On mean values of the zeta-function, II

by

J. B. Conrey and A. Ghosh* (Stillwater, Okla.)

In the study of the finer behavior of the Riemann zeta-function the problem of finding an asymptotic formula for

$$M'(T) = \int_{1}^{T} |\zeta(1/2 + it)| dt$$

is of some interest. Ramachandra [6] has shown that M(T) has order of magnitude $T(\log T)^{1/4}$. The present authors [2] have shown, assuming the Riemann Hypothesis, that

$$M(T) \gtrsim T \sum_{n \leq T} \frac{d_{1/2}(n)^2}{n}$$

where $d_{1/2}(n)$ is the *n*th coefficient in the Dirichlet series expansion for $\zeta(s)^{1/2}$ with $\sigma > 1$. Moreover, Heath-Brown's argument in [4] can be adapted to prove that

$$M(T) \lesssim 3.32 T \sum_{n \leqslant T} \frac{d_{1/2}(n)^2}{n}$$
.

We remark that the sum here is easily evaluated as

$$\sum_{n \le T} \frac{d_{1/2}(n)^2}{n} \sim c (\log T)^{1/4}$$

with

$$c = \Gamma(5/4)^{-1} \prod_{p} \left((1 - p^{-1})^{1/4} \sum_{m=0}^{\infty} \left(\frac{\Gamma(m+1/2)}{\Gamma(1/2) \, m!} \right)^2 p^{-m} \right)$$

where the product is over primes p (and is absolutely convergent).

^{*} Research of both authors partially supported by NSF grants.

While it is known that

$$\int_{1}^{T} |\zeta(\sigma + it)| dt \sim T \sum_{n=1}^{\infty} \frac{d_{1/2}(n)^{2}}{n^{2\sigma}}$$

for $\sigma > 1/2$ (see [7], Section 7.11), the corresponding mean with $\sigma = 1/2$ is elusive. In fact, if F(s) is a function which is representable by a Dirichlet series in some half plane and if F(s) has infinitely many simple zeros on the line $\sigma = \sigma_0$, then no asymptotic formula for

$$\int_{1}^{T} |F(\sigma_0 + it)| dt$$

seems to be known.

In this paper we give an example where we can find upper and lower bounds for such a mean where the constants involved are close.

THEOREM. Let

$$I(T) = \int_{1}^{T} |\zeta(1/2 + it)\zeta'(1/2 + it)| dt.$$

Then, assuming the Riemann Hypothesis,

$$0.53... \lesssim \frac{I(T)}{T \log^2 T} \lesssim 0.57...$$

Remark. The upper constant is $3^{-1/2}$ and it is obtained unconditionally. The lower constant is

$$\left(\frac{1}{4} + \left(\frac{e^2 - 5}{4\pi}\right)^2\right)^{1/2}$$
.

An unconditional lower bound of 1/2 is essentially trivial.

In Conrey [1] the more complicated example

$$J(T) = \int_{1}^{T} |\zeta^{3}(1/2 + it)\zeta'(1/2 + it)| dt$$

is considered and upper and lower bounds

$$0.02608\ldots \leqslant \frac{J(T)}{T\log^5 T} \lesssim 0.02616\ldots$$

are obtained.

The theorem follows from two lemmas. For the first lemma we recall the function Z(t) from the theory of the Riemann zeta function. It is a real valued function of a real variable such that

$$|Z(t)| = |\zeta(1/2+it)|.$$

Also, Z(t) changes sign at $t = t_0$ if and only if $1/2 + it_0$ is a zero of $\zeta(s)$ with odd multiplicity. These conditions define Z(t) apart from a plus or minus sign which would not be important here.

LEMMA 1. Assuming the Riemann Hypothesis,

$$\int_{1}^{T} |Z(t)Z'(t)| dt \sim \frac{e^{2}-5}{4\pi} T \log^{2} T.$$

Proof. Let γ and γ^+ be successive zeros of Z(t) with $0 < \gamma \le \gamma^+ \le T$. Then, assuming the Riemann Hypothesis, there is a unique number t_{γ} in $[\gamma, \gamma^+]$ where $Z'(t_{\gamma}) = 0$. If $\gamma \le t \le t_{\gamma}$, then $Z(t)Z'(t) \ge 0$ while if $t_{\gamma} \le t \le \gamma^+$, then $Z(t)Z'(t) \le 0$. Therefore, if γ_0 denotes the least positive zero of Z(t) and γ_T denotes the least zero of Z(t) which is $\ge T$, then

$$\int_{0}^{T} |Z(t)Z'(t)| dt = \int_{0}^{\gamma_{0}} |ZZ'| + \sum_{0 < \gamma \leqslant T} \left(\int_{\gamma}^{t_{\gamma}} ZZ' - \int_{t_{\gamma}}^{\gamma^{+}} ZZ' \right) - \int_{T}^{\gamma_{T}} |ZZ'|$$

$$= \sum_{0 < \gamma \leqslant T} \left(\frac{Z(t)^{2}}{2} \Big|_{\gamma}^{t_{\gamma}} - \frac{Z(t)^{2}}{2} \Big|_{t_{\gamma}}^{\gamma^{+}} \right) + O(T^{1/3})$$

$$= \sum_{0 < \gamma \leqslant T} |Z(t_{\gamma})|^{2} + O(T^{1/3})$$

since

$$|Z(t)Z'(t)| \ll t^{1/3}$$

and

$$|y_T - T| \leqslant 1$$
.

In Conrey and Ghosh [3] we show that, on RH,

$$\sum_{0 < \gamma \le T} |\zeta(1/2 + it_{\gamma})|^2 \sim \frac{e^2 - 5}{4\pi} T \log^2 T.$$

Since $|Z(t)| = |\zeta(1/2+it)|$, this completes the proof of the lemma.

LEMMA 2. Suppose that f(x) and g(x) are real continuous functions on [a, b], and that

$$\int_{a}^{b} f(x) dx \ge \alpha, \quad \int_{a}^{b} g(x) dx \ge \beta,$$

there α and β are non-negative. Then

$$\int_{a}^{b} |f(x) + ig(x)| dx \ge (\alpha^{2} + \beta^{2})^{1/2}.$$

Proof. Let

$$F(t) = \int_{a}^{t} f(x) dx, \qquad G(t) = \int_{a}^{t} g(t) dt$$

and suppose that F(b) = m and G(b) = n where $m \ge \alpha$, $n \ge \beta$. Then we require a lower bound for

$$\int_{a}^{b} (F'(t)^{2} + G'(t)^{2})^{1/2} dt$$

where F' and G' are continuous functions with F(a) = G(a) = 0, F(b) = m, G(b) = n. But this integral gives the arc length of the path p(t) = (F(t), G(t)) in the plane from (0, 0) to (m, n). This arc length is clearly not less than the length of the straight line path, which is $(m^2 + n^2)^{1/2}$. The lemma follows.

Proof of theorem. For the upper bound we have by the Cauchy-Schwarz inequality (see Ingham [5] for the second moment of ζ'),

$$I(T) \le \left(\int_{1}^{T} |\zeta(1/2 + it)|^{2} dt\right)^{1/2} \left(\int_{1}^{T} |\zeta'(1/2 + it)|^{2} dt\right)^{1/2}$$
$$\sim \left(T \log T\right)^{1/2} \left(\frac{1}{3} T \log^{2} T\right)^{1/2} = 3^{-1/2} T \log^{2} T.$$

For the lower bound, we make use of the fact that

$$\operatorname{Re} \frac{\zeta'}{\zeta}(1/2+it) \sim -\frac{1}{2}\log t,$$

whence follows easily

(1)
$$\int_{1}^{T} |\zeta(1/2+it)|^{2} \left| \operatorname{Re} \frac{\zeta'}{\zeta}(1/2+it) \right| dt \sim \frac{T}{2} \log^{2} T.$$

This leads to the "trivial" lower bound, since

(2)
$$I(T) = \int_{1}^{T} |\zeta(1/2 + it)|^{2} \left| \operatorname{Re} \frac{\zeta'}{\zeta}(1/2 + it) + i \operatorname{Im} \frac{\zeta'}{\zeta}(1/2 + it) \right| dt$$

is clearly greater than or equal to the integral in (1). We observe that by the properties of Z(t),

$$\zeta(1/2+it)=Z(t)\,e^{i\vartheta(t)}$$

where $\vartheta(t)$ is a real valued function of t. Then

$$i\frac{\zeta'}{\zeta}(1/2+it) = \frac{Z'}{Z}(t) + i\vartheta'(t)$$

so that

$$\frac{Z'}{Z}(t) = -\operatorname{Im}\frac{\zeta'}{\zeta}(1/2 + it).$$

Thus,

(3)
$$\int_{1}^{T} |\zeta(1/2+it)|^{2} \left| \operatorname{Im} \frac{\zeta'}{\zeta}(1/2+it) \right| dt = \int_{1}^{T} |Z(t)Z'(t)| dt \sim \frac{e^{2}-5}{4\pi} T \log^{2} T$$

by Lemma 1.

The theorem now follows from (1), (2), (3) and Lemma 2.

References

- [1] J. B. Conrey, The fourth moment of derivatives of the Riemann zeta-function, Quart. J. Math. Oxford (2) 39 (1988), 21-36.
- [2] J. B. Conrey and A. Ghosh, On mean values of the zeta-function, Mathematika 31 (1984), 159-161.
- [3] A mean value theorem for the Riemann zeta-function at its relative extrema on the critical line, J. London Math. Soc. (2) 32 (1985), 193–202.
- [4] D. R. Heath-Brown, Fractional moments of the Riemann zeta-function, J. London Math. Soc. (2) 24 (1981), 65-78.
- [5] A. E. Ingham, Mean-value theorems in the theory of the Riemann zeta-function, Proc. London Math. Soc. (2) 27 (1926), 273–300.
- [6] K. Ramachandra, Some remarks on the mean value of the Riemann zeta function and other Dirichlet series, III. Ann. Acad. Sci. Fenn. AI Math. 5 (1980), 145-158.
- [7] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., Clarendon Press, Oxford 1986.

OKLAHOMA STATE UNIVERSITY Stillwater, OK 74078, U.S.A.

Current Address:

l. B. Conrey

NSTITUTE FOR ADVANCED STUDY

Princeton, NJ 08540, U.S.A.

Received on 29.9.1987 and in revised form on 6.1.1988

(1753)