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1

The most precise results about the horizontal distribution of the zeros
of the Riemann zeta-function are deduced from mean value theorems
that involve the zeta-function multiplied by a Dirichlet polynomial. We
are interested here in those results that give information about zeros
on or near the critical line. The first result of this sort that required a
detailed arithmetic argument involving the coefficients of the Dirichlet
polynomial in order to accurately estimate the mean in question is due
to Selberg [15] in his proof that a positive proportion of the zeros are on
the critical line. His paper also contains a density result

T
N(O', T) < @

uniformly in ¢ > 1, where, as usual, N(o, T') is the number of zeros
p =P+ iyof {(s) with 0 <y < T and f > «; he later [16] strengthened
this result to

NG, T) < T~ 14~ 1og T

uniformly for 3 <o < 1.
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In 1973, Levinson [11], relying on the sort of mean value theorem
mentioned above but using a different starting point, showed that at
least 3 of the zeros of the zeta-function are on the critical line. Levinson
called the Dirichlet polynomial he used in his argument a ‘“mollifier”
because, as a rough approximation to 1 /{(s), it succeeded in smoothing
the wild behavior of {(s) near the critical line. Improvements in the
lower bound for the proportion of zeros on the critical line have
depended in part on better choices for the mollifier, which have been
found through the use of the calculus of variations.

Further developments in this method of mollifying have yielded
lower bounds for the proportion of zeros of &(s) on the critical line
where £(s) = 3s(s — 1)m ~*/2I(s/2); &(s) is entire, real on the critical line,
and has the same complex zeros as {(s) does. Most notably, this
proportion tends to 1 as m tends to infinity. Lower bounds can also be
obtained for the proportion of zeros of Em(s) that are simple and on the
critical line (see Conrey [2] and [3]).

Jutila [10] has used the method of Selberg to improve his density
result. He showed that for any J > 0,

N(o, T) 5T~ Q=9 —1/2) log T.

2

Here we state a mean value theorem from which many of the above-
mentioned results can be deduced. We also give two new corollaries.
Then an analogous theorem about a discrete mean value is given,
along with some of its consequences. Before stating the theorem, let us
introduce some notation. Let 7> ( be large and let

Bs, P)= 3 2 P)

n<sy

where y = 7% and

b(n, P) = #(n)P<1°g v/ ”),
log y

where P is entire with P(0) = 0 and u is the usual Mébius function. Let
L=logT,a=alL = b/L for complex numbers @ and b. Let Q, and @,
be polynomials.
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Theorem 1. If0 < 0 < 3and o and f tend to 0 as T — oo then for fixed c
withi<c<35-0,

1 <+ iT —d . d
—.f Q1<EJ>C(S ; “)Qz(%)((l — s+ PB(s, PYBA — 5, Py) ds

Ule+i
)
u=v=0:|

where the integrals are {§ ... dx, Py = P,(x + u), P, = Py(x + V),

0

0 01
~ 1] Q0QOPORO + 5, 15 [ 10T [P

T,Q, = e *®*+Q,(x + Ou), and T, Q, = e~ **+Qy(x + 0v).
For example,

7 4
L C(%'*‘ it) B<é+it, P>

We note, also, that Levinson’s theorem follows with the choices
P,(x) = Py(x) = x, Q1(x) = Q(x)=—-1—x,¢c=3 a= —b=—1.3, and
0=4—¢¢e—0". Also, Jutila’s result follows with the choices Pi(x) =
Py(x) = x, Ql(x)=Q2(x)=1,a=b>0,c=%, andf=3—¢¢e-0".

Two other applications are as follows. First, let N4 T) denote the
number of distinct zeros of the zeta-function in 0 <t < T; then

2

) 2 1 ! ’ 2
dt ~ T<P(1) +§LP(x) dx).

NUT) = (0.628 + o(1))N(T),

where N(T) ~ TL/(2n). This may be proved as follows. Let N,(T) denote
the number of zeros of the zeta-function in 0 < < T with multiplicity
at most r, where zeros are counted according to their multiplicity. Then
it is easy to show that

B NA(T) | Ngr.i(T)

Nz X e DT R+1

for any R > 1. The above-mentioned result on N9 follows from the
constants in Conrey [3] that may be deduced from Theorem 1.

As a second application we mention some results on the distribution
of zeros of {%(s). This topic is of interest because of its connection with
the Riemann Hypothesis (see Levinson [1 1], Levinson and Montgomery
[13], and Speiser [17]). In particular, the Riemann Hypothesis is
equivalent to the assertion that all complex zeros of {'(s) have real part
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at least 3. Levinson’s method is based on a quantitative version of this.
We mention that Levinson and Montgomery [13] have shown that

kT
— ) A —
Y (Bu=9~7 loglog T,

m<T

where p;, = f, + iy, denotes a zero of {*)(s); the number of terms in the
sum is ~TL(2r). On RH at most finitely many terms in the sum are
negative. On the other hand, it can be shown that

Z T1/2—/?k > T

O<m<T

so that, e.g., there exist R > 0 and ¢ > 0 such that at least ¢7' Zeros
satisfy 0 < 7, < T'and 8, < § + R/L. Using Theorem 1 we can show that
for any R > 0 there is a ¢ > 0 such that

Y I >ofL
O<y<T
Br>(1/2) + R/L

for all large 7. The question of the precise horizontal distribution of
the zeros of {'(s) remains open to conjecture.

3

Now we turn to discrete mean value theorems. We use the same
notation mentioned before Theorem 1.

Theorem 2. If0 <0 <4 and o and p tend to 0 as T — oo, then

d d
L, o(- o+ 9@ ~ 25 1 = 0 + DB, PYB — 5. P

O<y<T

i nne i fr]
5 UT.,QITsz - 7.6 fTsz]
+ f P, f P2<Q1(0) - | T.,Q1><Q2(0) - f TbQZ)}

with the same notation conventions as in Theorem 1.

’
u=v=0
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Theorem 3. If0 < 0 <4 and « tends to 0 as T — o, then

—d —TL d
y Q(%);(p + @B Py~ ((Qm) - Q) | P)

Oy < T

’
u=0

where

P = P(x + u) and T,Q = e~ *+%¢)x + Gu).

As a first application of these theorems, we mention the results of
Conrey, Ghosh, and Gonek [6] on N4t) and on the number of simple
zeros No(T) in 0 < t < T; assuming RH, Montgomery [14] proved that

N(T) = <§ + 0(1)>N(T)

using his pair correlation method. In [6] we show that on RH
19 - 5 1
N(T) = o7 + 0o(1) |N(T); NXT) = 6 + 31 + o(1) |N(T).

The first inequality is obtained via the Cauchy-Schwarz inequality in
the form

2

Y. {(p)B(p, P)

N1 T > _0<y<T .
(D)= =5"1005)B(p, P)?

0<y<T

Clearly, the right side can be evaluated by our theorems: The choice
P(x) = —0x*> + (1 + O)x is optimal (with 6 — 1/27 ). The second inequal-
ity may be deduced from the first using Montgomery’s theorem [14]

(on RH) Y m(p) < <§ + o(1)>N(T),

y< T

where m(p) denotes the multiplicity of the zero p.
A second application is to bound Ny(T), the number of simple and
double zeros in 0 < ¢t < T, from below. Again by Cauchy’s theorem

2

Y. ((p)B(p, Py) + L"(p)B(p, Py)

NAT) =2 12== g
(D) 2 55 70)B(p, Py) + C(9)B(p, PP

y<T
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The right side may be evaluat
using

P;(x) = 0.86
and
Py(x) = 0.76

we obtain the new result:

Theorem 4. Assuming the R

Ny(T) >

Thus, on RH, fewer than 4.5
greater.

We may also use Theorems 2
the number N(T, U) of pairs of
imaginary parts 7, 7 betwee
Montgomery [14] has conjectu

N(T, U) ~ N(T|

uniformly for 0 < o, < UL < «,
RH, that

N(T, U) < <A +

where A = UL is a positive i
addition, almost all the zeros g

N(T, U)2<A— L
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ed using Theorems 2 and 3 and RH. Then

6x — 0.115x% — 0.082x3

lx — 0.362x2 — 0.024x3,

viemann Hypothesis,

(0.955 + o(1))N(T).

% of the zeros have multiplicity three or

and 3 to obtain some information about

zeros of the Riemann zeta-function with
n 0 and 7 for which 0 <y —y < U.
red that

-G

< o0, and Gallagher [9] has shown, on

sin mo

oL

gy + 04~ 2)>N(T),

nteger or half-integer, and that if, in
ire simple then

1
I

sy + 04~ 2)>N(T).

Gallagher’s results allow for the possibility that for some U ~ 1/L,

N(T,U*) — N(T,

We can apply Theorems 2 and

U)><1—O<

3 above to deduce:
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Theorem 5. Assuming the Riemann Hypothesis,

NT, U*)-N(T,U") < <§ + O(%))N(T)

uniformly for 0 <oy < UL=A < oy < 0.

To prove this theorem we first of all note that on RH it is equivalent
to the following assertion:

1 I
1>(=-+ 0 ) |N(T).
0<;<T (3 <A>> ( )
p+iU)#0

By the Cauchy Schwarz inequality, the left side is

>| Y lp+iU)B(p + iU, P)

=&

2> —1
which can be evaluated asymptotically via Theorems 2 and 3. (The fact
that the argument of B is shifted presents no problem as

( 2 lp +iU)B(p + iU, P)

N & T

B(s + a/L, P) = B(s, P,)
where P;(x) = e~ 0 ~®P(x).) Then, we find that if P(1) = 1, then
bk <:<p + §>B<p e P> N —N(T){l — JGA)
y<iT L L

a B
+ 1AJ(IA) J g 80— Dig) dx}
0

and

2

2

y<T

p+iA A
5o+

~ N(T){l + 1 — |JGA)P) é fP’(x)2 dx

2

1
+ ‘1 — iA0 J e~ A0 =) D(x) dx
0

—2Re {J(iA)<1 — A0 Jle_ 1460 — ) P(x) dx)},
(0]
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where J(r) = [je ~ " dx. Now, si
integration by parts that

1

|

for fixed P. Also J(iA) < 1/A s

e tAO0(1 — x)f

bY

e
Lp+iU)#0

1> N(T)<1 + 0

The result now follows from th
Finally, we mention two res
and [7]) that do not follow di
proven using similar techniqu
tion of the zeros of the zeta-fu
simple. (This result does not s¢
pair correlation method.) Seco
cutive zeros of the zeta-functi
times the average spacing.

4
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nce P(0) = 0 and P(1) = 1, we find by an

()
%)) / <1 + éﬂp'(x)z dx + 0(%)).

e choices P(x) =x, 0 > 1/2—.

ults of Conrey, Ghosh, and Gonek ([5]
rectly from Theorems 2 and 3 but are
es. Firstly, on GRH, a positive propor-
nction of a quadratic number field are
>em to be accessible via Montgomery’s
ndly, on GRH, the gaps between conse-
»n are infinitely often larger than 2.68

) =
(x)dx_iA6+O

We now give a description of the main steps in the proofs of Theorems 1

and 2. Many of the details are
denote the usual factor from
function; {(s) = x(s){(1 — s). Le
3 — 0, and let

c+iT

1 C
L, B, Py, P) = o f

1
Ke, B, Py, Py) = 5

and

x %(S)C(s + o)

similar to the work done in [6]. Let x(s)
the functional equation for the zeta-
t ¢ be a fixed number satisfying 1 < ¢ <

){(s + o){(s + B)B(s, P))B(1 — s, Py) ds

HiT

1 —s)

2

_ s+ B)B(s, P,)B(1 — s, P,) ds.

Let M and M, denote the means in question in Theorems 1 and 2 with

Q=Q,=1.
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As a first step, we use the approximations

1A —s+a)= <i>_ax((1 —8)1+ 01/|E]) ~ e~ (1 — s)

and
L@y =L
b4

for ¢t ~ T. This gives
M ~ e~ °I(a, — B, Py, P,)
and
M, ~e I (o, — B, Py, Py).+ e °I,(—3, B, Py, P,)

e °L
2n

-+ I(_&a/?’pz’l_)l)'

Next, in view of the relationship
1 c +iT
—J x(1 —s)r—°ds ~ e(—r),
27‘“‘ c+1i

for 0 < r < T/2n we can show that

b(h, P,)b(k, P. H
1o, p Py Py~ 3 SWPOEP) e Be(_mn _>,
hk<y k mn < (Tk/2rch) K

where H = h/(h, k) and K = k/(h, k), and that

b(h, P,)b(k, P,)
Lw B PuPYm = § ————=
hk<y
fﬂ’nwbH)

AO)m—*n- ﬂe( =

¢/mn < (Tk/27h)

Now we estimate the inner sums here using Perron’s formula; this
requires knowledge of the generating functions. If (H, K) = 1, then

—mnH

Zm—s—“n_s_”e< )_Kl_“—”“z"((s+°‘)§(s+ﬁ)
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is an entire function. Also,

s (2 —
[’;’n = m n
_C(S‘*'O‘)C(S’*‘ﬂ
K

x (T —s—al*]

has poles that are either not < 1

J. B. Conrey, A. Ghosh and S. M. Gonek

%)

—{mnH
K

»<g(s)+ Zp“"‘*"“logp)
C pPIK
15— p 1K)

/L from 1 or are a distance < 1/L from 1

but have residues that are small when averaged over h and k. In this

formula * denotes Dirichlet cox

A4

for any r and n. Thus

wvolution, and

1(n)=n"

1 b(h’ Pl)b(k’ Pz) T8 ds
L _—— l—a—pf—2s] as
ij(c) h,kzs_y h°k® h, k) <2n> s+ a)(s+ P) P
and
1 b(h, P,)b(k, P.
B 2t oo i fﬁs—"’)@k)é(swxwm
c) i, y
e <_C () + ¥ pite+rs-t 10gp>
C pIK
x (#*Ths_al*I’l_s_/,1)(K)<z)s§,
2n) s

where (c) denotes the straight
main terms arise from the poles
we find

line path from ¢ —ioco to ¢ + ico. The
of the integrand; using {(s) ~ 1/(s — 1)

I~TL (e~ *S(—a, B, Py, Py) — e~ °S(—B, o, P, Py))
b—a
and
1 . —TL? (Sa B, P, Py)
! 2n ab
e * [S(—o, B, P, Py 1
+b_a< BrucD ) S(—ah Py P2>)>
e % (S(—B,a, P,P,) 1
_b—a< _bl 2+ZSI(_ﬁ5a,P1’P2)>!
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where

b(h, P,)b(k, Py)

h1+akl+/} (h’ k)1+a+/}’

S(a7ﬂaP1,P2)= Z

hk<y

b(h, P,)b(k, P,)
W(h, kyt+=+F % pflogp,

pPIK

Sl(a3 Bs Pl’ P2) =
h

k=<y

and

b(h, P,)b(k, P,
Sy, B, Py, Py) = ), Dy 475100k Fy)

.- hk (B, ) (ux T _ 1% T _ 41)(K).

The error terms are estimated using large sieve techniques and a
Vaughan type identity.

Now we are to the arithmetic part of the argument. We can show that

1 0 0

1
— gafu + bov J P,(x + u)Py(x + v) dx

P A
50 6, B P ~ o 3 0 0 w=v=0

= i f (Pi(x) + aOP,(x))(P5(x) + bOPy(x)) dx,
0

and that
Sl(a> ﬂ, P17 P2) Lt _OLS(as Bs Pl’ Pé— 1)))
where
P§~—(x) = J Py(t) dt;

0
also,

a abl -

So(a, B, Py, Py) ~ S(—a, B, Py, Py) + i3 P,(1)Py(1) + T P,(DPS—V@1).
Moreover,
S(a’ B: Ply PZ) = S(B’ a’ P27 P“l)

and

So(at, B, Py, Py) = SZ(ﬁa o, Py, Py)

so that in view of the above relationship between S and S, it follows
that

b—
S(~p. @ Py, Py) ~ S(=a, B, Ps, P) — === P(DP,(D).
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Thus, we are led to
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b -b

I, Po P ~ TL{* = 4= S(— . Py Py + - PLOPAD)
e—a_z—b e ¢
NTL _S(_ﬁaa’PbPz)+—P1(1)P2(1)
b—a L
and
=TI 1 e ¢ e~ ?
I,,P,P~ S",,P, -
1, B, Py, Py) <( o, B 1P2)<ab a(b—a)+b(b—a)>
—-b_ ,—a
+ 08(—a, plP, P E_—&
b—a
+P1(1)P2(1 1_e_b
L b
(+ 1),
POPOR o _ )
L
Then
8 @ _lo ivsl®
M~ T P,(1)Py(1) + — —e 40— | P (x + u)Py(x + v) dx
ou ov 0Jo T
follows, as well as
TL? 1. —e=2=b =% g=o=0 1
M, oo d St = By, P e e -
* Zn{( % — B, Py, Py) a+b ab bla+0b) ab+a)
+£_ e—afb B L
ab  ab+a) bbHFa)

+08(—a —p, P, Ps YL

L] ’ 1 2 a+b
g 9@
88(—a, — B, P{=Y, P) —————
s ( o, ﬁ’ 1 ’ 2( €l+b >
P,(1)Py(1) l—eT® 1—e?

] = =
+ I a b

+ 7 (POPE IO — ¢

=y 4 P{-DI)P)L — e-“»}
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_ TI2
T 2%
+ 0J(a + b)(S(—a, —B, Py, P§™ V) + S(—a, B, P{~7, Py))

P,(1)P,(1)
E3

{S(—a, B, Py, P)((a + b) — J@)I())

(1 — J(a) — J(b)) + % (P ()P~ (1)beJ(b)

+ PP,
where J(r) = [§ e ™ dx. Now let

fw,v) = fl(Pﬁ_ D(x + u)Py(x + u) + Py(x + w)PS V(x + v)) dx
0

1
= P{~V(x + w)P§ P(x + v)

0

= P{~ V(1 + w)P§~ V(1 + v) — P{~P(w)P§~ P(v)

and let

1

g(u, v) = J Pi(x + u) dx I1P2(x + v) dx.
0

0
Then £(0, 0) = g(0, 0), £.(0,0) = g.(0,0), £,(0,0) = g,(0,0) and £,,(0,0) =
2..,(0,0). We will use this to replace f(«, v) by g(u, v) in the formula for
M,. By our earlier formula for S we now have

TL 6 0
1 971 du dv

{e_aou_m[é J PP, + j P, J Pz][J(a + b) — J@IB)]

)
u=v=0

+ JPI JPZ(l —e " J(@)(1—e~ ”"”J(b))}

where the integrals are [§ ... dx and P, = P(x + u), P, = Py(x + ).
Finally, our formulas are uniform in « and f and may be differen-

tiated with respect to these variables (using Cauchy’s formula for
example). Since Q(—d/da)e ~* = Q(y)e ~*, Theorems 1 and 2 follow.

5. Concluding Remarks

In conclusion, we mention possible directions for further development
that this work may suggest. The most obvious possibility regards the
range of 6 in Theorem 1. For the special choice @, = @, =1,a =b =0,
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the range (0, &%) is admissible for 6, as shown by the work of Balasubra-
manian, Conrey, and Heath-Brown [1]. There is no reason why this
shouldn’t work for arbitrary @,, ®,, a, and b. More significant,
however, is the work of Iwaniec and Deshouillers [8], which suggests
that the range (0, %) should be admissible for 6.

Next is the question of optimal choices of functions P and @ for
various applications. In general, if our application requires that
P, =P, and @, = @, with P, (resp. @,) specified, then the optimal
choice of @, (resp. P;) can be determined through the calculus of
variations in a straightforward way. This is the situation with the
result on simple zeros. However, in the case of the lower bound for N,
with r > 2 and in the case of the lower bound for the proportion of zeros
of { on the critical line, the optimal choices have not been completely
determined. (See Conrey [4] for a description of what choices of P and
Q are admissible in the latter problem).

Finally, it may well be that there are direct applications of these
theorems to the questions of how large and how small the gaps between
consecutive zeros of the zeta-function can be.
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We are unable, at present, to estimate some of the error terms in
Theorem 2 without assuming the Generalized Lindel6f Hypothesis.
Consequently, the applications of Theorem 2 mentioned here depend
on RH and GLH.
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