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While investigating a certain mean-value associated with the zeros of the nth
derivative of the Riemann zeta-function [2] we obtained for each nonnegative
integer n a formula with a constant factor

n
a,=n+1- Y e,
v=1
where the complex numbers z, are the roots of the polynomial

22 z"
E,,(z).—1+z+2—!+---+m.
Thus ey =1, @ =2 — e, a; = 3 — 2ecos1, and if

r=(2+1)" and s=(2 -1,
then
3
a;=4—e*r s — 2e(”(’_’)/2)cos7(r +5).
The numbers z, have been well studied, and for a given n most of them have real

part smaller than —kn for some positive constant k. Thus it is natural to expect
that «, should grow exponentially with n. We computed the first few «, and
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quickly changed our expectations:

ap =1 ag = —0.0000062064 . ..
a, = —0.7182818284 ... ag = —0.0000018672. ..
a, = +0.0626121201 ... ay, = —0.0000004703 . ..
a, = +0.0120619221 ... ay; = —0.0000000989 . ..
a, = +0.0019468374 ... ay, = —0.0000000153 . ..
ag = +0.0002139607 ... ay; = —0.0000000004. ..
ag = —0.0000093400 ... ay, = +0.0000000009. ..
a, = —0.0000154019. .. ay = +0.0000000005 . .. .

It seems that «, is approaching 0 rather rapidly! Of course a, # 0 by Lindemann’s
famous theorem [4].

Szego [8] initiated the study of the zeros of E,(z). It is convenient to scale down
by a factor of »n and let

Zl’
==
n

Szegd proved that the §, cluster around the simple closed curve I' = {z: |ze! 77| = 1,
|z| < 1} as n = oo and that the proportion which cluster along a given arc of I' is
asymptotic to the change in
1 .

—ar

27 gze
as z varies along the arc. We mention that this implies that the proportion of zeros
of E, with negative real part is asymptotically

z

1 1
— + — =0.617099...
2 we

since the arc of I" which lies in the half plane Rez < 0 has endpoints z = +i/e.

Buckholtz [1] has shown that the {, all lie strictly outside I' and are within a
distance 2e/n'/? of T. By the Enestrdom-Kakeya theorem on polynomials with
monotone coefficients (see Polya-Szeg0 [7, part III, problem 23]) all the {, are inside
the unit circle |z| = 1. Moreover, Newman and Rivlin [5], [6] have established that
the region y? < cx has no zeros z, (no scaling) if ¢ is any positive number such that
ce¢ < x/2; their paper [5] also contains a figure showing the location of the zeros of
E,(z) for n < 47. The regular spacing of the z, is quite striking as is the parabolic
region free of zeros. Saff and Varga considered the existence in general of a
“parabolic” region free of zeros of the sections of power series of entire functions
and have conjectured a precise relationship between the “width” of such a region
and the order of the entire function. In [3], with Edrei, they prove the conjecture for
a class of functions; this work also has an extensive bibliography on this and related
problems.

The following indicates another aspect of the interesting geometry of the z,.

THEOREM. If B is any positive number for which B <1 — log2 = 0.3068..., then
la, | < e

for all sufficiently large n.
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Thus, a, is an exponentially small sum of terms, most of which are exponentially
large as functions of n. As a contrast we mention that it is not difficult to prove that
27_, e* does increase exponentially with ».

The proof of the theorem is not difficult. We write

e* = E,(z) + R,(2), (1)
where
R,(z) = k=§+1 R (2)

The idea of the proof is roughly as follows. Let z, = x, + iy, be a zero of E,(z) and
consider Ye . If x, > n(1 — log2) then e~ is small. If x, < n(1 — log2) we use
e ?=1/R,(z,). In this case |z,| is not too large because {, is near I' as above.
Then 1/R,(z,) can be expanded into an absolutely convergent series of increasing
powers of z,; the first term is (n + 1)!z; "~ L. Now using the Lagrange interpolation
formula we can show that

n 1/n! ifm=n+1
Y z;m={0 if2<m<n (3)
v=1 -1 ifm=1.

Thus the n + 1 in the definition of a,, arises from m = n + 1 here. Then we show
that the contribution of terms with “large” x, and m > —1 is small and similarly
for terms with “small” x, and m < —1. These estimations require a bound for n!, a
bound for the coefficients in the expansion of R,(z) ! and the fact that the §, are
near I'. Note that the points z of T' for which x = 1 — log?2 satisfy |z| = 1/2.

LeMMA. With R,(z) as above,

1 (n+ 1) o
= 1 k
R,(z) z"+1 ( ¥ kz=:1Ckz ),

1/ 2 \*
S .
lewl < 5 ( "+ 2)
The series is absolutely convergent for |z| < (n + 2)/2.

We will prove this lemma and (3) later. Now we give the proof of the theorem.
Fix positive numbers B <y <y <y*<1 — log2. Define a partition of
{1,2,...,n} into SUL by » € S if x, < ny and » € L if x, > ny. Note that by
Buckholtz’s results,

where

z

v

n

v
n

=e 1+0(1) (1<v<n). (4)

Trivially

le"»|<e™ (veL), (5)
and by (4),

|z > ne” 71 (vEL) (6)
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and
R n
|z,| < ne?” "l < 5 (res) (7)
for sufficiently large n. From (5) we see that
1
Y e | <ne g Ee'”ﬁ (8)
veL
for large n. By (1), (7), and the lemma,
o0
Len=Y1/R(z)=(n+ 1) L ¥ cpzkt 9)
ves vesS veS k=0
where ¢, = 1. By (3),
n 1 n
Y Xozt= — T~ X XYoozl (10)
k=0ves n: k=0veL

Then by (9) and (10)

Zn:e‘ZV=(n+1)+ Ye—(n+1)
v=1

vel
\ - (11)
<ot £ Lamiox § curt 1)
veL k=0 veES k=n+1
Now by (6), (7), and the lemma, we can bound
n 0
Gt XX ekt - Y X gz
velL k=0 veS k=n+1
from above by
2\n n 2\ k _ k . ne
(——) +nY (—) (nev -1)* "1 4 > (—) (nev' -1kt
h k=0\" k=n+1
2\" n " sl k
- - -1
< (n) + (eY_—l)n+1 kgo(zey ) (12)

since e¥" ! < 1/2. It is easy to show that (n + 1! < n’(n/e)". Thus by (5), (11),
and (12),

n

Yer—(n+1)

v=1

1 T2\ n%="
< —e "4 nz(—) + (13)
2 € e’ "H1 - 2e7" 1)
if n is sufficiently large. Since (2/¢) < e~# and Y~ > B, the right-hand side of (13)
is < e " if n is sufficiently large.
Now we prove (3) and the lemma. For any polynomial Q(z) of degree <n — 1,

06) = £() 5 720
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since both sides are polynomials of degree < n — 1 which agree at the n points
z4,...,z,. We observe that
Zn

E/ (Z ) = - ;
We obtain the first formula in (3) by taking Q(z) = 1, z = 0. The second formula
follows from the choice Q(z) = z*, z =0 for each of k =1,2,...,n — 1. Finally,
the third formula of (3) is a consequence of the fact that the numbers z, ! are roots
of z" + z"71/1! 4+ --- +1/n! so that their sum is —1.

To prove the lemma we write

n+1 -1

(n+1)R,(2)

k

flz) = ArEserr

(1+(n+1) Y

and expand the right-hand side as a geometric series. This is legitimate if |z| <

(n + 2)/2, since then
k
<Elz) -

The power series we obtain for f(z) is majorized by

1+ ZI:(n+1) E(-l-i—+k)]

which in turn is majorized by

1+E(Z—Ji—y

(n+ 1)'[(21( +1 +k)'

s1\ko1 (n+2)"
Since
x (& ! il w o\ 1-w w
1+ Kl =1+ )— =1
lgl(kglw) 1§1 1-w 1-2w 1-2w
1] =
=1+ = ) 2kwk,
245

the lemma follows.
We remark that R,(z) has no zeros z with |z| < n + 2. This fact can be proved
exactly as the Enestrom-Kakeya theorem mentioned earlier. Thus the series for
z"*1 /R, (z) actually converges absolutely for |z] < n + 2. Since the z, satisfy
|z | < n we have the formulae

Ze 2= ZI/R (z,)=n+1-(n+1)c, +(n+1)'Ecn+1+kZz (14)

v=1 v=1

and

li I/m . 15
'injgplcml P (15)

Thus, it is possibly the case that a,, is asymptotic to —(n + 1)! ¢, but it is not clear
how to better estimate ¢, for k < 2n and so prove this.
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Letters to the Editor

Editor:

The method used in Norwegian books (e.g., [1]) to prove the reflective property
of a parabola seems more direct than that used by Robert Williams [2]. Referring to
Williams’s diagram, let Q by the y-intercept of /,. Then, since /,’s slope is x,/2¢
and the parabola’s equation is y = x2/4¢, Q = (0, —y,). It follows that QFPD is a
parallellogram (where D = (x,, —c)), whence its diagonal QP bisects FPD and

a=p.
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Ragnar Dybvik
N-6630 Tingvoll
Norway

Editor:

With reference to your recent editorial ‘Strings, Substrings and the Nearest
Integer Function’ (Amer. Math. Monthly, 94 (Nov. 87) 855-860), I note that in
yéur second example you express the nth Fibonacci number F, using the nearest
integer function. It may be of interest to note that F, can be expressed recursively
using the nearest integer function; viz., F, is the nearest integer to the geometric
mean of F,_; and F,,,. (See my Lemma 1 on diophantine defining relationals in
Abstracts AMS, 8 (Oct. 87) 437-438.) Indeed, there exist infinitely many recursions
of this type; e.g., F, is the nearest integer to the geometric mean of F, ,, F,_;, and
E, .,

Albert A. Mullin

506 Seaborn Drive
Huntsville, AL 35806



