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1. Introduction. .

Let K be a fixed quadratic extension of Q and write ;K(s) for the
Dedekind zeta - function of K, where s = ¢ + i t. It is well-known, and easy
to prove, that the number NK(T) of zeros of gK(s) in the region o0 < 0 < 1, o <

t < T satisfies

' il
(1.1) NK(T) p log T
as T + », On the other hand, not much is known about the number of these
*
Zeros, NK (T), that are simple. Indeed, it was only recently that the
presant authors [2] should that
*
N (D). 22T 6/11
K
and, if the Lindelof hypotheses is true, that
* l1-¢
Ny (T)e 5 B0
for any € > o. Before this, it was not even known whether ;K(s} has
infinitely many zeros in o < o < 1. In this paper we shall prove that if the
Riemann hypothesis (RH) is true for ¢(s), Riemann zeta-function, then a
positive proporation of the zeros of t(s), are simple. More precisely we have
THEOREWM 1. Assume that RH is true for z(s). Then
* 1 i
Ne (T) > (57 + o(1)) N(T)
as T +w,
Remark. As we shall see below, if we assume the Riemann hypothesis for ;K(s),
the constant 1/54 can be replaced by 1/27.

In the case of the Riemann zeta—function, there are two known methods for

proving that a positive proportion of the zeros are simple. One is the pair



correlation method of Montgomery [11], the other is the method of Corey,
Ghosh, and Gonek [1]. Let N(T) and N*(T) denote the number of zeros and

simple zeros, respectively, of z(s) in o0 < 0 < 1, o < t <T. Then

I
2

and, if RH is true, one can show that

(1.2) NCT) p log T
(1.3) N T(T) 2 (.68 + 0(1)) N(T)
by Montgomery”s method, and that
(1.4) NU(D 2 (53 + o(1)) N(D)
by the authors” method. However, neither approach seems to work for ;K(s).
In both cases the cause of failure is due to the presence of a I(s) factor in
the functional equation for ;K(s) as apposed to a T (5/2) factor in the
equation for the zeta-function.

The present method overcomes this difficulty by exploriting the
factorization
(1:5) e(s) = z(s) L(s,x);3
here x is the quadratic (Kronecker) character of the field K and L(s,x) is
thee associated Dirichlet L-function. Unfortunateely, our approach ahs the
drawback that it will not apply to functions like the Dinchlet series
associated with wsp forms, for; although these functions also have a I'(s) term
in their functional equations, they do not factor as a product of two
"natural" Dirichlet series.

To establish Theorem 1 we shall require the following result which is of
interest in its own right.
THEOREM 2. Assume RH for t¢(s) and let p =1/, + i y denote the typical
nontrivial zero of z(s). Then if x is any nonprincipal character (not

neccessarily quadratic), we have

1 < (2/3 + 0(1) NT)
o RRGE s CR &

L(Q,X) =0




s T »», That is, at most two-thirds of the zeros of ¢(s) are also zeros of
L(s,x).

With a lot more work, we could actually show that any two L-functions
with inequivalent characters have at most two-thirds of their zeros in common,
provided the Riemann hypothesis holds for one of them. A result of this type
has also been given by A. Fujii [5] using a method different from ours.
Moreover, his result is unconditional. However, his constant (which he does
not calculate) is presumably quite small and would therefore not serve to
prove Theeorem 1.

To provee Theoreem 1 we first observee from (1.5) that a zero of XK(S) is
simple if and only if it is

1) a simple zero of x(s) and not a zero of L(s,x) or

2) a simple zero of L(s,x) and not a zero of z(s). Furthermore, these
two conditicns are mutually exclusive. Now by (l.4) and Theorem 2, the number
of zeros satisfying 1) is > ( 19/27 - 2/3 + 0(1)) N(T) = (1/27 + 0(1) N(T).
But N(T) ]ﬂZNK(T) by (1.1) and (l.2). Hence, Theorem 1 follows.

Notice that we could have appealed to (1.3) instead of (l.4) with some
loss in the constant. Also notice that we have assumed RH only for z(s) and
not for L(a,x). If one assumes it for both functions (or, equivalently, for
;K(s)), it can be shown by the method in [1] that 19/27ths of the zeros of
L(s,x) are simple, and by the method in this paper that at most 2/3rds of the
zeros of L(s,x) are zeros of ¢(s). In this way ome can count the simple zeros

of ;K(s) of type 2) above, thereby doubling the constant in Theorem I.
Theorem 2 also has an application to the Harwitz zeta—function defined

fort o Soak. 1ob

(n+a)”° Go D1
n=1

;(Saa)



The meromorphic continuation of z(s.a) has e 2; log T =zeros in the strips

0/ i T candy Af a#lﬁzor 1, the number of these zeros to the right of the
line ¢ = yé+-e (e > o) is O(T) (see for example [7] or [15]. Although this
means the Riemann hypothesis is generally false for ¢(s,a), it could still be
the case that there are 2; log T zeros on the line ¢ = yé+-e(e>0)
is
0(T) (see for example [7] or [15]). Although this means the Riemann

hypothesis is generally false for t(s,a), it could still be the case that
there are 9 i log T zeros in the strip o < t < T and, if « #]ﬁzor 1, the
number of these zeros to the right of the line ¢ =%@-+ e (¢ > 0) is O(T) (see
for example [7] or [15]). Although this means the Riemann hypothesis is
generally false for z(s,a), it could still bevthe case that there are

ZIH log T zeros on the line ¢ = Ué(up to height T). However, S.M. Gonek [8]
has shown that when a is a reduced fraction with denominator 3,4, or 6, there
exists a positive constant ¢ such that at least ¢ Zi log T zeros are off the
line
o =14? This is unconditional but the constant is amall (it is the constant in
Fujii“s resultmentioned previously). Using Theorem 2 and the method of [81,
one may easily deduce THEOREM 3. assume RH. If o = 1/3, 2/3, 1/4, 3/4, 1/6,
or 5/6, then at least one-third of the zeros of z(s,a) lie off the line

o =Yy

In the next section we begin the proof of Theorem 2.

2. Beginning of the proof of Theorem 2
Throughout, T is large, L = log T, and € 10 av abB1T6ad1wyv OHOWW POCLT1LXE
VEUBeE® TnoEAn vot veyeooadiwv TNE OQUE OVE aT e€ayn owwgeevwe~ +0T1UATEQD

bepevoivA 1upwiPrtwy ov e will be denoted by Oe or &<l



Since it clearly suffices to prova Theorem 2 for a primitive character yx
and its modulus q will be fixed from now on. Consequently, the constants

implied by the symbols O and << may depend on q and x.

Let
-5
A(S:X) = < a(k) k ’
k_y
where
. _log k
a(k). = u(k) x(k) (1= 751

and

here p is the Mobius function and ne (O}ﬁ? will be selected near the end of

the proof. By the Canchy-Schwarz inequality we have
2 Ldp+ iy, x) AdL+ iy, X)

1, | ¢ Ldp+ iy, x) AdhL+ iy, x)



with y running through the ordinates of the zeros of z(s). The purpose of

A(s,x) here is to mollify L(s,x) and thereby sharpen the inequality. We

rewrite this as

1§12 s}

(2:1) ~ < ot Sy
= L(]'/2+ ey %) =+-0

where
(2.2) e S o L+ iy, x)  Ad,+ iy, ¥)

— 0. < iy =T
and
(2.3) Dl i Lo+ dy, 30 AL+ vy 2,

— RS )

The remainder of the paper is concerned with the estimation of these two



expressions. We shall show that on RH, if y = %ﬁfe, then

o,
(2.4) g op L
and

Eh:
(2+5) g 3ﬁL

as T »», Combined with (2.1) and (l.2), these estimates imply the result,
The first step in treating N and D is to express them as contour
integrals by means of Canchy”s residue theorem. To this end let TT denote a

sequence of numbers Tn such that

and

)
2
(2.6) —% Co+di T ) << Tog™ T

uniformly for -1 < ¢ < 2 ( confer Davenport [4; p.l108]). 1In particular, i



is not the ordinate of any zero of z(s). Until the very end of the paper, we

shall always assume that T e TT.

Next set

a wiE 417l
and let Rbe a positively oriented rectangle with vertices at a + i, a + iT,

l-a + iT, and l-a + i. Then on RH we have

(2. B = = (@ L0 A,y ds
and
(2.8) % o 71lﬁ_ o __g_‘_ (s) L(s,x) L(l-s,x) A(s,x) A(l-s,y) ds ;
Let us consider N first. As it happens, it is easier to work with
g =2—_Hi- R&‘—z—l- (1-s) Ls,x) As,x) ds .
This is equivalent to (2.7) because ——gl(s) and - —g—l (1-s) have the same

poles and residues dinside R, Now for s inside or on R,

(2.9) Alsy) ey m e TS

and



Tlﬁﬁl-o) + ¢

(2,10) L(s,x) <<€

The first bound is trivial; the scond follows in the same way as the analogous
bound for z(s) (see Titchmarsh [13; pp. 81-82]). These borinds and (2.6)

imply that the top and bottom edges of R contribute

1
<,y P2t e

to N.

For the left edge of R we replace s by l-s and find that

-1 1-iT z! iy
e TRy PP — (1-8) L(s,x) A(s,x) ds
-1 a-iT A
- —= - A(1- d
TR | C(S) L(l-s,x) A(l-s,x) ds
TR Sele e S T R R GV T i
211 a+l T 2

For the right-hand side of R we use the identity



1

(2.11) i —f;(l—s) - < - —§i<1-s>

This follows from the functional equation

(2.:12) t(l-s) = X(1-s) «¢(s) ,
where
(2.13) X(1-s) = #/T% 1(s/2) / rdsd)

We then find that the integral along this side is

o atlT , g R S
T ( : (s) X (1-s)) L,(s,x) A(s,x) ds .

Thus, we may write

with



1 a+iT z' e iy o=
(2.15) TR (—;—(s) L(1l-s,x) A(l-s,x) ds ,
ey k a+iT g!
(2.16) gz N T(s) L(s,x) A(s,x) ds
and
1 a+iT X!
(2.17) L —(1-s) L(s,x) A(s,x) ds .

We now come to D. The top and bottom edges of R contribute
1
¢ 5 TaT S

to D by (2.6), (2.9), and (2.10). Replacing s by l-s and use (2.il), we find

that the contribution of the left edge of R equals

1 arblog’ L(1- L(s,X) A(1- A(s,X
TR —;—-(1-8) (1-s,x) L(s,x) S5,X) s,x) ds

1 a-iT gL X - -
e ('_;_(S)+'—>("(1'S)) L(l-s,x— L(s,x) A(l-s,x) A(s,x) ds.

If we write



a+i. -—-{S) L(s,x) L(l-s,x) a(s,x) A(l-s,y) ds

) &
2mi z+1

(2.18) gl

and

AT X1me) Lis,0 L(1-8,0 Als,0) A(L-8,%) ds

1
(2.19) D, To2mi at+i X

the integral above equals
ho k-

Notice that _21 is also the contribution of the right-hand side of R to

D . Hence, on combining these results, we obtain

(2.20) D =2 Re Dy =By 400 (2t €y,

We conclude this section by introducing some useful notation and

formulae.
For convenience we use the symbol (c)'f to denote i ctie and
-1 ®
NN | r ; 2mi
to denote - . As usual we write e(x) instead of e“™%*,
m=1 m=1
(m,r)=1
Ramonujon”s sum is

5 1 ma

¢ Ca —_—

(3 e el—=)



and one shows (see[4; pp. 148-149]) cthat
(2.21) cr(a) = d ¢ =) .

Unalogously, we define

ma
c_(a) =mil x(m) e(=q)
so that Ganss” sum is
c(x)==C EL).
X

It is not difficult to show (confer [ 12; p.358]) that

if (a,q)

= 1,
if Ca,q) > L.

_ o, x@@)
(2.22) cx(a) = { 0

We shall write the functional equation for L(s,x) in the form
(2.23) L1=8),%) = X(l=s,x)  Lls,x),

where



L i
(2.24) X(1-s,x) = ?%;) qS Hﬁrs I,(S;-a)/r(l §+a)

and

o -1f y(=1) =1,

O 1) = =L

Observe that if q = 1, yx is principal and
X(l-s,x) = X(l-s),
where X(1-s) is the factor in the functional_equation for z(s) (see (2.12)

and (2.13)).

Finally, we adcopt the notation
F (s) = (1-p %)
i pyg P >
F (s, = JT(1-x(p) p )
0 s X p/i xX\P) P .

The next section contains the necessary lemmas for estimating the

I._Lz

3. Lemmas.

Lemma les Let r be a positive real number and suppose that X(l-s,x) is given

=1

by (2.24). Then for a =1+ L - and Tlarge, we have

1 a+iT -s
oI a+if X(1-s,x) r “ds



X(-1) =t Cqfe)" R o
o =07 e( g ) e E(q, T) iif<t S

(q/r)? qT

vy EC r/q,:T) if ¢ > 27
where

Y T3/2
2

PROF. When q = 1, X(1l-s,x) = X(1-s) and, except for minor modifications, the

(2.24)
sta
o
K o s VTS 2
¢3.1) X(1-s,x) = e 1-s+a
r( > )
Id o« = o this is just
Xl ) iy 8 %(1-8)
s X% T(X) q o
If o« = 1 we use the formula
1

r(s) r(l-s) -

sin ws

—

result is essentially Lemma 2 of Gonek [ 9 ]. (éggéose

— e,

them tﬁgfha~$fzg From




and find that

s+1 I
- : i cos X2 r(lng
2 2
S £ I
5 2) sin 1= PC§) )
2 2
Hence
s +1
|7 P ' 5
2T B B S e e e e e T T
s 2
r(1- E)
for t > 0 and bounded o. Inserting this in (3.1), we see that
(i T BVl I Y S R O Rl (o LT R
2 (x)
Thus, in either case
&(l-s,x) ¥ J:_g_;;)_ q® X(1=s) “HL % 0" ) X

~—
R OO A

e e s S e

Using this and the case q = 1 of the lemma, we easily

LEMMA 2. Let d{(n), B(n) be arithmetic functions such

<L dr(n) logln, where dr(n) is the coefficient of n~ S

negative integer. Also let a = 1 + L ', Then if 1 <

obtain the result.
that d(n) << 1 and B(n)
in zF(s) and 1 is a non-

Xal Xy



a+iT 1 @

it (18,00 g oK) K7D 47 B() §=s) ds

= xt-1) a(k) ; 1
—a(x) k<x ki o qkT B(3) e(qk)
I3 00
Yse)
10, (x i S
PROOF. The integral equals
a(k) © : 1 atiT i j\-s
k<x K jar B g e RO (b oo s
which by Lemma 1 is equal to
x{=1) a(k) : =9
(0 K<y K . qkT BLJY el g
= i< 2
I
[alk) | ® ¢ B e SRCEOR |

Since k? <8 k for k < x, the error term is



1
© 3 e /2
<L e = B(i)]| ] (T2 +
: L.
Y MR 4 G L e o
A A -
j=1 ja
1
o e = L O
ds

a=a

We write the second term as

where in each i

HET gk
(=5 i (T=T 9] in  ,,

=

1
(%%(T+T4§, 3%%1 Yoo A md L

4

and ¢ together, we have

s
8

CERE -
j=1 ja

T3/2

©) in - iiile

a_(1) log's

s 1
T —-2%% | + T2

1 = 1
<KL xT/2 Ll E <K xT/Z-e o!

we sum over k <x, and the j sum is over (o,qkT/4x] in

kL k
(%;(T—Téé,-%;(T+ﬁﬁ2] in _, and

8 First, treating 1

. i
dr(J) log ' j

+ )
s .3gkT i
g r
i
= x| (D) HON
ds

1,



T L e S

i

Next, since dr(j) log™j <<€j€,

1

e-1 1
PR | = . (T = 2nj/qk)
2 € k<x  k gkT i gk (T-T/z
4o - 27
e-1 -
St 1 (qkT/27 - j)
€ k<c gkT ako . /.
Gy <3 <5 (1-T9)
.Lk (T..TI/Z)
<« Te-l f21r dn
€ k<x qkT qkT _
4y 27 5
< e log 72 << y1¢~!
g " k< : g% :
Similarly, one obtains the same bound for 4+ Finnally,
A e
2 1
S d k<x —q&(T-’I}/Z) <3 S%(T+T/2)
27
1/
1 2 =4
<K xT/ & log(T—+'I-i—) &< oxT Le .
€ T-T/z €

Combining these bounds, we obtain the result,

LEMMA 3. Let x. be a primitive character mod q and suppose that (H,K) = (K,q)



le::Set

R R LR BTN e(-:;l%) e o w18 2

EE n=1

Then L has an analytic contimation to the whole plane except for a possible

pole at s=1. At this point it has the same principal part as
- -8
z(K) x(-H) ©(x) q = z(s),
where ¢(K) = 1 if K=1 and is o otherwise.

PROOF. Let

-S
nza  mod qk

t(s,a,qk) Ca> 1)

Then .

t(s,a,qK) =(qk) " ° ;(S’E%)’

a

where (s, EE) is Hurwitz”s zeta-function.

Tus z(s,a,qK) 1s everywhere regular except at s=1 where it has a pole with

the same principal part as (qK)—S z(s).

Now



=H. &gk -aH
L(s, X, qK) iy xka) e(‘EE) t(s,a,9K) ,

so L is also regular everywhere except possibly at s=l. Writing the sum as

I @ el (os,a,a0 @0 o(s)

@ e I x@ e,

we observe that the first term is entire. Hence, setting a = qn + r in the

second term, we see that L has the same prinicipal part at s=1 as

=S q =rH K-1 -nH
(aR) " w(8) . __; xeyiel=a) o S
q° z(s) e, (-H) 1f K=1,
0 if K>l

x(-H) 1(x). Thus, the principal part is identivcal to

By (2.22); Cx(—H)

that of

S AT s § e B U

as required.



LEMMA 4., Let x be a primitive character modulo q and write

) b @ A(m) x(n) ~-mn
R(S’X’ qk) = m,n=1 (mn)s e( qK) Go. D)
If (K,q) = 1 and K is square-free, then R has a meromorphic continuation to

the entire complex plane. 1Its only pole in o>l is at s=1 where it has a pole

with the same principal part as

1 1
n(qK) z x(=1) xCx) L gt =t RETCY
2(aK) L(1,x) FK(o,X) : (s) + e (z(K) T (Lx) -——l-i(K) IK t€s),

where z(K) = 1 if K=1 and is o otherwise,

PROOF. For o > 1 we see that

1 K -a
(3:2) B(o,xsmim) = = af‘__l L(s,x> ) A(s,2,qK)
o ak/d1 -6 %
S B Bl L(s,x,zi7a) A(s, bd, qK),

where L(s,x,.) is as in Lemma 3 and

Ko ank) = L hGRY A e S

By Lemma 3, L(s,xi) is regular in the whole plane except for a possible simple

pole at s=1 with the same principal part as



(3 X(-6) (0 a° (s

. Furthermore, it is well-know that A(s,a,k) has a mesomorphic continuation to
the whole plane with a simple pole at s=1 if and only if (a,k) =1. The

principal part at the pole in this use is identical to that of

1

qy o)

2 &
[

From these remarks and (3.2), we see that R(s,x,.) is meromorphic and that
with the possible exception of the point s=1 it has no poles in ¢ > l. To

find the principal part at s=1 we write

L. qK/d =0 K= -8
R(S’X’-{_]E) o d/K =11 [L(SQquK/d) C(gzd))(( ?) T(X) q C(S)]
.[A(s,bd,qK) +';?aij %(S)]
1
qk/d zCd) L6
oAk el el 52 e Xsggra)
= d/x a%i?l CC%) x(=6)  t(x) q"° z(s) A(s,bd,qK)

y o GEKA) TRNS Q) St L
©d/K qu? (iqugK/d) X(-6) (0 0 gl



say. Clearly 1 is regular at s=1 For 9 We have

2  ¢(qK) ¢ b=1
A D Cl % x(n) gk -bn
=3O ) as1 s e )

1 X C
IR AR 7 ® (n) “qK (n)
=30 ¢ =l s

For o > 1. Now by (2.21), the sum equals

l-s gk o x(m)
d/qK d n( d) X(d) - ms
Llaioh O g A nC D R

Since we may clearly assume that (d,g) = 1 and, by hypothesis, (q,K) = L.

Recalling that K is square-free and setting s=1, we see that this becomes

L(Lx) n(ak)  Tgg-x(p))
=L(1’X) ﬂ(qK) E(O’X)-

Hence, 2 has the same principal part as



1

n(qK) L(1,x) g(o,x) %{S).

¢(qK)

Next, for o > 1

q

85 = el R0<b): el R e(e): k(s BKs aK)

- A(n)
b=1 x(=b) n=bK(mod qK) S

= () 4 ° z(s)

= x(-1) (0 @O7° g(s) T "A(mK: =
m

The sum here is

1

- T (5,%) if k=1,
{
log p :
=28 F if K=p,
1 ==
x(p)/ps
0 otherwise

I1f we now set s=1 everywhere except in the ¢(s) term and recall that K is

square-free, we have that the principal part of 3 is the same as that of

1
x(-1) (0 @07 gs) (=g (1,5 +'I"%£%%T7K)'
X

Finally,



4= Ti(li) q—S Cl(s)
0

I .a

1 8 ;(.(—b)

o S

The principal part of R(s,yx,.) is therefore the same as that of

1 1
IR (1) By o) S68). + xt=1y 8 ferery Len = B 5y
¢(qK) K z qK T
1-x(K)/K
as was to be shown.
LEMMA 5. Let x be a primitive character mod q and set
-H © -nH 5
B8, X)) T gy AmX(M) (=D 0T (e3> D).

If K is square—free aand (d4,K) =(X,q) =1, then D has an analytic continuation
to the whole plane except for a pole at s=1. At this point it has the same
principal part as

1-s)

(3.3) XCHY x(K): (30 (aR) ™= z2(s) (F_(s0 (+x(-1) K™% = 4(a) 4.

PROOF, We have

1H, _ © (m) y(n) —mnH
e Gt P e oyt
i qkK -5 o —amH =S
a=1 x(a) nza mod gk m=1 x(m) e qkK ) n



K -aH
= agl x(a) (s, a, aK) L(s, x, —x )s

wher ¢ and L are as in Lemma 3 and its proof. By Lemma 3 and the last line,
we see that D may be analytically continued to the whole plane except possibly
for the point s=1 where it may have a pole. We now determine the principal
part. Write

H

D(s, X, ‘;—K) =

(@) [ew,2,a00~(a0) " e() 1 [LCs, 02D -t rmazy) Kaogry) *0 @ 2(s)]

(qK)"°  z(s)

+

q K ‘ ~al
il ;((a,:qK)) X\a) L(s, X qK)

+ q ° w(x) z(s) aZT c(?;§5§7) x(a) }(zgégfy) (s, a, qK)

@0 0 1) B ) 1 X

)

here ¢(r) = 1 if r=1, o otherwise. By Lemma 3, | is regular at s=1.

Next for o > 1

e (ak) - .. tle)

n:1 x(m)n~ ( aZT x(a) e(—:;H)).



Setting a = gb + r, we may write the sum over a as

-nrH K- nbH

) 1
qk b=0

2 x(r) e( Yo

[P)

(

r=1

the sum over b is K if K|nH, i.e. K@n; otherwise it is 0. Thus, by (2.22),

the abovwe is

K rgl x(r) e(_ZEH) = K Cx (-H %) =K 2(_H %) t(x)

if K|n, 0 otherwise. Hence, writing n=mK, we have

- S kB (s) 10 x(®) R(-B) Ix(m) | w™®

2 m=1

- -s _1-25 2
X(-H) x(K) t(x) q° K HOBAOP
In order for a summand in 5 to be nonzero, it is necessary that (a,qKk) =K

or, since we may evidently assume that (a,q) =1, that K|a,

Thus,

=w(x) q° o) .1 x(bK) X(bH) z(s, bK, qK)
3 b=1

=X x(® (0 @ ws) It (s, b, @

The sum equals

& n° = £,08) (s,

?;} q) =1
SO



5 = X x(®) <00 (@O F () £Ce)

Similarly, we see that

Lm0 @7 e 3 xR X(om)
= 2on=S 2
-3 0 0 s@E@D T .

Combining these results, we find that the principal part of D(s,.,1) at s=1

equals that of

FCHY (R sexy CaR)® czcs)(Fq<s> (T =1 oY= wlad Y,

as was to be shown.

LEMMA 6. Let x be a primitive character modulo q and set

N SO R oS

als mnH

m,n=1 (i )® qK) (o>D.

Then if H, K, and q are pairwise coprime and K is square-free, Q has a
meromorphic contineration to the whole plane. Its only pole in ¢ > 1 is at

s=1 where it has a pole whose principal part is the same as that of

1
_ .
SR CK) A r - e £2¢s) G(ss X +M—g—i(§1)<) (R 12¢1,,0 L (e,

where

(3.4) g(R) =

2
1 (1=2x(p) + 2B



and

1 F ;
St P Y o (5,7 + X (8 00CE (o) (1% iy K% yay s

T X2l p g S8 TG Irnenay, Ky doeye 4(a) 475,
I=x(p)/p® " a g

PROOF, For o'y ; < AW

o K ~aH
s, y, = L D(s,x,*ﬁi') A(s, a, gg)

£ ‘4 ~bH
T d/x ¥t D(s,x,m) A(s,bd, qK),

where D(s, 1, 1) is ‘1 Lemma 5,

2,k) = A(n) n~ % Cg-311),

nza(mod k)
It 1s wely known tha: 3,a,k) has a MEeromorphi, continuation to the whole

plane Wwith a simple Dl

s=1 if and only if (a,k) = l. Also D(s,y, <) is
regular eVerywhere ex. for a possible doubie Pole at s=1 by Lemma 3¢  Thus,
Q085 o) da Deromory;. {n the plane ang has pq Poles in o 2 1 except
Possibly at s=1,
To fingd the Principa] P at this point, firge Note thqe A(s,,k) has the Same
Principal pare o S=1 . a Ellaygk)) L C8). Thus, if we call the

¢(k) ¢
eXpression in (3.3) 3«,,5%5 » then by (3.6)

gaigg- | o S v ? ALk AU MO A 10

N



e AT qk/D =BH ;- -bH
AlssXsgrg = = a/k b=l [P(8s% 7 ~ BlEsXsggy)]
: 1
« [ A(s,bd, qR) + z(d) YT %(S)]

qK/d -bH

= 1 SED
% LI O
d/x b=1 $(qK)" ¢
qk/d, _z(d) “bH gl
= 1 6NG T =D
d/K b=1  $(qK) P85 X qK/d) c(s)
iR ks 2i g 4>
with 1 regular at s=1. The principal part of 2 is the same as that of
- - 2 K K, 1- -
X (0 @07 gs) g wp FUe) (-1 @ - o) q ]

qk/

< .
- ACB) A(s,bd,qK).

The sum over b equals

A(dn)

-s ® ?2(n) A(nd)
n=b(mod q K/d) (dn)®

n=1 s
n

qKk/d,

b1 XOD)

b

and the last sum is zero unless d=1 or p(recall that K is square-free). 1In

any case we may write it as

1

1 F
(@ (R, -5 s A
K

a® - (@



Thus,

1

Yim ¢(Q) q-s)}o

- -8 2 L1 - FK -
s = x(H) x(X) t(x) (qK) =~ ¢“(s) {(-'E(S,x) -'fr{s,x)).
K
(F (8)(LHXC-DE™®) = p(@)a™)
log p x(p) p° K, 1-s
5 - (F: (8) . (Il =1)(=)
B/K p°= X(p) 3
= - T x(®) 10 (@) i) Gls,x).
Next,
= 1 ji ) qK, ( —bH
37T AR, e b 5%, gK)
1
SR RIS < © d(n) x(n) gk -bnH
~ $(qK) Z(S) n=1 ——_—EIL__-( b=l1 e( qkK ))
for ¢ > 1/ Since (H,qK) =1, the sum over b equals

qkK, (EE

a=1 o qK) £ CqK(n)'

Thus by (2.21) we have

o d(n) x(n) 2 © x(mn) qK
g ——t——= ¢ _(n) = & d n(==
n=1 S qK n,m=1 Gi)® 3/&% d
gk @  x(n) ©  x(m)
PV o) g A O e PR S
n d m



1— K o
G, i akue. (330 @ (n;(n,d))S
(n/(n,d))
1-s ,qK m x(3)
o L(S,X) d n(—_0 3o
d/qK d e/d (3,é/e—-=1 Js
Sainid 1-s . (]
=T a8) g R Yy (e
Since this function is regular at s=1, 3 has the same principal part as

1
$(qK)

1
4 2 qK
E(S) L (I’X) d/qK n( d) X(d) e/d Fe(l)X)o

Evidently we may restrict the first sum to one over d/K. Also, since (q,K) =1

and K is square—-free, the double sum equals

n(aK) g ) x(@) g (1 + F (1,x))

n(qK) ol (1= x(p) ( 1+ F¢(1,x))

]

2
o x_(p)
n(qk) pyK (1-2- x(p) # -

n(qkK) g(X).

Thus, the principal part of 3 is identical to that of

1
n(gk) 2
—-9——¢(qK) g(K) L°(1,x) §<s>.

Finally,




1
L TeT e X® xR (0K :%(s)

(F () (1 x(-D KT @ @D I X

= 0.
Collecting these results, we find that Qlsy ¥y = E%) has the same principal

part as

1
AW (®) O™ t2(s) Gels,n) + LBVER. 1210 L.

This completes the proof.

LEMMA 7. suppose that

Gk = e Alm) x(n),
b, (1) =~ _ . a(h) A(m) x(n) d(n),
1 hﬂns—yJ X
and
b,(J) = _ ., a(h) x(n) d(n).

Then if y = T" with n < yé



=i

a (k) N a(k) R(s, x,qk) qkT.s
(1) ey’ T gepn SIS EC = s oy B Gt r )
a + oe(y/2 pA T 6 aem Y,
L 3 -H - grr °
a(k) . e L a(h) a(k) Q(s, x,9K ) (21H)
(3:8) gy ey 1D oG = by Ry 5, 58 ( S )
“an 0y % €y + o(TL™),
and
(3.9)
a(k) -3 a(h) a(k) d(s’x"";g ) ke, ®
Ky & a<akr 2249 e6Gd T hLkgy K g ST
21 4 Os(y/z p3/4 + € 4 O(TL'I),

where 1<T in (.39) and R, Q, and D are as in Lemmas 4, 6, 5.

PROOF. All three formulae are proved by the method used to estimate the sun
M, in Conrey, Ghosh, and Gonek [1;§5]. Since the method is complicated aad
quite lengthy, we shall only indicate the idea of the proof of (3.8) here; the
interested reader is referred to sections 5-7 of the afore mentioned paper for
details. It should be pointed out that had we assumed GRH, the lemma could
be established with considerably less work; the reader may wish to consult

Lemma 6 in [3] for the proof of a similar result on GRH.

First we set

Sty Lol s s
B(s,qk) §=

s

et 2
1 bl(J) e(qk) i) Co > 1)

Then we have



o e Ak 1 -i, ,jkT.s d
(3:10) e ™F g bt b)) o) = kg T Gt { B(s,;l—) d5h® &2,
AT

where c depends on T and ¢ > 1. Now by the definitions of bl(j) and

Q(s,x,.), we see that

S E g -H
(3.11) B(s,qk) hey a(h) Q(s,x,qK),
where H=——E—— and K =——E—- From this and Lemma 6 it follows that B( :iﬁ
(h,k) (h;k) e

is a meromorphic function whose only pole in ¢ > 1 is at s=l. Inserting

(3.11) into (3.10), we see that this pole should give rise to the main term

- (Sl(l) .
a(h) a(k) -H 21H
(3'12) h,ksy k ggi (Q(S’X’qK) s ) L4

To prove that this is the case we need to replace the exponential in B(s,i%)
by a character sum. We may then procede as in the proofs of the Bombieri-
Vinogradov theorem given by Vaughan [14] and Gallagher([6].

By [5.12) in [1] we find that

1y sty A 1 1,qk,d
e(qk) q‘/qk ymod q1 T(¢) dé?% w(d) C(q yqK, ’w)’

where

d -r, =k qkld,qk/ql)
W) Y G W g7

)

( l, k,d,y)=
t(q',q ¥) . m
(d,qk/q?)



Evidently, we may suppose that (k,q) =1 (otherwise a(k) = 0 in (3.8)). Hence,

the divisors q1

and d split as qlqlqz and d= d,d, with q1|q, q2|k, d1°q, d2|k,
and (ql, qz) = (dl’dz) = 1. Also, since} mod q;q, is primi.ive, there is a
unique pair of primitive characters Vs mod q1s V9 mod qs such that y=y;¥,.

Forms this and the coprimality of q and q9 it is easy to show that
(9 = ¥ (4,) ¥y(a) () vy,

Using these factorizations for ql, d, ¢, and 1(V), we may now write

%
q,1q dylg ¥ mod q,

*

T(q’l) q2|k ¥y mod q,

= T
e (G W) hg,y %90

J

Substituting this for the exponential in the definition of B(s,i%) and using
the result in (3.10), we find after rearranging the sums that the right-hand

side of (3.10) equals

a(q,k) "

£ = 1
dila aq,lq ¥, mod q, Il ! q,89/k 9, Vb, mod q,

(V,)
1 2

"4, la,k 2(d,d4, 9 a4, ky dyd,, ¥y0,) ¥(ay) ¥yla))



: . bl(dldzm) wl(m) wz(m)

qkT s ds
G ), Ca=1 5 ) (deldz) s 2]

The expression inside the brackets is analogous to E2 in (5.15) of [1] and is
treated in precisely the sameway. That is, we distinguish between the cases

q2.$ 12 for some A > o, and LA<q2§y/k. The integrand above has a pole at

s=1 if and only if qy. "= 1, so the contribution of this term must be
identical to (3.12). For q, < LA we pull the contour to the left and use
Siegel”s theorem as in the proof of the prime number theorem for arithmetic

progressions. For the remaining cases we use a Vaughan-type identity and the

large sieve.

LEMMA 8. Let Lo (m) = d'l/2 Then
$ 9 T2 d|m '
E m
i) T GJﬁgm)’
and for x>1
o3
/o (m) _
11) 75 o e Tog x +:0(1),
2,
where c = z(2) 1 (de) 3
: (g:e =1

m 1.-1
PROOF. Note that ;?57 —py&l— p) and




af

£t %= 1
o_l/z(m) = aII (1+p /2+ eoetp (l+p /2‘..,

g
3>
p ||m = ol

m

The first assertion therefore follows from the inequality
= J
17" ¢ /2

valid for > 3.

For ii) we have

2
Kol 1 e th
m<x m mx m glg
1y Y 1
2 2 =
d,esx g i n<x m 4
[d,e] |m

where [d,e] denotes the least common multile of d and e. This in turn equals

a2 e ey} 1

r{ x

d,e<x
[d.e]

Yy -1 A -1
= 2 2 2
log x d,e<x d e [d,e] + 0( d,e<x a % [d,e] log 2 [d,el).



If we write g=(d,e) and then replace d by kg and 1 by lg, we obtai-.

log 2g kl).

The error term is clearly O(l). The first term equals

(-]

i -3/2 log? 2x
g<x g2 %R%T}=l (k1) + 0( o )

log x

The proof is now completed by noting that

1 1
gsx Ez = C(Z) + O(X) o

LEMMA 9. TFor a fixed character x mod q, m a positive integer, and x > 1, we

have

logd log log log 30m 1f 3=0,
o {

i) : -
R P (log log 3m)’ if j=1,2,

and



log log log 30m if j=0

i) ;
(log log 3m)J if j=1,2.

B l%El-logjp G

ptm

PROOF. To prove i) it suffices to assume that m is square—free and m>l. Let
P1sPgsesee denote the primes listed in increasing order and let r denote the

unique positive integer for which

PyPyesyPy SIS PRy

On the one hand, we see that log m> 1:1 log P > ..

On the other hand,

j Lo
log'p < fl lo Pii « {1og.log 3Pr if j=0,
2 log’ Pr if j=1,2.

Combing these, we obtain 1)

We write the sum in ii) as

p<u x(p) log p <K Tog? su



(see Davenport [4;p.132]), we find by partial summation that the first sum
above is bounded. For the O-term we use the estimate in i), whereupon ii)
Follows.

LEMMA 10. Let Gk(s,x) be as in (3.5) with x a fixed character mod q and k a

positive integer.

Then
HE S O SRR A ] X0o) . dbginy  a OClos. Tog, 3K)
Bt q plk
and
1 e 4l = k
G\ Chyx) = y(=1) = p |k x(p) log p log s 0(log2k log log 3k)

PROO¥, From the definition of fk (s,i) and Lemma 9 i), we have

o=

X(p) log p
p -mX(p)

(3.13) (1,x) =

"dl'f.‘l

<< 1log log 3k
plk e

-~

Fl.
(3.14) G (1,0 =
k

x(p) log? p
& << (log log 3k)2.
Pk p(l-x(p)/p)2

By (3.5) with s=1 we have that

F} =
6 (1o = x(-DED &5+ X Lk - X(=) log py
q L Fk

ol 1 Ze)/e




Thus, using (3.13) and Lemma 9 i), we obtain

G (10 = —x(-1) £

T plk X(P) log p + O(log log 3k)

as required.

Again by (3.5) we see that

1 F! =9 2
6 (Lo = x(-D EL (B 1,0+ G @ 4 IRIRD
k p(1-x(p)/p)?
SLEN R B :
HE(LD + 55 (LG (14x(-1)) + x(-1) log q - log k)
5 :

Fl
o XOLIEE A (h(D) * x(-D) Log a - log )
P 1-x(p)/p q

Of these terms, the only one we cannot afford to estimate trivially is

$(q) x(p) log p k
1-x(p)/p
=x(-1) #a) x(p) log p log 1-5-+ 0(log2k log log 3k),
q plk P

by Lemma 9i).
By (3.13), (3.14), and Lemma 9i), the other terms are seen to be at most

0(log 2k log log 3k). Hence the result follows.



LEMMA 11. For x>1 and q fixed,

n?(m) _ ¢(q)
e e = = log x + 0(1)

(E,q)=1

PROOF., The proof is standard so we will merely sketch it. The generating

function for the sum is

" 2(m) 1
JCa) AT = (1+ ———)
@TH=1  o(m) o® p¥e o(p)p°

| 1 '
=p?q (1+—) n(1+——2;30 P(s)

$(p)p°

1 1 =1 g(s+l)
_p?q(1+—-————) FerT) P(s),

o(p)p°

where

Lo

1
(14 ) (14
$(p)p° e

P(s) = g

The product for P(s) is absolutely convengent for ¢ > 1, hence P(s) is

uniformly bounded in o > Jﬁz say. Also,



Thus, applying Perron”s formaulu in the usual way, we firl that

S

n’(m) Ie§ J(S)E; + 0(1).

- m¢x ¢(m)
(m,q)=1

=i£%l log x +0(1)/

LEMMA 12, Let y, a(h), and Fh(s,x) be as usual, and let g(h) be as in

(3.4). Then

a(mh)
n(h) a(h) F, (o0,x) oy
n(h) a(mh) g(h) ; -1
ol
where ¢J%§m) = d|m d Al

PROOF. The proofs of all three assertions are similar so we will only prove

the most involved, namely iii).

The sum in 1ii) equals

n(m) x(m) n2(h) x(h) g(h)
(B10 STeay. i ey ho(h) Togan

(h,m)=1




_ n(m) x(m)
log y

say. Now the generacing function for is

HaY o o o G FCR) g€ e (14X(2)_&( ),
o(h) h° L eaa(D) o

R o IO
#(p) p° P

By (1 x(p) g(p)y-1 oy (e L(e+1,0 L7H(2s42,X%) ¢ 724D (o),
P o(p) p° P

where

P(s) = g (l.X(P) 8(P))(1-X(P) (1-2x(p) _._LXSRZL_

1 .
o(p) p° p° et

The product for P(s) is absolutely convergent for o > Jﬁb so P(s) is uniformly
bounded in ¢ > - 1/4, say. For the other fctors in H(s) we have in the half-

plane o > L_l,

-1 -2 2
L (2s+2,x7), plfq(l pS+1) <<,
L(s+1,x) << log (H 1+2),

C—Z(S+1) << min (|s|?, log2(H 1+2)),

and




x(®) g(p), -1
pIIIm <1+X;Tp)_;;§_) << 0_]_/2(111)-

These estimates are all standard except for the last, which follows from

% 1A S eyl 1f p>27
I (p) g(p) IS B e o 227
o(p) p° e

Combining these, we find that

H(s) <K cJﬁ§m) log (H 1+2) min (|s]|2, log? (H 1+2))

Lo g Ly

201 - (L
K cJﬁém)( 61 dt + {” log? (H 1+2) %%0
<L X

OJﬁ§m)

This and (3.15) give iii).

LEMMA 13. Let y and a(h) be as usual. Then



. atmh) X0 _ _qmoam) xm o Y™

h<y/m h ~ ¢(q) ¢(m) log y

log y log" 2y/m)

and
ot aJ_(m) log L
11) a(mh) x(h) log h _ _qm n(m) x(m) log y/m + 0( /o )
h<y/m h ¢(w) ¢(m) log y log y ’
i |
where cJﬁgm) = d|m d 4%

PROOF. We base the proof on the formula

r -4
log %-= T + O(OJﬁgr) log 2%)5;

(see Graham [10;p. 1

For i) we have

a(mh) x(h) _ n(m) x(m) 14 Y R, 4
h<y/m h Lo Y h<y /m h € Th
(h,mq)=1
am) xu) ma o g Y

¢(mq) log y log y log" 2y/m)'

The original sum vanishes if (m,q) > 1 so the result follows from the

mulciplicacivicty of ¢ and o;vi

Now consider ii). Since we may clearly assume that h is square-

free, we have




a(mh) x(h) log h _ a(mh) x(h)

k<y/m h = k<y/m b pln o8P
x(p) log p 1 a(mpk) x(k)

p<y/m P k<y/mp k s

Evidently, we may assume here thatm,p, and q are pairwise coprime. Thus by

i), the last line equals

g m n(m) x(m) log p (oJﬁfm) loz p )
¢(q) ¢(m) log y p<y/m  ¢(p) log y p<y/m p log" 2y/mp

ptmg

The sum in the main term equals

log »
.+ 0
p<y/m p ( p|qm p

log y/m + 0(log log 3qm)

log y/m + 0(log log 3m),

by Lemma 9 i). By the prime number theorem, the sum in the error term is

y/m du BN, 1 d E(u)
) n log"* 2y/mn /) n log* 2y/mn ’

where E(u) <K n/log4 n. One easily sees that both these integrals are

bounded. Hence, the left-hand side of ii) equals




~qm_n(m) x(m) log y/m m log log 3m 5!
e ey 2T ey e

The result now follows from Lemma 8 i) and the fact that m £ Ye

4, The estimation of N .

Recall from (2.14) that

1
+0(y T2 *ey

1 2

(4.1) §=¥ ;

t Ny = N

where the Ni are given by (2.E5) "=..2:07)

We first consider N Using the functional equation 2.23) in

1 L]
(2.15), we have

1 at+iT

1 =
1% 7 ad %(S) Mlsy S le B ik ire ) e

1=

Setting

e i) == e A(m) x(n)

and using Lemma 2, we then obtain

ox-1) a(k) ~1 Ve

21




Now by (3.7) we find that

-1
s R(S’Xi——)
o Sy l=1) a(k) qk qkT, s
§l 25 wlo) k<Ky ~ k §5% ( s Gap )
105 fyp3/4 + & + o™

Here the sum may be taken over square-free k coprime to q (lect a(k) = 0) ,

hence he residue may be computed by means of Lemma 4. The result is , after

simplification,
(k) alk) £, (0,x)
R b 0. _x(=1) (@) q 1 Kk
N = @00 "y Tw@ B0 kg 50

~ 1 %
y aCp) log Py o oey/a3/4 * &y & omily.
PyY p-x(p)

By Lemma 12 ii) the sum over k is <K L_l. The sum over p equals

~1 x(p) log p log y/p
log y p<y P

log p
+ 0 e
(PSY p?

The error term is clearly bounded and, by Lemma 9 1ii) (with m=1), so 1s the

first term. Hence

1
= Oe(y/%:B/[l' + E) ¢ O(T).

(4.2) §1




Next, by (2.16), we have

RO | atiT ¢!
gl _—-——2IIi 'a-{i r (s) L(S,X) A(S’X) ds

© -a 1 T -it
Y cz(n) n Cii { n dt)

le,(n) |
® 2
Sl iy
PR log n
where
Cpln) = A(h) x(3) a(k).
But
|c2(n)| <. “login Rk 1 = d3(n) log n,
so
© =2 3 3
(4.3) §2 < s d3(n) n Gieola) i de LT

Finally we come to §3 . Taking the logarithmic derivative of (2.13) and

using the formula




I =
?-(s) = log s + 0O(|s| 1)

for |s| » » in the region |arg s| < m - ¢ (z>0) (e.g. see Whittaker and

Watson [; Chs. 12 and 13]), we see that

(4.4) X' (1-8) = - log 5 + 0(D)

for t>1, o £ 02, say. Inserting this into (2,17), we obtain

-1 T t
§3 =5 L(a+it,x) A(a+it,x) log 77 4t

T ; dt
+ 0( { | L(a+it,x) A(a+it,y) |-—E).
Clearly
Llat+it,y) ACatit;y) << g2(a) << L2;

so the error term is <K L3.

The first term is

with




ey = oo x(h) alio).

In particular, c3(1) =1, hence this term contributes

T
T L + o(T)

to §3 « Since |c3(n)| < hk=n1 = d(n),

The remaining terms contribute

© d(n)

2 3
2 LT a) kK T

na log n

Therefore

Combining this with (4.1)-(4.3) we see that

(4.5) L R | 1, 3/4 + ¢
= -ZHL+O(T)+O€(y2I' ).

5e The estimation of Dl

We now turn to the first term 21 in the denominator D (see (2.08),

(2.18), and (2.20)). By the functional equation (2.23) we have




D = 1 at+iT
=1 2mi a¥i

-z-l(s) L(a,5) Alsiy) ACI-8,%) E(1=85x) ds;

where a 1 + 1", We set

1

LB 37 =E98) 1%s,0 Ae,) (e> D)

©

3

so that

b, (3) e hﬁ?;j a(h) A(m) d(n) x(n).
Then by Lemma 2,
s, a(k) S Uge
N o e L e

To estimate this we use (3.8) of Lemma 7 and find that

. (kT 5
G D) a(h) a(k) 21H -H
gl g T(x) h’kSy k ggi ( s Q(S’Xqu))

1 s
+ os(y/2r3/4 it SRR, D 1, )

where




Observe that in the seyal above we may suppose that both H and K are square-

free and that (H,q) = (K,q) = l. Lemma 6 is therefore applicable and we may

write the residue as

T8
= (ZHH) §
x(B) x(K) t(x) reg ¢ Ge(s,x) t2(s))
(qKT s
n(qK) q(X) 5 2TH 1
+ = ) L2(1,x) reg (= ﬁ(s)).
If we use the expansion ¢(s) =-§%T 4+ y + +.. mnear s=1 to evaluate theses

residues and insert the result into 21 , we obtain

2y-1

d T a(h)"a(k) x(h) x(k)(h,k) ra e i
' o (__li__) (__li__)
2 ¥1Y nlg) alq) a8 oL a(h) a(k) n'(h,k)” g (h,k)
(%) q nRE T2 B kCy

nK ¢, K
0

1 i
5 oe(y/2 4t ey o oy




We next apply the Mobius inversion formula in the form

£((hE)) = hjm D £Q)
|k
This leads to
i T a(h) a(k) x(h) x(k) n(n) m
Dpoxtigr bk ik mp nlm ow
2y-1
(o Fl 0 Tare B i e )
"o W
kn kr
=D a0 o(@) (2, oy T a(h) a(k) et
w(x) q »X) 97 h,k<y hk gl{l n |m 1?('1%:)

1 .
+ o‘s(y/2 /4 * ey 4 oY,

Interchanging the order of summation and replacing h by hm, k by km, we see

that

S e | Y n(n) a(mh) a(mk) x(h) y(h)
=1 % 2 m{y m n|m n h,k<y/m hk

(e (i TeZY—1 1
(G »X) log s v 8 CLyx))




a(mh) a(mk) n(nk) g(nk)

SoxC=1). o nlg)-¢Ca). -2 e 5
w(x) q L™(1,x) 2 m{y m hjm n(n)h,k_<_y/m hk ¢(nk)
1 i
o/t 4 oam™,
or
1 =
CREEE SRS W N e R T O

We first treat 211 . By Lemma 10, the expression in parentheses equals

2y-1
L
Gk(lyx) log _giﬁﬁ— + Gk(l,x) + O(L log log 3kn)

= =y(=- AN T4 — 13 = o
M)y (o - g Xpd dogep p|RX(P) Togipitog- o)

+ O(L log log 3kn) + O(log 2k log 2n).

Since neither n nor k is greater than y the error terms here are <K L log 2n

L. Hence, using the identity n(n) = ¢(m) , we have
n|m n m
SRR 1D e | 6 (m) a(mh) a(mk) x(h) y(k)
=11 q 21wy 2 h,k<y/m hk

- T
* plk x(p) log p log g%



+ o TL 1 log 2nL | a(mh) x(h) |2)°

mSy'a n|m n

Notice that in each sum over m we may assume that m is square-free. With this

in mind, we see from Lemmas 13i) and 8 that the O-term is

2
TL % —1/2 (m) log 2nlL
SR e
log?y mly m n|m n
m square-free
o? 02, 10D
TL Y, (n) b
<« log?y n<ly niz Log: ZnL ry/n r
gty
S L ——lan); log 2nL
log y nly n
TL log L
<KL Tog 7 << T log L.
We may therefore rewrite 911 as
boos T ¥R o B X aCapl) x(1)
“1i q 2nm y =¥/ P h<y/m h 1<y/mp 1
= (p,q)=1 e =
& a(mh) (h) log h a(mpl) (1)
k<y/m h 1<y /mp I
a(mh) x(h) a(mpl) x(1) log 1y

“h<y/m h 1<y/mp 1



Using Lemma 13 to estimate the sums over h and 1 and noting that we may

suppose that (p,m) = (q,m) =1 , we find that the expression in parenthesis is

n2(m) m?.q? p x(p)
¢2(m) ¢2(q) log?y  ¢(p)

(L + log y/m + log y/mp)

2 2
S i SR bl
log y log * 2y log?y *
mp
Thus,
i q o n2(m) x(p) ¥
(5:2) Dy =30 Tog%y Zm  mgy ye Y U o i S
(m’Q)'—"'l (P,m)=1
A i 50 o SRS AR 7 S A
2
log y mly m p<y/m 5 logh %%
2
s (T log L $ingio J%§m) log p )
log?y mly m? p<y/m p

+ 0 (T log L).

The first )-term is



where w(n) 1 . Hence,

pln

n?(n) d*(n)

SRS

D << T.

12
It follows from this, (5.1), and (5.3) that

1
(Salde:. Dy 02y a8 e

) + o(T log L).

6. The estimation of 22 .

We shall see in this section that the main term in D comes from

; 22
Recall from (2.19) that
1 atil: v3 N -
gz——z—n—i- a-{i '§(1—S) L(S’x) L(l S’X) A(S!X) A(l S’X) dS,
where a= 1 + L—l. By (4.4),
o4 CVRES IR Wt P
> (1-s) log T + O(t)
for £ > 1 and o<o<2. Hence, moving the line of integration to o=1/2 and

using (2.9) and (2.10), we obtain



2
L L e
log vy m<y m {

by the prime number theorem. The integral is easily seen to be <K l. So by

Lemma 8ii) this is <KT.

The second error term is

et |
<<11—(1)‘{;°—y—Ii B —m 7 10g L.

Finally, by Lemmas9 and 11, we see that the first term on the right-hand side

of

(5.2) is
<< igg%; ay -3%%%% (L log log log 30 m + log log 3m)
<K logTy (L log log L + log L) <K T log log L.

Thus,

¢53) 211 <X T log: L

We now turn to 212 « We have



_x(=1) n(q) ¢¢q) ST x n?(n) g(n)
212 o(x) q Li(1,x) 2l m{y m n|m o(n)
alat) a(mk) n(k) g(k)

*h<y/m h k<y/m k ¢(k) >

since we may obviously asume that (n,k)=1.

By Lemma 12i) and iii) and Lemma 8ii), this is

K oy, ™ n*(n) |g(n)|
L <y m n|m ¢(n)
m square-free
<<'2 n?(n) 02Jﬁ§n) |g(n) | f:ffLiiz
L nly ne(n) r<y/n r
n?9n) o%;, (n) |g(n)|
<K T /2 ‘

ny n ¢(n)

Now for square-free n,

(a0 T, 112 x(p). & —X@ | < &% 2 a2(n)

]
°2Jﬁ§n) = pfn (1+ p 7y 2 < 2WEY d2(n),




i 2 t
(Bl D, miesr i Ldp+ it,x) Adlp+ it,x) | log 3¢ dt

+o( (T |Llp+ tt,0 Ay 1, 01 S
+0_(y 2t €,
To estimate this, we need to first estimate

92* (7) = fT Ly + 1u,x) Ad/ + 1u,)<)|2 du.

We shall prove that for 1L 7 < T,

(6.2) 22*(1;) = (1 + 108 T) + 0 ( / 3/4 2 8) + O(T igg y).

First observe that‘by standard methods one has easily that

*
T IR S (<t<D.

l

If 151'2 this is consistent with (6.2), so from now on we assume that
1
T@TST.

*
We write the integral for D2 (t) as

1 & =
Dz*(‘r) =~jIT Y {fit L(s,x) L(l-s,x) A(s,x) A(l-s,x) ds

*
and move the line of integration to o=a =1 + :
log 1

« In doing so we




1
introdure an error term of Oe(y Téfe) ; this follows from the bounds in (2.9)
and (2.10) which, although stated only for se R, are clearly valid in a

slightly larger region. Thus

*
* o, =
22 (T) .jIT * 'ra ik L(S,x) L( l-S’X) A(S’X) A( 1"'59X) ds

a +i

+ Oe(ygﬁte).

Next we replace L(l-s,x) by x(l-s,x) L(s,x) (from the functional equation

(2.23)) and set

B, (j) = _.a(h) d(n) x(n).
2 hR§§

Because y< %ﬁzand %ﬁkr, Lemma 2 is applicable with T replaced by t and x by

y. It then follows that

21 x(-1) a(k) =]
Dy €)=t K<y B ke Py s et
B 21

By (3.9) , this may be written as

(qkt) s
* 21 _x(-1) a(h) a(k) 21H -H
22 G B w(x) h,k<y k 5<% ( s D(S’X’qK))
1 el




where

T
(h,k) *

th, 5 and K=

Notice that in the sum over k we may assume that K is square-free and (K,q)=1
since otherwise a(k) = 0. We may therefore use Lemma 5 to compute the

residue. We find that it equals

(=422 S () (1 x(-D) K% - (@) 7N,

w(x) x(H) x(K) res (ﬁﬁ)

Since t2(s) = ?;:%7? + E%% + ... mnear s=1, this in turn equals

< 2y-1 2 Ed
w0 X(0) x(e) Lt k) (1) 10g (DT 4 10g g 4 (14y(-1)) ﬁ(m

. The expression in parentheses is

2
x(-1) log li%;%l_ + 0(1), -
so we have
- - 2
Dz*('[') + ¢((1q) h’ksy a(h) 3'(k1)1 1)é(h) X(k) (h:k) (lOg T(?ﬂ;k) + 0(1))

1/&,3/4+c) PR L) 0

+O(y
€

We now apply trhe M&bius inversion formula



£((h,k)) = Sl ) )
Bk

and

), a(h) 3(k) F(h) x(k) Sy
Dy tms Gosve h,k<y R Blp o n(n) T (log g + 0(1))

1 :
+ oe(Y/&3/4+e) + ot ™Yy,

Interchanging the order of summation and replacing h by hm, k by km, we see

that
oo o 4q) 1 n(n) a(mh) a(mk) x(h) x(k)
?2 (T} = q m{y mnjm n h,k<y/m h k&
.(log 3% + 0(log 2n))
+0 €<§ﬁ@3/4+€) + oL Y.
Now g n(n) = Eiﬁl , S0 we may rewrite this as
njm n m
* - ¢(q) $(m) a(mh) x(h)
92 (1) =t lof = 5 e | 6¢iin ~—_—TTJL——- | 2
S Dl o(m) a(mh) y(h) log hy amk) (k)
q m<y m? h<y/m h k<y/m k




0 1 log 2n | a(mh) x(h) B

m<y o n|m n h<y/m h
1 - Ak
+ 0, (y/12r3‘/4 )y + o(TL 1),
or
¢ i 4(a) .
22 (1) =1 q ( log 7 1 2 Re 2) + O(t 3)
(6.3)
1 5
+ Oe(y/&.B/l‘ + S) F O(TL 1)
for short.
By Lemmas 13i) and 8i) we have
2 (
4, ____ﬂi_____ n2(m) $i00 1 Y ;V \?)
1 = $(q)? log?y my ¢ (m) log?y msy _ log4 Vi
(m,Q)=1 i m
0?3/ (m)
Set s(u) = —12.___ , Then by Lemma 8ii),
m<n m

S(u) = ¢ log u + E(u),

where E(n) << l. The sum in the error term therfore equals



¥ 5 o b A y -5 2y du
l + E(u) log 7 l 1 4 { E(u) 10g _G —;
K 1.

By Lemma 11, the main term is

q 1
—_— —_—
$(q) log vy O(log2 y)

Hence
(6.4) SETINCEL: WA Ry P T s
1 ¢(q) log y log? y
Similarly, by Lemmas 13 and 8i),
2 2 o2 1,(m)
= - zq o L(_!-n_)— 10g .Y. + 0( 1 / _&
2 $(q)? log? vy my ¢(m) m log v <y RO o2
o g
(m,Q)=1 m
o2 ,(n)
+ pfeioE S £ 7

log?y mly m

The main term is

R, (P o
2 ¢(q) o 0(log y)

by Lemma 11 and partial summation. The sum in the first error term was

estimated above and found to be << 1. Thus the entire error term is

<L Toz 7.




By Lemma 8 ii) , the sum in the remaining error term i << log y, so whole term

is
< %Qé_k g
og y

Thus

= log L

6.5 R O —RQulRly
Sonn 2 2 ¢(q) O(1og y)
We now turn to 3 We may disregard those m which are not square-free,
so by Lemmas 13 and 8i) we obtain
2
< 1 i Jﬂ;”) log 2n
3 log? y m<y m n|m n
m square—free
2 1 2 2
5 1 o J%fn) og 2n s IR

log?y nly n? r<y/n r g

By Lemma 8ii) this is
2
e 1 i_ib(f_)_ << 1
log y nly JZ€ log vy °

Gombining this with (6.3) - (6.5), we finally obtain

* 1
D, (T)=r(1+%§;&§) - Oe(y/21‘3/4+€) +0(T%’-§—I}"')




1
for T/2< T S T This establishes (6.2) for 1 S 7.&Ts

We can now estimate 92 . Using (6.2) and integration by parts, we find

that the first term on the right-hand side of (6.1) is

1 T t *
=37 - leg gy 4 Dy (t)

-1 t * T | g dt
=y, Aoggm KD HCR) ] ok o o Py AEXITH
Sl oA T % 2 3/4 + ¢
= L(1+ T y) + Oe(y T ) +0( T log L).

Simlarly, we find that the second term in (6.1) is
<< L.

Hence,

Loy

1, 3/4 + ¢
T + Oe(y v ) + 0 (T log L).

T

7. Completion of the proofe.

By (4.5) we see that



(7.1 L 06
o) N —‘ETI'L'*' e(y

Also, from (5.4) we have

1/2r3/ bte

D, = Oe(y ) + O(T log L),

and from (6.6) that

L 1/, 3/ b4+¢
Tos y) + Oe(y :

._._z_i L(1+ ) + O(T log L).

2y

Thus, by (2.20) it follows that

T L
(7.2) g“'z'ﬁ 1.(1+————};) +0€(

1/, 3/4+¢
ok y A )

+ O(T log L).

-2¢

1/
We now take y=T'2 in (7.1) and (7.2) and find that

T
{7.3) g e oe(T)
and
T
(7.4) D = (3+O(e))ﬁ Tis

This establishes (2.4) and (2.5) and therefore Theorem 2, provided that T is
in the sequence defined in §2 (preceding (2.6)). To remove this

restriction first note that every positive T is within 0(1l) of some element



of and that increasing T by 0(l) in (2.2) introduces at mrst O(L) new terms

into the sum. However, by (2.9) and (2.10) each of these terms is

<<€ yl/2+ e/2 ,l];/4+ e/2" . Tl/f e/ - €2

1/2 - 2¢

if y=T Thus (7.3) is valid for all large T. Similarly, increasing

T by 0(1) introduces at most O(L) new terms into the sum for D in (2:3)%

Each of these is

A - 2
Tl e/2 2¢

K
€

so (7.4) is also valid for all large T. This completes the proof of Theorem

2.
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