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TURAN INEQUALITIES AND ZEROS OF DIRICHLET SERIES
ASSOCIATED WITH CERTAIN CUSP FORMS

J. B. CONREY AND A. GHOSH

ABSTRACT. The “Turan inequalities” are a countably infinite set of conditions
about the power series coefficients of certain entire functions which are necessary
in order for the function to have only real zeros. We give a one-parameter
family of generalized Dirichlet series, each with functional equation, for which
the Turan inequalities hold for the associated &-function (normalized so that
the critical line is the real axis). For a discrete set of values of the parameter the
Dirichlet series has an Euler product and is the L-series associated to a modular
form. For these we expect the analogue of the Riemann Hypothesis to hold.
For the rest of the values of the parameter we do not expect an analogue of the
Riemann Hypothesis. We show for one particular value of the parameter that
the Dirichlet series in fact has zeros within the region of absolute convergence.

1. RIEMANN’S INTEGRAL REPRESENTATION FOR THE &-FUNCTION

One approach to the study of the zeros of the Riemann zeta-function begins
with the integral representation for Riemann’s &-function. The &-function is
given by

&(s) = ds(s — Dr=/*T(s/2)¢(s)
where { is Riemann’s zeta-function and s = ¢ + it is a complex variable. The
Mellin transform of & involves the theta-function:

0(z) = ni:we (nsz)

where e_(z) = exp(2miz). We have

—sr (S _ = 52 4%
=T () £(s) /0 w(0x? =
where

vy = 3o emin = H -1

n=1
Using the transformation formula for 6
0(—1/z) = z'/26(z)
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408 J. B. CONREY AND A. GHOSH

and integration by parts we arrive at Riemann’s formula:
1 o :
¢ (— + it) =/ F(u)e™ du
2 -0

Flu) = iy (w).

where

Another expression for F is given by

(4n?n*e®/? — 6n*ne’/?) exp(—n’ne®).

M8

F(u) =

n=1

All of the above can be found in Titchmarsh [14].

The idea is to study F and then try to deduce information about the zeros
of ¢. There are various conditions known which ensure that an entire function
given as a trigonometrical integral has all real zeros. Poélya [11] and de Bruijn
[5] have proven some of the most interesting theorems in this area.

2. PROPERTIES OF F
What is known about F ? The functional equation

E(s)=¢(1-s)

for the &-function is equivalent to the fact that F is even. Also it is known that
F(u) is positive and decreasing for u > 0. This was first shown by Wintner
[15] and then again by Spira [13]. In 1982 Matiyasevich [10] investigated F
and proved the Turan inequalities for the &é-function. These are inequalities
involving the power series coefficients of certain real entire functions which
must hold if the function has all real zeros. In our case they may be expressed

as

2m —
b2 2 +1bm lbm+l (m=1’23"‘)

where -
b = / F(u)u®™ du.
0

1)7"b,,(2t)™
<>—¢( +n) Z( >2m),> .

The problem of proving the Turdn 1nequa11t1es for the Riemann E-function
was proposed by Pélya as a test for the Riemann Hypothesis. (If the Turan
inequalities failed, then the Riemann Hypothesis would be false.) Grosswald
[7] showed that the inequalities hold for Z for all sufficiently large m . In 1986
Csordas, Norfolk, and Varga [3], not knowing about Matiyasevich’s paper,! gave
a different proof of the Turdn inequalities for all m .

The proofs of the above properties of F are somewhat complicated in that
they involve a lot of numerical calculations. Much of the difficulty arises from

Note that

IWe thank Professor G. Warner for bringing Matiyasevich’s paper to our attention.
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the complicated form of F given above which is essentially due to the pole of
{(s) at s=1.

3. THE RAMANUJAN TAU-FUNCTION
The Dirichlet series

= 1(n)
1) - 3L
n=1
where 7 is Ramanujan’s tau-function (defined below) has properties similar
to those of the Riemann zeta-function and has some additional nice features.
One is that L(s) is an entire function. Another is that the Mellin transform
of &;, the associated “¢&-function”, has a simple infinite product expansion.
This product expansion is not typical in the study of Dirichlet series which are
expected to satisfy the Riemann Hypothesis. Nevertheless it is interesting to see
what sort of information can be gained from the use of the infinite product. In
particular, the above properties of F can be proven in a fairly straightforward
manner for the Fourier transform F; of &;(6+it), the “6-line” being the critical
line for this function.
Ramanujan’s tau function may be defined by equating coefficients of the
power series on both sides of

oo [ o]

> o rmx" =x JJ(1-x"*.
n=1 n=1

The associated Dirichlet series is

oo

L(s) = L(s) = Z T(n)n=".

n=1
This series is absolutely convergent for ¢ = Rs > 13/2. The &-function for 7
is given by
&:(s) = (2n)~*T'(s)L(s)

and it satisfies the functional equation

ér(s) = 51(12 - S).
This functional equation is equivalent to the fact that
oo

A(z) = t(n)e(nz)

n=1
is a holomorphic cusp form of weight 12 for the full modular group which
in turn is equivalent to (i) A(z) is expressible in terms of a Fourier series in
z in which coefficients of e(nz) with n < 0 vanish, and (ii) A satisfies the
transformation formula
A(-1/z) = z'?A(2).
(See Hardy [9, Chapter X] for introductory information about 7.)
Now

£(s) = /0 wA(iy)ysdy—y
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so that | .
E(t) =&:(6+it) = / A(ie*)eS e™ dy

is an entire even function of ¢. We define
F,(u) = A(ie*)e®.

4. PROPERTIES OF F;

We see that F;(u) is an even function of u by the functional equation for
&: . The fact that F;(u) > 0 for real u is immediately obvious from the product
formula for A:

0o
F,(u) — e6ue—27te" H(l _ e—Znne")24.
n=1

We can also see that F;(u) is decreasing for positive u by calculating the
logarithmic derivative. We first observe that

d o0 m d oo ymn _ oo — o0 n
VI > log(1-y )——y—dy ) = > ny™=-3 a(n)y
n=1 m,n=1 m,n=1 n=1

where

o(n) = Zd

din
is the sum of divisors of n. Let x = 2ne* and y =e*. Then

Fi(u) =%y ﬁ(l —ymyH

n=1

so that
F] . 1 s Ny B
_Fr (u)=6+ (y 24 ,?:1 a(n)y ) Tu= 6 —x(1 —%y(x))

where 0
Zi(x) =24 nka(n)y".

n=1
(The expansion of F'/F above is related to the Fourier expansion of the Eisen-
stein series E;:

Eyz)=1- 242 o(n)e(nz).
n=1
E; is not a modular form of weight 2; it transforms according to the formulae
E)(—1/z) = 22Ey(2) + 122/2mi

and Ex(z+1) = E5(2).)

Now F]/F; is an odd function of u so that F//F,;(0) = 0. Thus, to show
that F]/(u) < 0 for u > 0 it suffices to prove that (F!/F;)'(u) <0 for u > 0.
But

(%’) (1) = (=1 + Zo(x) + xZp(x)) % = =X + xZo(x) — x?Zy(x),
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since Z;;(x) = —2;.1(x), so that the above is

=—x (1 - 24§:a(n)y"(l - nx)) .

n=1
Since u > 0 corresponds to x > 27, each of the terms 1 — nx < 0 so that the

whole expression is negative.
Arguing in the same way we see that (F//F;)"(u) is odd and

(ﬂ)nl () = —x(x°Z3(x) — 6x°Za(x) + TxZ1 (x) — Zo(x) + 1)

12
=—x (1 - 24i a(n)y”Ps(nx))

n=1

where
Py(x)=1-Tx+6x*-x><0

for x > 6. Thus we conclude that (F//F;)"(u) <0 for u> 0, i.e., that F//F;
is concave for u > 0.
The above considerations will be shown to imply the Turan inequalities for

—T

5. A FAMILY OF DIRICHLET SERIES

In this section we introduce a family of (generalized) Dirichlet series based
on the example of the last section. We will denote the Dirichlet series by Ag(s).
The associated entire functions & (s) = yx(s)A4x(s) have functional equations

Ei(s) = & (k/2 - 5).

Here k > 0 is a real parameter. These functions have simple expressions
k oo )
Ex(t):=¢ (— + it) =/ e—kew piut 4,
4 —00

as trigonometric integrals. The main properties of &, are

(1) the functions
Ex(1) = Se(k/4 + it)

satisfy the Turdn inequalities;

(2) for all k there are > T zeros on the critical line ¢ = k/4 up to a
height T,

(3) for k=1,2,3,4,6,8, 12, 24 a positive proportion of zeros of A
are on the line o = k/4;

(4) for all other k there are infinitely many complex zeros outside the
critical strip.

The properties (2)-(4) are reminiscent of the properties of the Epstein zeta-
functions (or of the Eisenstein series). Property (1) was our original motivation
for studying these functions. We remark that Alter [1] has used Grosswald’s
method to show that the Turdn inequalities for large m are satisfied for various
E-functions that arise in number theory, including =, .
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While the Turdn inequalities are necessary conditions for our E-functions to
have all real zeros, these examples show that they are not sufficient as they also
hold for many E-functions which do not satisfy the Riemann Hypothesis.

6. DEFINITION OF &

We now proceed to define our one parameter family of &-functions. Let

H(l —xMk = Zpk(n)x
and let
pi(n)
Ak(s) = Z < n+ k24"
We note that with kK = 1, by Euler’s pentagonal number formula,

Ai(s) =247°L(2s, x12)

where x;» is the unique primitive real quadratic Dirichlet character modulo
12. With k =24,
e ]
A(s) = Z

where 7 is Ramanujan’s tau-functlon. We observe that

ﬁ(l — e~ — exp (— i o_1(n) exp(—27znv)) .
n=1 n=1

This product is closely related to the Dedekind eta-function:

n(z) =e () 1‘[(1 - e(nz))
=1

which satisfies the transformation formula

(=1/2) = Vz[in(2).

A(z) = n(z)*

Of course,

Now let -
__u me —2nne*
g(u) = 4+W+§U—l(’l)e

where, as usual, g,(n) is the sum of the ath powers of positive divisors of 7.
Then we define

oo
Ek(t) =/ ekg(u)+iut dt.
—00

Now g is an even function, by the transformation formula for the Dedekind
eta-function so that Z; is an even entire function. We have

o ; e dv
Ee(t) = / vk/4+ite=mk /123" p, (n) exp(—2mnv) —
0 n=0 v
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If we integrate term-by-term and use the substitution 2znv = w we get, with
s=k/4+it,

&(s) = 21)~*T(s) Z(nf:—"]i’/’m—)s

where
E(k/4+it) = Ei(b).
Now E,(t) = Ei(—t) implies that

Ck(s) = Ek(k/2 - 5).

7. THE TURAN INEQUALITIES FOR E;
Regarding the Turan inequalities, we have the following result.

Theorem 1. Let ¢ € C3(R). Let ¢(u) be positive, even, and decreasing for
positive u, and suppose that ¢' /¢ is decreasing and concave for u > 0. Suppose
that ¢ is rapidly decreasing so that

X(t) = /_oo d(u)e'™ du

is an entire function of t. Then X (t) satisfies the Turdn inequalities.

Proof. From our hypotheses we can prove the Turan inequalities either by the
method of Csordas, Norfolk, and Varga [3] or by the method of Matiyasevich
[10]. We will show both of these.

First we follow the proof in [3]. The main area of interest is Proposition 2.4
of that paper where it is shown (see also (2.28)) that

F(x+2)/ 2x+3¢ )

has the property that logl, is concave on (—1, oo). In Proposition 2.5, it
is shown that this property of A, implies the Turdn inequalities for m > 2.
We will show that logA, is concave for x > —2 which will imply the Turan
inequalities for m > 1, thus avoiding the numerical verification in the case
=1.
Deﬁne Ux =Ax_; and f(t) = ¢(v/1). Then

hy = ﬁ;lm /0 " wfu) du

Now u is defined exactly as A4 in (2.13) of [3] except that K there is replaced
by f here. The only property of K that is used in the proof is that log K (u)
is concave on (0, oo). Thus, we may conclude, exactly as in that proposition,
that u, is concave on (—1, oo) provided we show that log f(u) is concave on
(0, c0) . But then A, is concave on (—2, oco) which is what we want.

Now
fl(w)=¢'(Vu)/2vu

¢"(Vu) — ¢ (Vu)[Vu
4u

Ax =

and

OB
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In order to show that log f is concave, we have to show that ff"(u) < f"(u)?
for u > 0. Using the above expressions and replacing +/u by u this inequality
simplifies to

$¢" (1) — ¢' (u)* < o' (u)/u.
Dividing by ¢?, this inequality further simplifies to

or
uh'(u) < h(u)

where h = ¢'/¢. At u = 0 both sides of the inequality are 0. Therefore, it
suffices to show that if # > 0, then
h
H(u) = u— 7(4)
is increasing. (Note that A(u) < 0 and A'(u) < 0 for u > 0 by hypothesis.)
We observe that
, B hh" 0
H'(u) = W(u) >
since & and A" are both < 0.
Now we consider Matiyasevich’s proof [10]. There it is sufficient to show
that

(ug' ()" &' (u) — ug(u)¢" (u) > 0
for all u > 0. He does this by a machine calculation in the case of the Riemann
E-function. We observe that upon dividing by ¢? the above inequality is seen

to be equivalent to uh’(u) < h(u) for u > 0 where h = ¢'/¢. We proved this
inequality above.

As a corollary of this theorem and the calculations from the first section we
have that the Turan inequalities are satisfied by the Z .

8. ZEROS OF &

Hardy’s method (see Titchmarsh [14, Chapter X]) can be used to show that
& has >T zeros on g = k/4 up to a height T.

In the cases k =1,2,3,4,6, 8, 12, 24 the Dirichlet series (k/24)* A, (s)
has an Euler product and is the Dirichlet series associated to a Hecke eigenform
for a congruence subgroup of SL(2, Z). Hence by the work of Hafner [8] it has
a positive proportion of zeros on the critical line. ‘

For the assertions about zeros outside the critical strip we refer to the work
of Davenport and Heilbronn [4] and of Cassels [2] on zeros of Epstein zeta-
functions and of Hurwitz zeta-functions outside of the critical strip. We will
illustrate the method of [4] in the case that k = 48.

Theorem 2. The function &43(s) has infinitely many zeros in the half plane o >
25/2.

Remark. The critical line for &;3(s) is o = 12. The critical strip is 23/2 <
0<25/2.
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Proof. The Dirichlet series associated with 45 is

F(s)=) fr(z?)
n=1

where
> f(ne(nz) = A(z)%.
n=1

Since A(z) is a cusp form of weight 12 for the full modular group, it follows
that A(z)? is a cusp form of weight 24 for the full modular group. It is well
known that the space of cusp forms of weight 24 for the full modular group
has dimension 2 as a vector space over C. As a basis for this space we can
take cusp forms Y ., a(n)e(nz) and Y, ., b(n)e(nz) where a(n) and b(n)
are multiplicative arithmetic functions. Let A(s) = Y a(n)n~° and B(s) =
S~ b(n)n~* be the associated Dirichlet series. Now F(s) is a linear combination
of A(s) and B(s). Since a(1) =b(1) =1 and f(1) =0, it follows that

F(s) = C(A(s) - B(s))

for some constant C. To make things easier we scale so that the critical strip
is 0 < ¢ < 1. Thus, let a(n) = a(n)/n*/? and B(n) = b(n)/n?32. Let
G(s) = Y (a(n) — B(n))n=°. It is a consequence of Deligne’s Theorem that
|a(n)| < d(n), and similarly for b(n), where d(n) is the number of positive
divisors of n.
Now the idea is to construct for every d > 0 an auxiliary Dirichlet series

Z(s) = Zs(s) with the properties

(1) Z(s) hasazeroin 1<o<1+4

(2) for every € > 0 and every sy = g + ity with gy > 1 thereisan >0

and a T such that

|Z(s) - G(s+iT)| <€

forall s in |s —so| < 7.

Assuming we can construct such Z; it then follows from Rouché’s Theorem
that G(s) has infinitely many zeros in ¢ > 1.
We now define Z;. Assume that

S a0 > S 1BK)Ip !
p p

Otherwise change the roles of o and 8 below. Define

2(5) = 32 (0l = Bm)A()

nS

n=1

where A(n) is a completely multiplicative arithmetic function defined for primes
p by

sgnf(p) if p > c(d) and sgnB(p) # sgna(p),

sgna(p) if p < c(9),
Alp) = {
€ if p > ¢(d) and sgnB(p) = sgna(p),
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where ¢(d) will be specified later and ¢, is a sequence consisting of +1 and
—1 chosen in such a way that

> (a(p) — B(P))ep
7 V4
sgn a(p)=sgnB(p)
converges. Also, we make the convention here that sgn(0) =1.

Since the logarithms of the primes are linearly independent, property (2)
above follows from Kronecker’s theorem by choosing 7' in such a way that
|p'T — A(p)| is small for all p up to a certain height depending on so and €.

To verify property (1) we need the following lemma.

Lemma. With o and B as above we have the estimate:

SRR

1+0

p
sgn a(p)#sgnf(p)
as 0 — 0.

As an immediate consequence of the lemma we have the estimate:
Corollary. As 6 — 0,

Z |B(p)| = B(D)A ()

) 1

where A’ is a completely multzplzcatzve Sunction for which A'(p) = sgna(p).

For the sum in the corollary is twice the sum in the lemma.
Assuming the lemma, we will now show that if ¢ = ¢(d) is large enough,
then Z(1+J) > 0. First of all,

> n7la(n) = Bl < 3 n~'~d(n) < 6" loge.

n>c(d) n>c

Similarly, since A(n) = A'(n) for all n < c(d),

5 (alm = B Z(a 1)~ ) | o (c-6-" loge)

1+0 1+0
n<c(d) n n

Now

S 0 3o (1415))

n=1
and

B(m)A'(n) _ BW)A (p)
Z nl+o 5) H I+ =1 1+6
where k;(d) denotes a functlon for which 1 < ki(d) <1 as § - 0. Thus,
Z(148)=S81(e) —S2+0(c%6 loge) > S1(B) —S2 + O(c%6 logc)

! (1+220) -« QN (1+ /’("2'1:,(")) +0(c™6 log.c)

= k¢(d) ex p(zlﬂl(fgl) k7(6) exp (Z ﬂ(pzia(p))+0(c“’6‘llogc).
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If the second sum is < 0, then, by the lemma,
Z(14+38)> exp (rlog (15) +0(c%5 logc) > 6"

for some r > 0 provided that c is sufficiently large. If the second sum is >0,
then

Z(l +5) > expz (lﬂ(p)l _ ﬂ(p)/l/(p)) + O(C—Ja—llogc)
p

p1+5

> exp (rlog%) +0(c™%6 'logc) > 677

by the corollary. In any event, we conclude that Z(1 + ) > 0 provided that
c(d) is large enough. On the other hand, it follows from the lemma that if
o — 17, then Z(0) - —co since, by definition of A,

Z(a(.l’ /”(P))}»(P) Z (a(p) Iﬁ(P))l(P) 0(c=55-"Tog )

sgn a(p)#sgnp(p)
< Z M +0(c™%6"'logc) —» —0
sgn a(p)#sgnp(p) p

by part (2) of the lemma. Therefore Z(s) has azeroin 1 <o <1+ as
desired.

9. PROOF OF LEMMA

It only remains to prove the lemma. We have

1B(p)| 1 la(p)B(p)|
Z pl+é 2 2 Z pl+e
P P
sgn a(p)#sgnf(p) sgn a(p)#sgnf(p)
Now by the Rankin-Selberg method.

1+6
p

as d — 07 . On the other hand,
) a(p)B(p) _ > la()B(P)| > |(p) B(P)|

pl+d - ~ pl+é > pl+d
sgn a(p)=sgnB(p) sgn a(p)#sgn B (p)

p

Therefore,

le(2)BD)| _ |a(p) p)l
E o(1).
7 p1+5 Z pl+5
sgn a(p)#sgnf(p)

Now we use Hélder’s inequality to get a lower bound for the latter sum. Thus,
if
= |a(p)B()|/p'*°,



418

then

Now
[12].

J. B. CONREY AND A. GHOSH

. (£,7)"
; rp > ,, r;,‘) 7

Y, a(n)?B(n)?/n® has a simple pole at s = 1 by the work of Shahidi
Therefore, it easily follows that

r2 1
p
Zp: pivs ~ 1085

as § — 0. We estimate the denominator trivially by

Thus

In

r -1-5 1
;pl+5§256¥p <log 5.

the lemma follows.
10. CONCLUSION

1914 Grommer [6] gave an infinite sequence of sets of inequalities that the

Taylor coefficients of an entire function f with all real zeros must satisfy. The
first set of inequalities in this sequence are equivalent to the Turadn inequalities.
Thus, the Turédn inequalities are really the first Grommer inequalities. Grommer
showed that all of his inequalities taken together represent a necessary and
sufficient condition for f to have all real zeros. It would be interesting to
investigate whether the class of functions we have described in this paper satisfy
the second set of Grommer inequalities.
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