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Zeros of Derivatives
Of the Riemann Zeta-Function

Near the Critical Line

J. B. CONREY AND A. GHOSH

To Paul Bateman on the occasion of his seventieth birthday

1. Introduction

The question of the horizontal distribution of the zeros of derivatives of
Riemann’s zeta-function is an interesting one in view of its connection with
the Riemann Hypothesis. Indeed, Speiser [9] showed that the Riemann
Hypothesis is equivalent to the assertion that no non-real zero of ¢’(s) is
to the left of the critical line ¢ = Rs = 1/2. Levinson and Montgomery
[7] proved a quantitative version of this, namely that ((s) and (’(s) have
essentially the same number of zeros to the left of & = 1/2. More precisely,
if Nx(T) denotes the number of zeros of ¢®)(s) in the region 0 <t < T,
then

T T
Ni(T) = 27_10&%+0k(103T); (1)

Montgomery and Levinson proved that up to a height T the difference
between the number of zeros of ¢ in ¢ < 1/2 and the number of zeros of
¢’ there is K logT'. Moreover, they showed that ¢’(s) vanishes on o = 1/2
only at a multiple zero of {(s) (hence probably never) and that

T T
5~ (B —1/2) = 5= loglog 5+ O(T)
T 27
0<1 LT
B1>1/2
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96 J. B. CONREY AND A. GHOSH

where py = Br+1iv; denotes a zero of (,'(k)(s) so that, on average at least, the
zeros of ('(s) in 0 < t < T are a distance (loglog T)/(log T') from the critical
line. By contrast the consecutive ordinates of zeros of ((s) in |t| < T' differ
by < 1/(log T') on average. Thus, zeros of ¢/ are rather far from the critical
line on average. These observations probably led Levinson to believe that
('(s) does not behave as “erratically” as ((s) in the immediate vicinity of
the critical line (i.e. at a distance < 1/(logt) from the critical line) and
¢’(s) can be “mollified” or smoothed more efficiently near the critical line.
Thus, he used Littlewood’s lemma and an efficient mollifer to show that
(’(s) does not have too many zeros to the left of ¢ = 1/2, whence the
same is true of {(s). Of course, since the zeros of {(s) are symmetric about
o = 1/2, this implied that ¢(s) had zeros on the line & = 1/2, specifically,
at least 1/3 of the zeros of {(s) must be on ¢ = 1/2. This result was a
quantitative improvement over Selberg’s result that a positive proportion
of zeros of ((s) are on the critical line. Of course the methods of Selberg
and Levinson are different, but much of the success of Levinson’s method
should be attributed to the fact that a smoothing of {(s) on the critical
line was replaced by a smoothing of ¢’(s) (near the critical line). Indeed,
when smoothing (on ¢ = 1/2) with a Dirichlet polynomial

B(s)= Y b(n)n~* (2)

n<T®
with b(1) = 1, 6 < 1/2, the best known result for ¢(s) is with
b(n) = p(n)(1 — (log n)/(0 1og TY)

which leads to (as 6 — 1/2)
7
/ [C(1/2 + it)B(1/2 + it)|? dt ~ 3T, (3)
!
while with ¢’(s) the same choice of B leads to

I

In fact, a more elaborate choice of B allows the “4/3” in (4) to be replaced

by
3
1/2 + % coth —‘f = 1.3255.... (5)

¢'(1/2 + it)

2
ogr BO/2+i0)| dt~aTy3, (4)

It seems that (’(s) can be smoothed better than ¢(s) because the presence
of zeros of ((s) on the critical line makes the smoothing more difficult.
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We see more evidence for this relationship between good “smoothing” and
absence of zeros when we consider zeros of higher derivatives of {(s). Thus,
Levinson and Montgomery have shown that

2w Z (B —1/2) = kT loglog T + T(%log2 — kloglog2)
0<yk<T

_ omkli (%) + O(log T) 6)

and that if the Riemann Hypothesis is true, then only finitely many of
the py satisfy B < 1/2. Thus, on average in 0 < t < T the B are
1/2 + k(loglog T)/(log T). Of course the “average” situation may never
take place. Nevertheless, there seems to be a definite migration of zeros of
higher derivatives of ¢ away from the critical line. (For an interesting chart
on the location of zeros of ¢’(s) compared to zeros of '(s), see Spira [10]
where, for small ordinates, the ordinates of zeros of ¢’ and (" agree to a
surprising degree, while the abscissa of a zero of (" is larger than that of
the “corresponding” zero of ¢’.) Thus, as k increases, the zeros of ¢®)(s)
seem to move farther to the right of the critical line. As far as smoothing
goes, we can show that with B as in (2) there is a choice of § and b(n)
which leads to

T | eh) ‘ :
/ C___(ll()éz_;*'_ﬂB(l/2+it) dt ~ e, T (M
2
where
coth (£ —é%—%lfl 2k
cr=1/2+ (2 s =1+ 0(1/k?).

2/1 — 1/(4k?)

Thus, as k increases, ((¥)(s) can be smoothed more efficiently as well. (The
presence of the log'kt factor in this formula is inevitable because near the
1/2 -line ¢(*)(s) on average has an order of magnitude which is greater
than that of {(s) by a factor of log¥t.) We would like to know the precise

horizontal distribution of zeros of ¢(*). In particular, we would like to
know whether in Levinson’s method there is a loss due to the presence of

zeros of ¢’ in the region o < 1/2+ ¢/logt for all ¢ > 0. Unfortunately,
we cannot answer this question. However, Theorem 2 below indicates that
there probably is some loss. We would conclude that while Selberg’s method
cannot detect zeros on the critical line which have small gaps between them,
Levinson’s method cannot detect the zeros of ¢’ too near the critical line
(and we believe that such zeros exist).
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In our statements k is fixed and 7' — oco. From Levinson and Montgomery
[7] we can say that

(i) Almost all zeros of ((*)(s) are in

_ ¢(t)loglogt -
logt -

o(t) loglogt

o<1/2+ oot

1/2
where ¢ is any function which goes to infinity with t; on RH the
lower bound 1/2 holds for ¢ > t;

(i) a positive proportion of the zeros of ((¥)(s) are in the region

loglog T’
logT '’

for any € > 0; (this follows from (6) and (12))
(iii) there are >, T'loglog T zeros in the region

0<1/24+ (k+¢) 0<t<T

a>1/2+(k-e)?ig’—§T, 0<t<T

for any € > 0; (this also follows from (6) and (12)).
We add to these by proving

Theorem 1. With the above notation:
(a) Almost all the zeros of (¥)(s) are in the region

$(t)
1/2 — —=~
c>1/ log ¢
for any ¢(t) which goes to infinity with t;
(b) for any ¢ > 0, a positive proportion of zeros of ¢®)(s) are in the
region
o >1/2+c¢/logt;

(c) assuming the Riemann H. ypothesis, there are >, T zeros of
¢®(s)
in the region

(14 €)loglogT

log T ) 0<t<T

1/2<o0<1/2+

for any € > 0.

We remark that (a) and (c) give new information only when k > 1 while
(b) is new for all k > 1. The first two results are a consequence of
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Lemma 1. Let T be large and L =logT. Let
1d
G(s) = Q(+=5
() = Q3 7)4(9)
for some polynomial Q. Let B be as in (2) with
log n
b(n) = P(1-
() = W(m)P(1 - 1)

where P is real analytic with P(0) = 0 and P(1) = 1. Define

T
I=1I(a,P,Q) = % /1 IGB(a + it)|? dt.

Then for 0 < § < 1/2 and a = a(T) satisfying |a —1/2| = o(1) as T — o
we have

1-2a 2 2 1 1
I~ T Q(]-; +Q(0) +QA /0 (%(T(1/2—a)zQ(z)))2P(y)2 dzdy

1,1
+ % /0 /0 T(-297Q(2)? P'(y)? dzdy.

This result is essentially contained in Conrey [1].
The result (c) follows from

Theorem 2. Assuming the Riemann Hypothesis,

T
Y x(pr) ~args
0<yk<T
where x(s) = 2(27)*~!T(1 — s)sin(s/2) is the usual factor from the func-
tional equation for {(s) and

k
ak=k+1—ze'z"
v=1

where the z, are roots of fy(z) = Z?:o fj—f

Remark. As a function of k we can show that 0 < a; < e~ (b= for
any € > 0 where b = 1 —log2 (see Conrey - Ghosh [4).) While (c) of
Theorem 1 is all that we can conclude from Theorem 2, it seems that we
can speculate more. The x-function oscillates a lot — its argument at height
¢ is essentially t log(t/2me). However, the deduction of (c) ignores this fact
altogether. Thus, it seems that the proper interpretation of Theorem 2
might be that a positive proportion of zeros of ¢((¥) are within ¢/ logt of the
critical line for any ¢ > 0.

We will first show how to deduce the results (a) - (¢) from Lemma 1 and
Theorem 2 and then we will prove Theorem 2.
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2. Deduction of results

As mentioned earlier, k is thought of as fixed. It is well known that

1/2-0
x(s) = (%) exp(—it IOthTe + 7 /4)(1 + O(1/]t])).

for s = o + it. Then,

1/2-0
o= (5)" 1+ ouu. ®)

Thus, (c) follows directly from Theorem 2 and the theorem of Conrey
- Ghosh [4] which gives the bound for aj: for if ¢ > 1/2 + ((1 +

€)loglogt)/(log ), then |x(s)| < (log |t|)=1¢.
To prove (a) and (b) we take

sinh Az
P(z) = SmaA

in Lemma 1 where if we let
v(z) = T/2-92Q(g),

then A is defined by
p2 = Jo ¥(2)? da
fol v(z)? dz
Then it is not hard to verify that

1/2

I = L;”’(l)f 5 (/01 v(z)? cl:c‘/olv'(:l:)2 d:c) cothdA.  (9)

We remark that (9) can be used to verify (3)-(5) and (7). Now take Q(z) =
2%,k > 1; then v(0)? = 0, v(1)? = T'=2¢ and if a # 1/2, then f) v(2)? dz

=/1 T(1—2a)xz2lc dz
0

. Pien 2% 2k(2k — 1) (2k)!
= T=2a)L (1 (-2 " (0-20)2 vt s 2a)L)2’°)
(2k)!

(T -20) D)%
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where L = logT. Thus

Tl—?o

m(1+0(m)) if (1= 2a)L — o

1
2 — —(2k)! 1-2a :
A v(:c) d.’L‘-— Zmé%m(l‘*‘()(r%z—a‘f)) lf(l—QG)L—b—OO
~1 if |1 —2a|L K 1;

the last formula follows from an integration by parts. Similarly,
1 1
/ v'(z)? dz = / T(1-20)252k~2((1/9 _ q)Lz + k)? dz
0 0

so that fol v'(z)? de
Tl;.?" (1-2a)L(1+ O(mlzﬁ')) if (1 —2a)L — oo
_— = ! 1=2a .
- Rﬁ%ﬁ—l(l & O(]%rf)) if (1 = 2a)L — —o0
~1

if 1 —2a¢|L < 1
Thus,
T1-22(1 + o(1)) if (1 — 2a)L — oo
I(a,2*) = { sriamspw(l+o(1) if (1-20)L—-c0  (10)
~1 if |1 — 2a|L < 1.

Now let a be such that [1/2 — a| = o(1) as T — oo. We apply Littlewood’s
lemma to ((¥)(s) B(s) on the rectangle with vertices a + %, 0% + i, o + 17T,
a+iT where o}, < 1 is a number for which ¢((¥)(s) has no zeros in o > 0.
Now B(s) is a Dirichlet polynomial with leading coefficient 1, bounded
coefficients and length < T1/2, Thus, in a completely standard way (see
Levinson and Montgomery [7] Section 3 and Levinson [6] Section 1 for exact
details) we obtain

T
2 Z (Bx — a) g/ log [¢®)B(a + it)| dt + T(alog 2 — kloglog 2)
2

Br>a
0<Y <T

+ O(log T). (11)

Now with Q(z) = z* we have ((¥)(s) = L*¥G(s) with G as in Theorem
1. Then by the arithmetic mean-geometric mean inequality, the integral in

(11) is
<=lo —/ |GB(a + T |2 at
=3 E\ T iT)
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so that

2 Z (Br — a) ngloglogT+§logI(a,x'°)

Brx>a
0<yx<T

+ T'(alog?2 — kloglog2) + O(log T).

Then by (10), for |a — 1/2| = o(1), we have that

2r Y (B —a)
Br>a
0<yx<T

is
kT loglogT + T(1/2 — a)log T

if (1 - 2a)L — oo
+ T'(alog2 — kloglog2 + O(T))

< ] , (12)
kT log @a-1) + O(T) if (l = 2(1)L — =00
kT loglog T + O(T) if |1 -2a|L <1

Next we note that using (1) and (6) we obtain

27 Z (a = Br) = —kTloglog T + 27 Z (Br — a)
Br<a Br>a
0<Vk<T 0<Yk<T

+(a—1/2)Tlog 5% — T(alog2 — kloglog 2)
+ 27k li(-;—;) + O(log T').
Combining this with (12) we get that

27 Z (a— Br)
Bx<a
0<Yk<T

is

S{ kT'log iy + (a = 1/2)TL+ O(T) if (2a — 1)L — oo a3)

o(T) if (1-2a)L<C

for any fixed C' > 0. Then, (a) follows in a straightforward way. Next we
prove (b). Let ¢ > 0 and suppose that almost all of the zeros of ¢®)(s) are
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in the region o < 1/2 + ¢/ log|t|,|t| > 2. Then for ¢’ > ¢ we have

S an+S-s= Y 2+5-8)

7 <T Y <T
Br<1/2+% Pe<1/2+ £
+oL™t > )
Br<1/2+%
Y <T

/
= Y (1/2+F-B)+0()
k<T
ﬂk<71/3+c/L

s d—c E 1+ 0(T)
= L
M <T
Br<1/24¢/L

> (c'—c)%—AT (14)

for some fixed A > 0. On the other hand, using (13) we see that the left
hand side of (14) is
kT 1 T
< -—-1 = + T + BT.
for some number B which is mdependent of T. This is a contradiction if ¢/

is sufficiently large (¢! > e(ctA+B)/k); thus, (b) follows.

3. Proof of Theorem 2

In this section we assume the Riemann Hypothesis. The proof of Theorem
92 follows the lines of the proof in Conrey-Ghosh [3], so in some places we
refer to that paper rather than give all the details. To begin with, we note
that the complex poles of ((¥t1)(s)/¢(¥)(s) are in ¢ > 1/2, by Speiser’s
theorem if k = 1 and by (i) if k > 1. Thus, with 7" large and U = TL~10,

(k+1)( 5
Si= E x(px) = 27rz/X( )Cc(k)(())

where C is the positively oriented rectangle with vertices og + 77, ok + (7 +
U) 1/2 — 6+ 4T, 1/2 — 6§ +i(T + U) where ox > min{3,1 +sup,, Bi}, 6
is fixed with 0 < 6§ < 1/8 and where we assume that the horizontal sides
of this rectangle are a distance 3> L~! from any zero of ((¥)(s). This last
assumption entails no loss of generality since by (1) there are < log T" zeros
of ¢¥)(1/2 4 it) in an interval (T, T + 1) so we only have to adjust 7" and
U by an amount < 1 to justify the assumption and by (8) this involves an
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addition or deletion of < log T" terms of size < 1. By (8) and the definition
of o} the integrand is
< T—5/2

for s = o +it, T <t <T+U, while on the horizontal parts of the segment
the integrand is
< LT¢

by (8) and since ((¥*+1)/¢(¥)(s) « L? on the horizontal sides. (This can be
proved in the case k > 1 exactly as for the case k = 0; see also equation
(6.1) of Levinson and Montgomery [7].) Thus,

-1 1/2-6+4i(T+U) C(k+1)(s)
= —" x(8) >t ds + O(TY2L2),
2mi Jyjo—sqir ( ¢®)(s) ( )

We make a change of variable s — 1 — s here and have

. 1 1/246+i(T+4U) C(k+l)(1 —5)
S =— I—S——ds+OT1/2L2' 15
o — x( ) C(k)(l —5) ( ) ( )

Now we derive another expression for C(k"'l)/c(k). First of all,
Xioy= —1ogl oL
and n
d\" X -
('gg) ;(s) < It' .
From these and the functional equation
¢(s) = x(s)¢(1 - 5)
it easily follows that for o < 1/2

(0me™e) = xto+ o/ (e~ (%)) ca-9 o

where ¢ = log 121,]; (see Conrey [2], Lemma 2). Now let

k
Gun,2) = (24 41 ) €(6) = 256(5) +B+10/8) 44 €D ).
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Then using (16) in the numerator and denominator it is not hard to see

that
¢(k+1)

U
1
2 (1-35)=—-(L+ =£(s,0)(1 —
(1= 9) = ~(¢+ G5, 0)(1+0() (a7
where differentiation is with respect to s. (Use the relation (kj'l) = (;) +
(J._k_l) .) Next we observe that
] " (k+1)
L)+ L)+ + FE00)
T4+ 24+ + ()

U
Gio,)=
Now assuming the Riemann Hypothesis it is not hard to show that
) )
£ () < (logty 17

uniformly for 1/2 < 09 < ¢ < 0y < 1,t > 2. To prove this estimate one may
proceed by Cauchy’s theorem and induction starting from the case j = 1
which is well-known (see Titchmarsh [11], Theorem 14.55) For example, we
see by Cauchy’s theorem that

dd -1 ¢'/¢(w) 3-20
O = 201 fyoe (o S
so that
¢ = _d_g_ C_’ 2 3-20 —40 3—20
T =g r@+(FE)N <! XA L

for 1/2 < 09 < 0 < 03 < 1. To establish the case j = 3 we differentiate
¢"/¢, and so on. We conclude that in the region o > 1/246, T<t<T+U,
T<Rz<T+U, Sz <1, |s—1] > 1 there are no poles of G}/G} and
that

%/ Gr(s,2) = o(L) (18)
uniformly. Then by Cauchy’s Theorem

A 2

dz Gy (5,2) € L (39)

there. Now it follows from (19) and the ordinary mean-value theorem of
differential calculus that

G A .
Gh(s,0) = Gh(s, L) +O(L™)
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for T<t<T+U,o>1/2+6. Thus, by (17) and (18)

C(k+l) s O(L-#
® (11— 8)=~L~- —(s ) +O( )
for T<t<T+U,o>1/2+ 6 We insert this in (15) and obtain
1 p1/248+i(T+U) a
S = x(1 = s)(L + =E(s,L)) ds + O(T*L-83).
27” 1/2464+iT Gk

Then by Cauchy’s theorem and the estimates (8) and (18) we have

_1 [lHE+(T+U)

= X(1= )L+ GE(s, L)) ds + O (a0)

27(1 14-64iT

where § > 0 is still fixed. Next we expand G},/Gk(s,L) into a Dirichlet
series. Let

k CII

1 ¢k)
o) = TEO+ L6+ 4 15 6)

Then
la(s)| < C(é,k)L~!

for 0 > 14 6 and a positive constant C' = C(6, k). Thus, for T sufficiently
large and o < 1+ 6,

(1+a(s)™ =1+ Z( 1) a(s) = 1+Z( 1) a(s)’ + O(T™")

=1
where J = [2L/log L]. Now
[ee]
a(s) = Z _a(:’;L)
n=1

where

la(n, L)| < Ci(e, k)n¢/L
for any € > 0 and some positive constant Cy = Ci(e, k). Thus,

[ee]

1/Gi(s, L) = Z

+O(T‘1) (0 >1+6) (21)
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where

b, ) <SG G m).

j= 1
Then by (8), (20), and (21),

1 [HEH(THU) 52 i, 1
S= = oo Ut e & 1/246
ol N S)(L+n2=:1 ~=2) ds + O(T"/**+* L)
where
Gis, L)Z”‘" =2 Zﬁ(" D ozive. @
Now =
,L
5l o, -

and according to some work of Karl Norton (unpublished),

dj(n) < n(logi/(loglog n)(1+0(1)))

uniformly for j < (logn)/(loglog n) so that for T'/2 < n < 3T/2,

J J .
S (C/DYdj(n) < Y (Co/LY BT/ OB < 76 (29)
j=1 j=1
for any € > 0. Thus |8(n, L)| < n¢ for n ~ T. Then by (23), (24), and
Lemmas 2 and 5 of Gonek [5],

S=- > B(nL)+0O(T/**’L). (25)

T4U
F<n< 5

Then by Perron’s formula, (21), and (22),

1/24+64iT Gk s
> B(n,L) = 27” = (s, L)—— ds+O((1 + 7)T*)

n<z /2+6 —iT G
for ¢ < T. By Cauchy’s theorem and (18),
1 1/2+6+lT Gk’

>_ A, S (5, )% ds +o<——)+z

sy = omi 1/2+6 -ir Gk

= Z +O( + /26 2 (26)
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where ) p is the sum of the residues of the integrand at its poles in |s—1| <
1. We now account for the poles of G’/G. Using the definition of G below
(16), we see that G has a pole of order k+1 at s = 1. Therefore, G}, /Gy, has
a simple pole at s = 1 with residue —k — 1. Next, we apply the argument
principle to Gi(s,z)/(2*¢(s)) on the circle |s — 1| = 1. The estimate for
¢®) /¢ given earlier shows that the total change in argument is 0. But
Gx(s,2)/(z¥¢(s)) has a pole of order k at s = 1 and no other poles whence
Gi(s,z) has k zeros (counting multiplicities) in |s — 1| < 1. Thus, G4/Gx
has a simple pole at s = 1 with residue —k — 1 and simple poles at the zeros
of
Gr(s, L) = L*((s) + kL*1¢!(s) + -+ + (F)(s)

with residue equal to the multiplicity of the zero. In the neighborhood of
s = 1 we have

. =1} 41
¢@)(s) = (S(_%+0(1).

Thus

Gals, L) = (:)C(j)(s) ke

.
- 1M~
o

k! (1) o
= 251k — ) ((5 : 1)3“ & O“)) Lk’

k k
= (s‘_lf)fH S (-1t~ DLV + O g

_ (1) k!
T (s — DI
where fi is as defined in the statement of Theorem 2. Denoting the zeros
of fr(2) by 2,, 1 <v <k, we see that the poles of G /Gy (s, L) are at

S,,—l L+Ok(ﬁ)

k
> 8(n,L) = a(=k — 14+ 3 2*=1) 4 O(c1/2+912)

n<z v=1

g fe((1 = s)L) + O(Js — 1|7%)

Thus by (26),

for z # T. Now it follows in a straightforward way that
. U
S=(k+1- TR —

(+1= 3¢z +0(U/1)

which implies Theorem 2.
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4. Conclusion

We remark that the techniques used in the proof of Theorem 2 can also
be used to derive asymptotic formulae (on RH) for

> (Do)

0<1<T

for any positive integers j and k.

In the absence of precise knowledge of the horizontal distribution of zeros
of derivatives of ¢ we ask two questions which may be approachable: Let
us use the notation

Ng (0,T) :=#{px : 0 <7 <T,PBx < 0},
NE (o, T):=#{px : 0< 7 < T, B > o}.

Then
(a) does there exist a ¢ > 0 for which

4 cloglogT -
N, (1/2+———logT ,T') > Ni(T)?

(B) is there a ¢ > 0 for which

- c 2
Nz (124 e T) > Ne(T:
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