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Introduction. Let
T

1) I =L(T) = / [C(1/2 + it)|** dt.
1

Then Ip ~ T, I; ~ TlogT, and I ~ 31;Tlog" T as T — co. However, the asymptotic
behavior of Ix is not known for any other value of k. It is known that Iy has order of

magnitude T'(log T)*¥* when k = 1/n for positive integer n and, if the Riemann Hypothesis
is true, when 0 < k < 2 (see Heath-Brown [6]). It is expected that the order of magnitude
of I is T(log T)"2 for all k > 0; in fact, one may conjecture that

@) ' Ii ~ exT(log T)*"

as T — oo for some numbers cx. No conjecture has been given for the cx. In [2] we prove
that the Riemann Hypothesis implies that

3) I 2 (1 +0(1))fearT(log T)*’
as T — oo for all fixed k > 0 where

fi =DPQ+ &)

and
0 s L 2
(e £ 52 )
(4) = H ((1 - l/p)kzzFl(k’ kv la 1/?))
P

Research of the second author supported in part by the Alfred P. Sloan Foundation. Research of both
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where 3 F] is the hypergeometric function. Gonek, in a paper to appear in Mathematika has
extended this lower bound to k¥ with —1/2 < k < 0 under the additional assumption that
all zeros of ( are simple. We note in [2] that ¢, = a; fi for k = 0, and k = 1 and suggest
that it might be the case that ¢; = a) fi for 0 < & < 1. Indeed, the numerical evidence
of Odlyzko [9] indicates that cx and ajfi are very close in this range of k. Recently,
Heath-Brown [7] showed that the Riemann Hypothesis implies that

(5) I < (14 o(1))ax fi T(log T)**

2
GCESCED)
as T' — oo for 0 < k < 2. Note that the maximum of 2/((k? + 1)(2 — k)] on [0, 1] is 27/25.

Thus, on RH, cx and ai fi are in fact very close. (See the appendix for more on ax.)
Let

' N
(6) Ak(s) =) di(n)n™*
be a partial sum of .
(1) () =Y dimn=  (Rs>1)
n=1

If N > [t|, then it is well known that 4,(1/2 + it) is a good approximation (pointwise)
for ((1/2 + it). Our lower bound for ¢ is obtained via an argument which is similar
to the proof of Bessel’s inequality using Ax(s) as our approximation to ¢(s)*. Thus, we
considered the integral

/T [C¥(1/2 + it) — Ar(1/2 + it)|? dt.
0

On one hand the integral is non-negative. On the other hand we square out the integrand
and evaluate asymptotically the terms involving Ag. In this way we obtain, essentially,

T T -
/ IC(1/2 + it)|* dt :/ |4x(1/2 + it)|? dt.
0 0
Our argument shows that for any N and k the best Dirichlet polynomial approximation

to (¥ in the mean square sense is given by Aj.
In this paper we wish to consider

T
[ 6+ ipican+in - az+ipp a
0

in order to obtain a better lower bound than (3) for Iy when k > 1. (We use k = r + 1
throughout the paper.) The definition of A, (s, P) is given by

Ar(s,P) = Z di(n)P(logn/log N)n™".
n<N
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The reason for the P factor is that it transpires that there are choices for P which lead to
better lower bounds for I} than P = 1 does. In fact, only when £k =2 and 6 = 1 is it the
case that P = 1 is the best choice where 6 is defined below.

Of major importance in this work is the value of N. In order to compare it to T' we set

N =T°.

If < 1/2 we can evaluate the terms of (8) which involve A; asymptotically. However, we
believe that our formulae hold for any fixed 8 < 1. Indeed, for the “square term” this is a
consequence of the conjecture in [1]. The “cross term” is of a similar nature and admitting
any 0 < 1 for its evaluation is as plausible as the conjecture of 1. Thus, we will state
some results subject both to RH (or the Lindelof Hypothesis) and the hypothesis that our
formulae are valid for all § < 1.

In addition to the new lower bounds for Iy, we also consider the first and second deriva-
tives of C(k) = Ik/TL": with respect to k at k =0 and k = 1. As T — oo, we expect
that C(k) — ck, as has already been mentioned. (The dependance of C(k) on T has been
supressed.) We show that C'(0) approaches a limit as T — co and if RH is true so does
C'(1). If RH and the pair correlation conjecture are true, then C"(0) has a limit. We
cannot show that C"(1) has a limit, though we suspect that it does. In addition, the first
derivatives of C are equal to the first derivatives of our asymptotic lower bound, a fi, at
both k = 0 and k = 1. This indicates that Heath-Brown’s upper bound is probably too
large in the neighborhood of k = 0. ‘

As far as our conclusions about the precise value of ¢i for 0 < k < 1, we would have to
speculate, in light of this work, that Dirichlet polynomials of length << T are inadequate
approximations of (¥(1/2 + it) for t & T if k is not an integer. Another manifestation of
this phenomenon is seen when one considers sums over zeros p of { of Ar(p): if k =1 then
the mean value is 0 (if N & T') whereas if k # 1 then the mean value is non-zero.

Now we state our results. For the mean value theorems we state separately the evalua-
tions of the “square” term and the “cross” term. Let

T
®) Jon(T) = / C(1/2 + it)|A-(1/2 + it, P)[dt

withr =k — 1.
Theorem 1. If N = T? for some 6 with 0 < 6 < 1/2, and if P is a polynomial, then
Jr,N(T)

a

kz__
~ T0oe M) £y Jo

f a1 (%h’(a)"’ o 2rh(a)h’(a)) dax

as T' — oo where

h() = / (8 — a)"P(8) dB.
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Now let -
K n(T) = / [€(1/2 + it)|>¢(1/2 + it)" A, (1/2 + it, P) dt.
1
Then
Theorem 2. If P is a polynomial and 0 < 6 < 1/2, then

ake‘l"
I(r + 2)['(r2 + 1)

K..N(T) ~ T(log N)¥*

1
/ P(a)akz_'_QgFl(—r, —r =1,k —r—1,-af) da
0

as T — oo where o F is the usual hypergeometric function.
By making appropriate choices of P we are led to

Corollary 1. We have
I3 > 10.13a3 fs TL®

as T — oo. Moreover,. if the Lindelof Hypothesis is true, then we have the following
asymptotic lower bounds for Fy = Ix/ax f TL*" (4 < k < 6): 205, 3242, 28130.

Because of the 8% factor in our lower bound, the result for k 2> 7 is actually worse than
the bound given in (3). However, if we assume that any § < 1 is admissible in Theorems
1 and 2, then we can do considerably better; in fact, we can get Fx — oo:

Corollary 2. Assuming that Theorems 1 and 2 hold for any 6 < 1, we have F; > 38.76,
and if the Lindelof Hypotbhesis is true in addition then Fy > 21528, Fy > 48438800, and as
k— oo

Fy > c(ek/2)**=3/?
where ¢ = 1/(ev/2me).

We mention that if any 6 < 1 is admissible in Theorem 1 then we can also obtain an
upper asymptotic bound of 56 for F3. Thus, we expect that I is between 38.76 and 56
times a3 f; TL°. )

We also have calculated some lower bounds for F} for fractional k between 1 and 2. As
we do not expect that these are the correct values of ¢ we have not worked too hard to
obtain the optimal bounds that are deducible from Theorems 1 and 2. However, we do
not expect that our bounds are off by much.

Corollary 3. We present the results in tabular form. The first row is the value of k. The
second row is the upper bound for Ii/(arfiTL*") obtained by Heath-Brown under the
assumption of RH. The third row is our lower bound obtained under the assumption of
RH and that Theorems 1 and 2 hold for any § < 1. The fourth row is our lower bound
obtained under assumption of RH. The numbers are truncations of their actual values.

k 1:1 12 13 14 15 16 17 18 19 20
H-B 1.005 1.02 1.06 1.12 1.23 140 171 235 4.33 oo
=1 1003 101 1.04 108 1.14 1.22 1.34 149 1.71 2
0= % 1.001 1.01 1.03 1.06 1.10 1.16 1.24 1.34 1.46 1.6
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We remark that the correct value at k = 1is 1 and the correct value at k = 2 is 2.
Now we state our results about derivatives of C(k).

Theorem 3. If k = 0 or if the Riemann Hypothesis holds and k = 1, then

lim 4 ——1——/T 1¢(1/2 + it)|** dt
T—oo dk \ T(log T)¥* J,

We remark that the factor [(Tfﬁ'zﬂi——kﬂ from Heath-Brown’s work [7] is 1 at k =0 and

at k = 1 while its derivative is 1/2 at k = 0 and is 0 at k = 1. This would seem to indicate
that Heath-Brown’s estimate is too large near k = 0.

= T(axfe)

k=«

k=«

Theorem 4. Assuming RH and the pair correlation conjecture

lim f— (——1—— /T |((1/2+it)|2"dt) = —ii—z—(akfk) + 2.
T—oo dk2 \ T(log T)** J; - dk? =0
Theorem 4 is deduced from the following considerations. Let
T
(11)  M(k) = M(k,T) = F(T(%T—)T /1 C(1/2+ it)Pdt
and
D{k,n) = D(k,n,T)
T

(12) = Ty, /2P Bk /2 + i)
we see that
(13) M'(k) = 2D(k,1) — 2kD(k,0)loglog T
and
(14) - M"(k) = 4D(k,2) — 8kD(k,1)loglog T

+ (4k?(loglog T)? — 2loglog T') D(k, 0).

Regarding the D(k,n), it is trivial that D(0,0) =1 + o(1) and it is not difficult to show
that D(0,1) = o(1). Assuming the Riemann Hypothesis, it follows from work of Goldston
(4] that

D(0,2) = % [loglogT +/ E%—Dda + 7+
1

(15) Z i (_—111—1 + r—i;) p""] +0o(1)

where F(a,T) is the Fourier transform of the pair correlation function for the zeros of the
zeta-function introduced by Montgomery [8]. (We have corrected the sign in front of the
sum over m which is mistakenly a “minus” in Goldston’s paper.) If Montgomery’s pair
correlation conjecture is true, then the integral here is 1 + o(1). It is well known that
D(1,0) = 1+ O(1/log T) (see Titchmarsh [12,§7.4]). To these, we add
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Theorem 5 (Conrey, Ghosh, Goldston). Assuming the Riemann Hypothesis,
D(1,1) = (loglog T + v — 1)(1 + O(1/log T))
and
D(1,2) = (loglog T)? + (27 — 3/2) loglog T + O(1).

Thus, we see that if the Riemann Hypothesis and the pair correlation conjecture are
true, then the limit in (10) does exist when k = 0, and is equal to

= 1.1
2+27+2ZZ (_;*—ﬁ)

p m=1

Also, if the O(1) in the formula for D(1,2) above could be replaced by C + o(1), then the
limit in (10) would exist for k = 1 as well and would be equal to 4C. '

We would like to thank D. Goldston for kindly permitting us to include Theorem 5 in
this paper.

Lemmas on d,. In this section we give some preliminary material on the multiplicative
arithmetic function d,(n). We assume throughout that r > 0. Our estimates are not in
general uniform in r. '

By (7) and the Euler product for {(s) it follows that

(20) (=2 = ) d(p™)e™
m=0

for |z| < 1 and any prime p. In particular,

L(r +m)

(21) dr(p™) = o

Using this and 'some simple calculations we havé
Lemma 1. For n fixed, d.(n) is increasing inr forr > 0. If0 < r < 1, then
0<d(n)<1

for any n and
d(mn) < dy(n)

for all m and n. If r > 1, then
0 < d.(mn) < d.(m)d.(n) ‘

for all m and n.

As might be imagined from Lemma 1 we will have to distinguish the cases r > 1 and
0 < r < 1 throughout our considerations. Next, regarding the average size of d,(n), the
following is well known:

40



Lemma 2. For fixed r > 0,

Z d.(n) < zlog"™™! z.

n<z
This is also a consequence of Lemma 4.
We will need estimates for d.(hn) averaged over n which are uniform in h. To obtain
these, we first consider the generating function. Using the fact that F(n) = f(hn)/f(h) is
a multiplicative function whenever f is (provided that f(h) # 0) it is easy to prove

Lemma3. Let h = I, ph». Then,

X drfq'—}zn) = ¢ ]I ((1 —p7) D di(p™H )p""’)
n=1 p[h m=0
=: ((s)"Dr(h, )
for R(s) > 1.

One may find similar formulae in Chapter 1 of Titchmarsh [13]. We need to bound the
Dirichlet series D,(h,s) defined in the above lemma. Let

(=<}

Dy(h,s) =Y b(h,n)n"".

n=1
For two Dirichlet series A(s) = 3 ann™* and B(s) = }_b,n™* we say that A is majorized
by B and write A(s) <= B(s) if |a| < b, for all n. It follows easily from Lemma 1 that
d.(R)F-3.(h,s) ifr>1
D,(h,s) << .
Ahy2) { F_s.(h,s) if0<r<1
where .
Fy(h,s) =[]t =p7")
plh
We wish to apply Theorem 2 of Selberg [11]. Thus, we observe that if R is the least integer
greater than or equal to r, we have

R+3
Z |br(h,n)|n " (logn) ™ < 6.(h) (;Zs—iﬂ_s' (F.g,(h,S)))

n=1

s=1

where ) ————
if0<r<
§-(h) = { .
d.(h) ifr>1
We now describe a class C of arithmetic functions of integer variable h and complex pa-
rameter s whose generic member is denoted by F(h). First of all, E,.(h,s) is in C for any
real r and any complex s with positive real part. In addition, any finite linear combination
of functions in C is again in C. Also, C is closed under differentiation with respect to s
and is closed under multiplication. We complete the definition by requiring that C be the

smallest collection of functions satisfying these conditions. Then, applying Theorem 2 of
Selberg [11] and summation by parts, we easily obtain
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Lemma 4. For eachr > 0 there is a F € C such that

3 dy(hn)nt = D—'({,iirl)(:‘;g)—z)r + O(6,(h)F(h)).

n<z
uniformly for all h.

The important thing to know about the class C is that its members are bounded on
average:

Lemma 5. For any fixedr > 0 and F €C,

> F(h)s.(h) < Hlog™™ H.
h<H

Proof. It suffices to prove this for r > 1. It is not difficult to check that for any F in C
there exists K > 0 and ¢ > 0 such that

Fh) < [Ia+Kp™) =Y n o
plh nlk

where w(n) is the number of prime factors of n. Thus, the sum in question is
< Y nTKU™ N d,(hn)
n<H h<H/n

< Hlog™ ' H ) n " K“™d, (n)n"1
n<H

< Hlog™ ' H
since
K“M™d (n) « n°/?
for sufficiently large n.

Proof of Theorem 1. We need Theorem 1 of Balasubramanian, Conrey, and Heath-
Brown [1] which we state for convenience:

Lemma 6. Let A(s) =3 ., a(m)m~*and let

T
I=/1 ICA(1/2 + it)[? dt.

Then - g \
. a(h)a(k) . T(h,k)* .
I= ngM —r—(h¥) (log e 2y 1) +o(T)
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provided that (log M)/(log T) < 65 < 1/2 and a(m) < m* for any € > 0.

For our application,

a(h) = d,(h)P (ll;’: 1’\’]) .

" In order to evalute the sum, we first consider

, d.(h)d-(k) T(h,k)?
S(HK) =S 0T (hk) (log 52— + 27— 1)
©) Z;{ hk ( € oxhk ) )

k<K

We assume without loss of generality that H < K. Then we separate the variables h and
k using the Mobius inversion formula:

(26) (hy K)(A +log(h, ) = 3 u(B)5 (4 +1o8 7 ) -
s ()

Inserting this equation into (20), rearranging the order of summation, and replacing h by
ha and k by ka we obtain '

(27) s=Y %Z _&%32 ' dr(ha)d.(ka) (1og T 1)'

<H® G it o hk 2whk
k<K/a
Now
. p(B) _ $(e)
2 wp) _ o)
(28) D
and
#(8) d < #h)
> =5 lgh= ~ers)
Bl Blex —
d
(29) | = —‘—i;F(a,s) . = F(a).
Therefore,
@) =3 "56(";’) (Se(H)So(K)log T — Sa(H)S: (K) — So(K)S1(H)) + E
a<H
where
(31) Salen ) = Sy = 3 4,

h<H/ax
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d(ha)

(32) Si(eyH) = Si(H) = 3 log h,

h<H/a

and

B=y X

SO(H )So(IY).

a<H

By Lemma 4,

d.(h)F(a)log H)", ifr>1

SolH) < (h)F(a)(log H) :

F(a)(log H)", if0<r<i
Thus, by Lemmas 1, 2, and 5,
(33) E< Z log H < log*™' H.

a<H
if0<r <1, whileif r > 1, then
2

(33) ' Ex Z £(O[)%(O[)—logzrlf < logkz_l H.

alH

Then, by Lemma 4 and summation by parts,

#(a)D,(a, 1)2 . o T
(34) a;{ 2 £ 1)? ((logH/a) (log K/a)" log —

7 (log H/a)"(log K /)™ — ] (log K /a)"(log H/a)'“)

+ E,
where, by (24) and Lemma 5,

(35) E, < (log T)*™+! 4 Z (log T)?" & (log T)2 !,
oa<H

(We have also used the fact that ¢(—°! isin C.)
To further evaluate the sum it 1s necessary to get an expression for the residue of

i D,(a,1)*¢(a)/a

ol
a=1

at s = 1. Then we apply Theorem 2 of Selberg’s paper [11]. Thus, we obtain

[e 24 a 2
(36) Z D"( ’1) Q( )~ H(I)N(logN)r -1

Jory? @ I'(r?)
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where
(37) HQ) =[[a-1/p)" Y ¢(™)D-(™,1)p7*".

Now we claim that
(38) H(1) =ax

where aj is defined in the introduction. Note that

(39) DA(p™,1) = (1= 1/p)" Y delp™ )P ™"

n=0

and ¢(p™)/p™ =1—1/pif m > 0 and =1 if m = 0. Since r = k — 1, to prove (33) it
suffices to show that

oo (o] 2 (o]
(40) Q—2)2 1+ 2™ (Z dr(p'"+")z") =Y depa(p7)a™.

n=0 m=0

Now dry1(n) = 2 qn dr(@) so that the right hand side of (35) is

(41) = Z (Zgz) ™
=0

m=0
where we h;s,ve used g = dr(p"). Writing (1 —z)72""! as
(1-2)"(1-2)""1-2)
we see that (35) is equivalent to
" o 2 o - 2 m 2
(42) Z z™ (Z g;z’) + Z ™ (Z g,+,,,a:'> = Z g™ <Z g,> .
m=0 1=0 m=1 1=0 m=0 1=0

But it is easily checked by comparing coefficients of g1, g1, on both sides that thisis a purely
formal identity which holds for indeterminates = and g;.

Now we derive our required estimate from the above and a two variable summation by
parts:

Lemma 7. Let a(h,k) be an arithmetical function and let f(z,y) have continuous first
partial derivatives in 1, N]. Let

S(H,K)= Y a(h,k).
1<h<H
12k<K
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Then

% .
> a(h,k)f(h, k) =f(N,N)S(N,N)—/ Fo(Ny)S(N,y) dy
Sk 1

1
1

INIA

N
—-/l fz((z,N)S(z,N) dz
N N
+/1 /1 f,y(:z:,y)S(x,y) dz dy

The proof follows easily from the one variable summation by parts. Now by partial
summation we get '

Lemma 8.

ak

1 2
SUHLK) ~ peg gy oe 1) [ 072~y (-

log T/2x r as P
et el L i)
( log H r+1(/\ ") r+1n> d

Theorem 1 is a straightforward application of Lemmas 7 and 8.

Proof of Theorem 2. We consider the integral in question as a complex integral by
letting s = 1/2 + it. We then use Cauchy’s Theorem to move the path of integration to
the line segment with real part 1+ (log T)~!. If k = 3 then by standard estimates we may
do this with an error term which is < NT'Y2. If k is an integer greater than 3, then we
assume the Lindel6f Hypothesis, while if k is non-integral, then we assume the Riemann
Hypothesis in order to move the path with an acceptable error term. Thus, the integral is

1 c+iT :
(44) = ;/ ' x(1 - s)((s)k“Ar(l —s,P)ds + O((Tc—l/2+c)

c+1

for any € > 0 and ¢ > 1. We let x(s) denote the factor from the asymmetric functional
equation

(45) . C(s) = x(s)((1—s)

for ((s) and use this in (40) to replace ((1 —s). Next, we apply the following lemma
which amounts to integrating term-by-term. (See [3], Lemma 1 and also the remarks after
Lemma 10 in this paper.) :

Lemma 9. Suppose that A(s) = 2 a(n)n™* for ¢ > 1 where

a(n) < dy(n)(logn)*
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for some non-negative integers x and €. Suppose also that B(s) = Y- b(n)n~* where
bn < da(n). Let ¢ =1+ (log T)~!.Then

..1 C+IT b n

— x(1—38)A(s)B(1 —s) ds = Z (T) Z a(n)e(—m/n)

m i
2 c+1 n<N ms,.?z-_

o= O(T1/2 N(log T)x+»\+l)

We apply this Lemma and summation by parts and see that it suffices to evaluate

3 dr(n) 3 ;—:-dm(m)e(-m/n).
m<

n
n<N

The thing to do now is work out the genérating function for the inner sum. To do this, we
replace the exponential by a sum over Dirichlet characters. The formula is

(nm=Y6(3)" T ox(F)

d|m x mod m/d
din

Now letting D, (s,a/m) =Y ouy _‘ﬂl')i"(;'_“ﬂl we have

iy d-(n n
D,(s,a/m) = zl: I(gf_nm Z T(Y)Z ( ZZX( )

x mod m/g

If r is an integer, then the only pole of this is at s = 1 and occurs in the term involving
the principal character xo. If r is not an integer then by the Riemann Hypothesis the only
singularity in ¢ > 1/2 is at s = 1 again arising from the term with the principal character.
In either event, if we subtract off the term involving xo the remainder is regularin o > 1 /2.
The term with xo can be evaluated as ((s)"E.(m,s) where

_ 1 < l9)g® < () s
&r(thsp) = m’%}' #(9) tlg es HilFroj gl

with

Lo m+ep(A)
H.(\,s) = H(1 —p™) Z dr(prer)

ms
plA m=0 p

Dealing with the main term, we find that if ¢ > 1, then

do(m) 1 . T\’ d
Kon~ Y _%7/(,;) ¢(s) +2£r+2(m,s)(%) e

m<N 2
1
27

~T Y de(m)

[ n/emyensatm,w+ -2
m<N Ljepsilon w
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where L, (¢ > 0) denotes the path which starts at —1/4 — ie proceeds to —ie then around
a positive oriented semicircle to te then to —1/4 + ie. Now we consider the generating

function y
> e pamw+ 1)

sS—w

m

By considering Euler products it turns out that the above is
=((s+ 1)HD((s + 1 — w) " H, (s, w)
where H can be expressed by an Euler product which is absolutely convergent if w .and

s both have real part greater than -1/4 . Moreover, it can be shown, as in the proof of
Theorem 1, that H,(1) = a,4;. This leads to

WATS( o _ ,0\T
By~ oyl / TN =00) o
L¢ L2<

(272)2 wrt2gk?
B e 1 evto (s — )"
= akTL (_27r_z)2—/ Az _W ds dw

where N = T%. This is easily seen to be

9r2+r

k?
Tl rerrae = )

ZFI(_rv _k, kz =T _0)

in the usual notation of hypergeometric functions. After partial summation, we have the
main term of the Theorem.

It remains to discuss the error terms. In case k # 3 this is easy in light of the assumption
of either LH or RH. If k = 3, the argument is much the same as in Conrey-Ghosh [3]. The
error term is roughly

T[T o () 4

n<N ¢ mod n

where s = 1/2 + it. This expression may be estimated by the large sicve incqualities, just
as in 3] so we don’t give the precise details. We ultimately end up with an error term that
is

<, NT] /2+¢

for any k.

Corollaries In this section we discuss the choices of the function P from A(s, P) which
lead to the numerical results stated in the Corollaries. Here we have used the calculus of
variations to make our choices optimally.

Since [ |¢|?|¢T — A,|? > 0 we have

I 2 2R{K,n(T)} - Jr,N(T)
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Then, using the notation
Fi = I/(TL¥ ay fi)

of Corollary 1, we have by Theorems 1 and 2, Fi > 6" M where M =

20—T 1 ;
P k*—r—2 R 2 _ _
I(r + 2)T(r? + ) /0 (@) oFy(—r—r — 1,k r—1,—af) da

N B
C T(r)I(r +1)2

1
/ ()1'2_1(}1'((.1r)2 + 26rh(a)h'()) da
0

Here i
)= [ (=) P}y
- Now let .
— o—r
A= L(r+2)I(r2 - 1)
and
3 1
= TrT(r + 1)2

Then the integral we want to maximize is (in an abbreviated notation)

—ogk*-1 f1

r2—1 -1 2 '
T 11 o «a (=c1hFa™ + co(h'* + 2r )) dex

The Euler-Lagrange equation is

2
—a” _201F

ah" + (r2 =1 +r(r? = 1)0h = a2

Because of the definition of h in terms of P it is also required that
R(1) = k(1) =--- = h@(1) =0

where ¢ is the integer part of r. In practice we will only satisfy the first of these initial
conditions and show that our solution can be approximated by functions which do satisfy
all of the initial conditions. Thus we take

Al = gt CJ,:_Z(\/4r(r2 — 1)6a)

(4r(r2 —1)8a)(r*-2)/2

where J is the usual Bessel function, C is chosen so as to make h(1) = 0 and h;, is a
particular solution of the differential equation whose power series expansion in |a| < 1
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may be easily found. In case k is an integer, h, is a polynomial since in this case the
hypergeometric function reduces to a polynomial. In this case, the right hand side is

i bpa™

n=0
where
b = —(r=1DI(r+1)
e
and (n — 1 2
b, B = 1= =2-1)

n(r? +n—2)

from which we deduce that a particular solution is given by

hp(a) = i hp,a™

n=0

where

_ bn - (n + 1)(Tl + 7'2 = 1)h"+]

B r(r2 = 1)

forn =r,r—1,...,0. One simplification in the computation results from the following: if
for some function F,

hn

1
I(h) = / (hF + ca” ~Y(h'? + 2r6hh")) da
0
then the Euler-Lagrange equation is
ah" +(r2 = 1) + r(r? - 1)6h = e
" 2cam-?

If h satisfies this differential equation and A(1) = 0, then

1 1
I(h) = ;/0 hF

We illustrate what happens for the case k£ = 3. Our lower bound is

1 0'5 6 7
/[(le - a;TL9032/0 (P(a-) (W - :_G! + %)
_ias(h'(a)z + 49h(a)h’(a))) da

where

h(a) =/ P(7)(y — a)? dy
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After integration by parts several times, we have

/ I¢I° = —;—ZTLW ( / Fh+o®(h'? + 40hh')>

where 00?4
o a
F= _F + T - ot
Then
Wl CJy(V246a) B i i‘i a L
- 240 120 © 962 1863
where

C= (2— g% + %) /J2(V/246)

The integral simplifies to give

9
/ICI‘:—%/%

For this choice of h it is true that A’'(1) # 0 and h"(1) # 0. However, it is easy to see
that for any € > 0 there exist functions H which satisfy the right conditions for which the
difference between I(h) and I(H) is < € in absolute value.

For k between 1 and 2 we have not tried to optimize our lower bounds as carefully since
it seems that in any event we don’t have the correct answers. Here we take P to be a
constant and choose the constant optimally. The lower bound so obtained is given by

o e i
= %I (k? — r)2627+20(2k — 1)(k*/6 — 4k? + 6k — 2)

" from which Corollary 3 follows. Assuming that § = 1 is admissible, and using Stirling’s
formula and

oFy(=r,—r =1,k —r,—1) = 1/e
as k — co we obtain the asymptotic result claimed in Corollary 2.

Proof of Theorem 5. It will be convenient to initially consider

T
(43) I(n) = /l IC(1/2 + it)[? log™ ¢(1/2 + it) dt.

We consider this as a complex integral by letting s = 1/2 + it. We then use Cauchy’s
Theorem to move the path of integration to the right of o = 1. Since we are assuming the
Riemann Hypothesis we have

1 c+iT .
(44) Iy =1 [ G - s)log™ G(s) ds + 0T 1/3%)

+1

for any € > 0 and ¢ > 1. We let x(s) denote the factor from the asymmetric functional
equation

(45) (s) = x(s)¢(1 = s)

for ((s) and use this in (40) to replace {(1 — s). Next, we apply a lemma from Gonek (5]
(which is actually just Lemma 9 with N = 1).

51




Lemma 10 (Gonek). Ifb, <, n¢ for any € > 0 and if ¢ > 1, then
L R )ib—"d = 3 b+ 0T
_— x(1—s - e s = n + O( 5

2m i
c+1 "S’;L.-

We remark that the proof of Lemma 9 has not appeared in print but may be proven
along the lines of Gonek’s proof of this Lemma 10.
Thus, it suffices to evaluate

(46) > Ay()d(m)

Im<L

—-2x
where A; is the generating function of log((s) which is supported on prime powers :
A1(p*) = 1/k. (Alternatively, A(n) = ;;(8—"3 for n > 1.) Also, * denotes Dirichlet convolu-
tion. By Perron’s formula, the sum in (46) is

1 c+ico " T s
= log™ -
i g a) ()

—100

ds
S

where ¢ > 1. This integral is easily evaluated using standard estimates for ((s) and log((s)
near s = 1. In fact, letting 7 = % for the moment, we find that

I(n) = T/ T—zlog" (l) dz + O(7(loglog 7)™)
L ? b4

where L denotes the path which is a line segment from —1/2 —i/log 7 to —i/ log 7 followed
by a semicircle from —i7/log T to i/log T on which ®z > 0 followed by a line segment from
i/logT to —1/2+i/log . The integral here is

n z
ds L z*
from which it follows that

@ ome(d) ()

Now, we have

=2

+ O(T(loglog T)™)
2

s=

(48) D(1,1) = RI(1)/(T logT) = loglog T — I'(2) + O (1°i§§T> _

Letting ¢ = I"/T', we have )(z + 1) = 1/z + 1(z) so that I['(2) = v — 1 since I'(1) = —.
Now the first estimate of Theorem 5 follows. We note also that I(2)/(T logT)

(49) = ((loglog T)* — 2I"(2) log log T + 2I"(2)* — I''(2))(1 4+ O(1/log T))
To evaluate D(1,2), we use the fact that
(50) log? |((1/2 + it)| = Rlog? ((1/2 + it) + (7 S(t))?
where, S(t) = L arg ((1/2 + it). Thus, we need to estimate
T
(51) I's / IC(1/2 + it)S(t)? dt.
1

For this purpose we use Selberg’s [10] approximate formula for S(t):
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Lemma 11 (Selberg). Assuming RH, ift > 2 and 4 < z < t?, then

S(t) = -2 Z Az(n) sin(tlog n)

o
o logn

1
+ o(1
ogz | —,

Az(n
Z nal(+c')t

) " O(logt)
log z

where
A(n) ifl<n<z
.
=(n) Amlog="/n) jfz < n < 22

We will take z = T'/®. We substitute Selberg’s formula for S(t) into I and estimate
the contributions from the O-terms. Now (log T')/(log z) < 1, so that the second O-term

contributes an amount which is <« T'log T to I since this is precisely the order of magnitude
of

T
/ [¢(1/2 +it)|? dt.
: _

To estimate the contribution from the first O-term we use Cauchy’s inequality and Lemma
6. Thus,

(52) / |((1/2+zt)|2|z ,(IT,),P dt < TlogT ) M(h,k)

m<z h,k<z2? ik

since A (k) < A(h), k=% &« h~!/? and logh < logT. For the terms with (h,k) = 1 the

sum is )
< (Z Aghﬂ) < log2 T

h<T
while for the terms with (h,k) > 1 the sum is
log” p 2
< Z — L log"T.
p<T

Thus, the total contribution from the first O-term to I is < T'logT. Now we consider

2
o . Az(h)sin(tlog h) 1
(53) /; 1¢(1/2 +it)|? (";2 T helegh dt = (L = RI2)
say, where
2
_As(h)
(54) /24P | Y dt
nef = s
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and

2
T A (h
(55) L= /l C(1/2 + i) (,; ‘h—m;fllczgh) .

We can evaluate I; by Lemma 6 and I, by Lemma 9. Let a(h) = Az(h)h'/2~"'(log h)™!
for now. Then,

(56) L =T Z ﬂ1’2;:i)—(h, k) (log %}:2— 2y = 1) +o(T)
h,k<z?
and
(57) L=2xT Y a(h)a(k) ) d(n)+O(T"/**)
h,k<z? n< sge
a(h)a(k)
=T 0g +0(1)
25 (o) +o0)

Thus, (using some of the estimates from above)
(58) L-L=T Y “(h)“(k)(h k)( Té’;’h';c) ) +O(Tlog T)

hk<z?

(h,)>1

Now a(h) < 1, so it is clear that the terms of I; — I for which k or k is not prime will
give a total contribution which is <« T'log T'. Hence, we have

2
(59) L—IL=TlogT » ap)” | O(Tlog T).
p<z?

Finally, this last sum over primes is easily evaluated as in Selberg [10] and we obtain:

Lemma 12. Assuming the Riemann Hypothesis,

T
IC(1/2 + it)2S(8)? dt = ——Tlog Tloglog T + O(T log T)
1 27('2

Now combining (49) and (50) with this lemma, the second assertion of Theorem 5 is
proved.

We note that by (14) and Theorem 5 we have M'(0) = o(1) and assuming the Riemann

Hypothesis, M'(1) = —2 + 2. Also, if the Riemann Hypothesis and the pair correlation
conjecture are true, then

M"(0)=2)" Z (— - —) P42y +240(1).

p m=1
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Proofs of Theorems 3 and 4. In this section we calculate the derivatives of a; and use
(13), (14), and Theorem 5 to deduce Theorems 3 and 4.
We first observe that

(60) ar = [J(1 = 1/p)¥ lo(k, )
P
where e(6) = €2™¢ and
(61) L = (k) = 1(k,p) = /01 |1 - e(6)/p' /27> log’ |1 — e(6)/p'/?| db.
We observe that l; = —2lj41 where the differentiation is with respect to k. Thus,
(62) ‘;—: =) 2klog(1 —1/p) — 211/l
P

and

(63) (%’:—) = 2? (1ogg1 = 1/}) + 2101213— 13) )

Now it is easy to calculate that 1o(0) = 1, 1;(0) =0, and

1 & cos(m#) cos(nb)
(64) 12(0) = /0 > ——c 7

m,n=1

1 -2 o)
(65) (1) = \1 - #2— dé = Zp_" =(1-1/p)7?,
0 p 50
and
13 & e((Il+m—n)d
(66) h(1) =§R/o ,; 20%%)- do
ks g Z_:o ,p:1+m =(1—1/p)™" log(1 - 1/p).
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Thus, we easily find by (62) and (63) that ap = 1, aj = 0, and

(67) af = Z(zlog(l ~ 1/p) + 415(0))
1
= zgp: ,,,Z_ (_ - _) o

Now, we observe that

(63) a = [[( - 1/p)" ey (2 s 1)

P

where Py is the Legendre function of order k. (See Titchmarsh [12,§8.9] for a proof of
this.) Therefore, since Px_; = P_y, it follows that

(69) ap = ay—k.
Hence, a; = a9 =1, a] = —aj =0, and
1
(70) _ao_zzz(___)_m.
p m=1 4
Now we consider derivatives of fi. We have
i r 2
71 = =-2k=(1+k
m B~ k)
and
fk) fefi — fi*
72
(#2) # (7) = 2
- B .2 L TT" 2
= —2—17(1+k ) — 4k F—(1+L )

so that fo = 1, fj =0, and fy' = —2I'(1) = 2. Also, f; = 1, and in the notation of
the last section, f] = —2¢(2) = —2I"(2), and f{' = f{% — 24(2) — 4¢'(2). It follows that
fi=-2+4+2yand
| I = 8T"(2)? — 2I"(2) — 4T"(2).
Thus, we find that )
(akf&)'lk=o = 0,
(akfi)' k=1 = =2+ 27,

(@kfi)"limo =23 D (# - %) P+ 2y,

and - A
) (@fe) ey =23 Z (— , —) +8I(2)? — 20(2) — 41" (2).

Upon comparing these equations with the results of the last section, we see that Theo-
rems 3 and 4 are proved.
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Appendix

Further properties of a;.

at

In this appendix we prove that a; has a local maximum at k£ = 1/2 and local minima
k =0 and k = 1 and no other extrema for real k.
To do this we consider a, as a function of a complex variable s. We show that a, is an

entire function of order 2 which satisfies the functional equation

s = A1—s

Also, all the zeros of a, are on the line o = 1/2.

From these properties of a, we easily deduce that a/, has all its zeros on ¢ = 1/2 with

two possible exceptions; if the exceptions exist, then they are real zeros. In the last section
we showed that afj = aj = 0, so that the exceptions do exist.

w.

To prove most of these assertions we use the representation

2
1 8°—s P+1
a’ =H<1_ —) Ps_l (—)
) P p—1

here P is the Legendre function for which we have the formulae

P,(z) = %/: (:I,‘-I— Vaz? - 1cos€)' dé

for z > 1 and all s and

V2 /’ cosh su
du
0

P'_ln(COShz) T Vcoshz — coshu

U
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valid for real z and all s. 5
From the first formula for P we easily deduce that

|P1(2)] < (22)17

Also,
2 2
(1-1/p)" | =(1 - 1/p)" ¥~

Let C(s) be a real function of s to be determined later. In the product formula for a,
we estimate the factors for p < C(s) by the above, while the factors for p > C(s) are

=1+ 0(s|*/p")

provided that C(s) is sufficiently large as is easily seen by considering the power series
expansion of each factor. Thus, we have

. lo-1]
el I a1~ (222" I (+00sl/5)

p<C(s) F »>C(s)
< (Alog C(s))Mz exp(Als|*/C(s))

for some A. (We have used the estimate [[,,(1 —1/p) =~ (logz)™.) Now choosing
C(s) = |s|*, we see that

a, L, exp (|s|2+‘)
Thus, a, is entire of order at most 2. To see that a, has order exactly 2 it suffices to show
that the number N(T) of zeros of a; /34 in 0 < ¢ < T satisfies

log N(T)

>
logT — 2

lim inf
T—o0

We will prove this estimate later.

To see that all the zeros of a, have real part 1/2 we use the second representation of P
given above and the theorem in Polya-Szego, Problems and Theorems in Analysis (Vol. I,
Part III, No. 205) to conclude that the entire function of ¢ given by

P_y24i(z)

has all real zeros provided that z > 1.
Next we show that a has all but two of its zeros on the 1/2-line. First of all, by the
functional equation,

b, = ay/2+4iz

is an entire function of order 1 which is real on the real line. By the theory of entire
functions of finite order we may write

A+Bz°° Z\ /=
b,=e H 1——)e*/*n

zZ
n=1 »
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where the z, are all real and positive and A and B aré real. Then

¥, 1 1
E—B+¥(z.-z,,+z)

Now ¥ I
QE e S S
R DM e
so that all zeros of b/, are real. For real z = z each term

1 1

Z2—2Z, Znp

is decreasing. Thus, b, /b, can have at most one negative real zero. A real negative zero of
b’ corresponds to a pair of real zeros of a'.. Thus, with two possible exceptions the zeros
of @/, are on the half-line. We conclude that the real zeros of al, are at s =0, s = 1/2, and
s=1. '

It remains to prove that a, is of order at least two (though this assertion was not
required in the above deductions). By applying Laplace’s method to obtain the asymptotic
evaluation of P,_;(z) on the half-line it is easily deduced that the first zero of this function
is at a height

1.
t~ =h(z
Sh(a)
and the spacing between consecutive zeros is
~ h(z)

‘where
27

h(z) = :
Taking = = (p + 1)/(p — 1) we have

& .
h(z) ~ 5vP
Thus the number of zeros to height T is
5

log T

>T Z p_l/2 >
p<T?

Hence,
log N(T)

lim inf logT 2

2
as desired.
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