1<2a : (19) and the
b y can be
This choice gives the result [12], ®
3
diff
a >0.3474 . (20) TEr
(25) ar
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Heath-Brown [9] and Selberg independently noticed that the

zeros located by Levinson's method are simple zeros of §i(8)ns

Thus

a > 0.3474 (21)

where as is the proportion of simple zeros of §(s) on the
ks-line.
Lou [14] chose the mollifier W(s) = U(s) + x(s)Lzh wl(s)
where Y is as in (10) and (19), h is constant, and
b = T 208 0 1o V1
Ly k/5~l-a--s log y

p(n)d(n)
= 2s-2a

(22)

> bl(k) 5
n|k n

This leads to

a,

a > 0.35 % (23)

Levinson [12] suggested new identities for ¢ (s) which
generalize (1) and lead to better results. In [T, T+ U] we

can write Levinson's G as

o(e) ~ £ () + 52 (24)

because of (3). Conrey [4] used identities of the sort

H(s)¢ (s) = H(s)G(s) + H(1-8)6(1-5s) (25)
where
(n) -n
G(s) ~ 2 an§ (s)L (26)
n

and the a are certain complex numbers. These identities

can be derived in a variety of ways. (See Levinson [11] and
[12] , Bombieri [3], Conrey [4] and [5], and Andeczson [1] for

different approaches.) Still another method for developing

(25) and (26) in a rather simple way is as follows.
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Let be arbitrary, 8y purely imaginary, and

&9
real for . ir. 2 1.5 2.y e e o Lt

£(s) = H(s)S (s)

ng+ 1

(27)

so that & (% + it) 1is real and £(s) = §(1-s) 1is the

functional equation for ¢§(s). Then
(2 Re gE(s) = gyé(s) + gyk(l-s)

E

‘gos(s> o2 grs(r)<s)L'
e

+

B 1= - Tg (-DED -1
r

since

£ ey i) REE (1 2 8)

(28)

T

(29)

This expresses f2 Re gO)E(s) as a sum of complex conjugates

when s =% + it, just as in (1). We take

6(s) = (gk(s) + = g £ ()L™ /H(s)
T

We rewrite E(r)(s) using (27) and Leibniz's formula.
H(k)gsg ~,(l:)k
H(s) 2
for: T's . T -1 Thus
r-k
- L
6(s) ~ g 8(e) +Z g LT 2 (5t ey
0 r k 2
X k
which is (26) with
-r
a; = g + 2 2 B

b &
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] < -¥, T
=52 32 (8, (34)

k

for k=1. Hence the a are restricted only by the con-

ditions on the g, Since is arbitrary, we may take

g
0
ay = 1. With this normalization, (13) holds with & in

place of G.
Conrey [4] also used the more general mollifier coeffi-

cients

P( ) (35)

log y

where P is an analytic function with P(0) = 0 and P(1l)

= 1. By choosing the a, and P appropriately this gives
(4]

o > 0.3658 . (36)

(It is possible to choose P optimally here by calculus of
variations.)
With Levinson's original G and the mollifier coefficients

(35) one can show [5]
a > 0.3485 (37)

which is not as good as (23). However, Anderson [1] pointed

out that for counting multiple zeros one may use

6,(s) =8(s) + ali"(S)L_1 (38)

with a, an arbitrary real. He used this and the coeffi-

cients (19) and obtained [1]

* > 0.3532 . (39)

If one uses (38) with the coecfficients (35) the result is
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a > 0.358 . (40)

Further improvements in the method seem to rely on taking
a longer Dirichlet polynomial for the mollifier. That is, we
want

Y=T6, 6 >1/2 . (41)

Balasubramanian, Conrey, and Heath-Brown [2] have shown

(using (10) and (35) with a = 1/2) that

1
% 1 +%§§—§f P! (x) 2dx
0

L 2 2
T |¢ G+ 16) |7 | v + i0)|7d
0
(42)
for any 6 < 9/17 . This result needs to be generalized to
the integrals
s ) 2
Wt (a+it) ¢V (a- it) | Y (s + it)| dt
0

in order to evaluate (16). If this is done, one will obtain

the result

o > 0.38 . (43)

*
1f Hooley's conjecture R [10] is assumed, then one can prove

(42) for any 0 < 4/7 which would lead to

o 2 0.4077 . (44)
Next we consider what bounds we can obtain for as if we
first assume something about the zeros of ¢§(s). Montgomery
[15] showed, assuming the Riemann Hypothesis, that
(R/H) Ols =2/3 . (45)

With Taylor (see [16]), he improved this to
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(RH) o, >3 - %": sot ﬁg = 0.6725 . (46)

Assuming his pair correlation conjecture, Montgomery [15]

obtained
(RH, PC) o= Lo 47)

Recently, by a new technique, Conrey, Ghosh, and Gonek [6]

showed, assuming the generalized Riemann Hypothesis, that

19
(GRH) a, =57 = 0.703... . (48)

The assumption can probably be weakened to RH. The method
we used ié as follows.

Assume the Riemann Hypothesis. Let % + iy denote a
typical zero of ¢ (s). Then by Cauchy's inequality
| =yt im|?
¥y ST

z  |ueCe+ i |?
¥y ST

NS(T) = (49)

where NS(T) is the number of simple zeros of ¢{(s) with
0<~y<T and yY(s) is as in (10), (14), and (35) with
a=%. The expressions on the right side of (49) can be
estimated asymptotically by methods similar to, but more com-
plicated than what Gonek [8] used. For a real function P(x)

the numerator is
1 2
1 1 205 2
~ { 3 - E—fo P(x)dx) " ( o7 ) (50)
and the denominator is
1 1 1 3
~(3+7 U Pan’ + 1) Pax+ g/ P a0 T
3 4 2 6 27
0 0 0
(51)

By the calculus of variations

'35
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2

Y RN Y +-32-x (52)

N

is optimal from which we obtain (48). We needed GRH to ob-
tain the estimate (51) but his could probably be done by
another method.

It is interesting that the integral on the left side of
(42) arises in the evaluation (51). It may be possible, as
with (42), to take y = Te with 6 > 1/2 in this problem
which would lead to an improvement in (48).

The last problem we consider is the existence of small and

large gaps between the ordinates of comsecutive zeros of

¢(s). Let v and 7' denote ordinates of consecutive
zeros of ¢(s) with 0 <7 <7v'. Then the average value of
ik
Ak O s (53)
is ' T Let
A = lim sup (v' - 7) S2EX (54)

and

lim inf (y' - 7v)

log v )
i vl (55)

Selberg [20] remarks that u <1 and A > 1 can be shown

(unconditionally). Montgomery [15] obtained
(RH) p < 0.68 (56)

while Mueller [18], using results from Gonek's thesis (see

[8]) obtained
(RH) - B RS (57)

Montgomery and Odlyzko [17] showed
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§ N=qtd (62)
g

% where & >0 is small. We compare this to

3;2 2T )

i M= f |ACs + it)|“dt . (63)
x If for some choice of A,

1

’; M, <M, (64)
¢

44 then ¢ (s) has a pair of consecutive zeros with ordinates in
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(RH) u <0.5179, AN >1.9799 . (58)

Recently, Conrey, Ghosh, and Gonek [7] have proven
(RH) W 051725, NL.>2:337 75 (59)

Our idea is based on that of Mueller [18] and has surpris-
ing similarity to the method of Montgomery and Odlyzko [17]
which appears to be much different at the outset. We assume
the Riemann Hypothesis and consider

§
TR > |G+ 1 +1a)|%d« (60)
=B Ty, 2T

where B =7b/L, L = log T, and
A(s) = T  a()n ° (61)
n<N

is a Dirichlet polynomial of length

[T, 2T] which are farther apart than 27 b/L, that is,

%
; farther apart than b times the average. If
$ M, <M (65)

i

then ¢ (s) has a pair of consecutive zeros with ordinates in

[T, 2T] which are nearer to each other than b times the
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average. We can carry out the estimation of M1 and M2

asymptotically for any arithmetical function a(n) with
€
a(n) < £ n: e (66)

This leads to a formula which is equivalent to (20) and (21)
of Montgomery and Odlyzko [17]. To obtain long gaps we take

a(n) = dr(n) 3 (67)

the coefficient of n ° in the Dirichlet series for

YOHN (68)
with r = 2.2. To obtain shért gaps we take
a(n) = A(n)d_(n) (69)

where A is Liouville's function and r = 1.1. This leads

to (59).
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on the %- line, go £(s) + n(s) 4is imaginary if and only if
£(s) = 0, since &(% + it) is real. We take 7(s)

= ZgnE(n)(s)L—n where gy is real if n 1is odd and g, is
imaginary if n is even. Then it suffices to bound the
change in argument of (go £(s) + n(s))/H(s) as in (30).

We have succeeded in proving(48) subject only to RH. The
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theorem in that it uses an analogous identity and large sieve
estimates; however, here we must bound mean sixth powers of
L-functions at one stage. By a similar method we can show
that* at least 1/3 of the zeros of the Riemann zeta-function
are not zeros of any given Dirichlet L-function (on RH). In
conjunction with (48) this implies that a positive proportion
(at least 1/54) of the zeros of the Dedekind zeta-function
of a quadratic field are simple (on RH). (See [24].)
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