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We describe the curves Re z(s) = 0 and Im z(s) = 0. Subject
to certain hypotheses we establish a connection between zeros of Z(s)

and "Gram-points'" which involves these curves.




§1. Statement of Results

In this paper we present some theorems and a conjecture about the
curves: Re £(s) = 0 and Im Z(s) = 0 where Z(s) 1is Riemann's zeta-
function. In particular, we show (subject to the conjecture) that the zeros
of 7(s) and the "Gram-points", well-known from the literature on calcula-
_tions related to the zeros of [(s), are connected via these curves. There
seems to be a good deal of regularity to these curves which provides some
insight into the nature of the zeta-function.

Following van de Lune [3] we shall refer to maximally connected
subsets of {s :Re z(s) = 0} as R-lines and to maximally connected sub-
sets of {s : Im ¢(s) = 0} as I-lines. Since an R-line or an I-line
is a curve on which a harmonic function has constant value it follows by
the maximum-minimum principle for harmonic functions that each such curve
must have a singularity of ¢ (s) (that is, either s = 1 or s =) as
a limit point. Figure 1 from Utzinger [8,p.27] (see also Jahnke and Emde
[1,p.270]) shows the R-lines and I-lines near s = [

It is easily seen from the expression
z(s) = ) n (s =0+ it, o > 1) &)

that the R-lines are bounded above in the o-direction. van de Lune [3]
showed that the values of s on any R-line satisfy o < or where ORr
is defined by

“Op ' m
2 arcsin p = E; (2)
P

the sum is over positive primes p. He did not calculate OR explicitly,

but showed, using the primes < 100000, that On > 1.18283. We show, with-

out calculating the primes,
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Figure 1




THEOREM 1. Let OR be defined by (2). Then

0p = 1.192347 + 261070

where |0] < 1.

It is apparent from Figure 1 that for some of the I-lines the
values of O are bounded above; we call these the Il—lines. The I—lines
which have points s with arbitrarily large (positive) values of © will

be called Iz—lines. It is possible to locate the Iz—lines very precisely.

THEOREM 2, Let o0 > 5 be fixed. For any integer n there is

precisely one value of t with

(n-%)T (n+z)m
o\ e & i S
log 2 =% — log 2

such that Im z(o + it) = 0. If tn denotes this solution, then

nim

t _— ——

o
n log 2 < 2(2/3)".

COROLLARY. The Iz—lines are asymptotic (as O = +®) to the

‘nm
log 2°

asymptote for precisely one Iz—line.

lines t = n=0,%¥1,*2,... . Moreover, each such line is an

We refer to the I2—line which is asymptotic to t = nm/log 2 as the
Iz,n—llne.

It is easy to see from (1) that Z(s) 1 as 0 = +° uniformly
for all t. In particular, z(s) > 1 along each Iz—line as O - 4o, It
is well-known (and easy to prove from (1)) that 7'(s) # 0 if o > 4.
Therefore, on any Iz—line the value of Re C(s) is a monotonic function
of o for O > 4. We refer to the Iz—lines for which Re ¢(s) ¥ 1 as

0 > 40 as G-curves and those for which Re Z(s) 41 as 0 > o will be

called Z-curves. The reason for this notation will be apparent later.



THEOREM 3, If n is even, then the 12 n-line is a G-curve.
L)

If n is odd, then the 12 n—line is a Z-curve.
3

Now we describe the R- and I-lines for a left half-plane.
THEOREM 4., Let 0 < -3 be fixed. There are
T log —I—-+ 0_(1)

2me o

solutions t of Re £(0 + it) = 0 with 0 < t < T. The same estimate hold
for the number of solutions of Im (o + it) = 0. Moreover, the solutions
of Re (0 + it) = 0 are interlaced with the solutions of Im g(o + it) =0

for t > 10.

COROLLARY. In the region o < -3, t > 10 the R-lines and the
I-lines alternate. Moreover, O * =©, t = ©, and [g(s)l > ®© as
ISI + o on any of the R-lines or I-lines in this region.

Most of our results about the R-lines and I-lines in the strip
-3 <0 <5 are conditional. We can say something about these lines when
0 =%, however. Let X(s) have its usual meaning in the theory of the

zeta-function:

s-1

X(s) = (s)/t(1-s) = 2°1°7 sin T2 I (1-s). (3)

It is well-known that lx(s)l =1 if and only if o = %.

" THEOREM 5. Let § = % + it. Then Re z(s) = 0 if and only if

Z(s) 0 or ¥X(s) = -1 and Im Z(s) = 0 if and only if T(s) = 0 or

X(s) = +1.
The points s for which ¥(s) = +1 are the Gram-points mentioned

. 3 5 -+
earlier. We will refer to these as the Gram -points and to the points s




for which ¥ (s) = -1 as the Gram -points. These points are very well

: ) -
space¢ on the o = % 1line. The distance between two consecutive Gram -
points (or Gram -points) at height T is

2m 1
—= =+ o). (4)

log o T long
This is also the average distance between consecutive ordinates of zeros of
the zeta-function, which explains how the Gram points might be of use in
locating zeros of C(s) on the critical line: Gram's "law" is that there
is usually a zero of C(s) between consecutive Gram points. However, it
is likely that there exist consecutive Gram points % + it and % + it'
with any number of ordinates of zeros of {(s) between t and t' and it
is also likely that there are stretches of any number of consecutive Gram
points between % + it, and % + it!

i 1

of T(s) in (tl’t2)‘ Nevertheless, there is a definite one-to-one corre-

, say, without any ordinates of zeros

spondence between Gram-points and zeros of z(s), subject to some conjectures.

CONJECTURE., If s =0+ it, t # 0, and z'(s) = 0, then

Re (s) # 0 and Im z(s) # O.

In other words, we conjecture that zeros of ' do not lie on the
R-lines or the I-lines except for the real axis (which is an I-line),
Since ' has only countably many zeros, while there are uncountably many
curves Re Z(s) = a or ImZ(s) = a, and since there is no contrary evidence,
the Conjecture seems plausible. We also have some numerical evidence for
the Conjecture which we will cite later., The importance of this Conjecture

for our purposes is contained in the following



PROPOSITION, Suppose that R 1is an R-line which has no zeros of
£'(s) on it. Then there is a homeomorphism f from IR (the real-line)
to R such that the function g :IR =+ IR given by g&x) = Im gz (f(x)) is
monotone. A similar statement holds for I-lines with Im C replaced by
Re ¢.

In less fechnical language, the Proposition asserts that the R-lines
do not intersect each other and that if you trace along an R-line without
reversing directions, then Im Z(s) always increases or always decreases.

This Proposition is a consequence of the well—kﬁown fact that an analytic
function F is univalent in every sufficiently small neighborhood of a point

z if and only if F'(zo) # 0 (see Titchmarch [6,886.4 and 6.43]).

0

We can now state our main result,

THEOREM 6. Suppose that the Conjecture holds. Then the following
three statements are equivalent:
(i) all the zeros of (s) with t # O are on the line 0 =%
(i.e. the Riemann-Hypothesis);
(ii) any R-line which has no real points on it intersects the
line 0 =% in precisely two points, one of which is a
zero of C(s) and the Gthet 468 Gram -point;
(iii) any Il-line which has no real pointé on it intersects the
line o0 =% in precisely two points, one of which is a
zero of [ (s) and the other is a Gram+—point. Any Iz—line
without real points intersects 0 =% in precisely one point;

5 . + .
for a G-curve the point is a Gram -point and for a Z-curve

the point is a zero of 7 (s).




It will follow from our proofs that assuming the Conjecture and
the Riemann-Hypotheses the region between cohsecutive G-curves is in some
sense a unit as far as the R-lines and I-lines are concerned. For the
G-curves do not intersect any other R-lines or I-lines so that between
consecutive G-curves the zeros of Z(s) and the Gram-—points are in one-to-
one correspondence and are paired up by the R-lines. The Gram+—points in
this region are paired with all but one of the zeros of z(s) here via the
Il—lines, and the remaining zero of {g(s) is the intersection of 0 = %
and a Z-curve.

Regarding the violations of Gram's law mentioned earlier, it is
likely that a Gram -point and its corresponding zero of £(s) will occa-
sionally be separated by "many'" other Gram-points. In situations such as
these, it might be expected that the R-lines cross each other, in contra-
diction to the Conjecture. We have tested some points which are mentioned
in Lehman's paper [2, p.531] as being points where ¢ (s) behaves erratically
as far as Gram's law is concerned, and found the results to be in agreement

with our Conjecture. At these places we found that the R-lines do not

intersect each other; rather they are looped as in Figure 2.
% + it

Figure 2

The intervals where we found this phenomenon are of the form (gn,gn+2)

where 8, is the solution t of =-arg ¥(% + it) = 2nm (the nth Gram-point)



and we found this phenomenon of Figure 2 for n = 171382, 206715, 209783,
233173, and 234500. (We must stress, however, that the computations were
not carried out to an extent that we claim to have rigorously proved that
the R-lines behave as in Figure 2 for these values of n. We would have
had to evaluate the C-function at a large number of points to completely
justify our statements, but this investigation is intended to be theoretical
rather than computational.)

If this looping effect of Figure 2 is accurate then it seems to
question the winding effect that van de Lune [3, p.337] found. He asserted

that there are R-lines of the shape in Figure 3.
1+ it

&

Figure 3

It appears, though, that he has inferred this shape from considerations of
t(s) for o > 1. Since it is unlikely (by Theorem 6) that such an R-line
could wind back to G =% we wonder if perhaps Figure 3 should be three
R-lines looped around each other in the manner of Figure 2. Such a configura-
tion would match that of Figure 3 for o > 1.

The author would like to thank D. R. Heath-Brown for an interesting
conversation on this material. 1In particular he suggested the possibility of
computing Op of Theorem 1 without using primes and he pointed out a simple

proof for Theorem 4.




§2. Proof of Theorem 1

We will let © denote a (possibly complex) number with absolute

value < 1 which is, in general, different at each occurence.
We first establish some lemmas.
LEMMA 1. For o > 1,
2 arcsin p—cj = 2 ﬁﬁ log z (No)
N
P N=1
where

2 -2

hg.T ) T ;3 e P s
n(2m+1)=N
m>0,n>1

Here Y is the Mobius-function.

The identity may be deduced
from the expansions

" (Zn) 3 )
arcsin p ° = B pFam, Saglndl
n=1 (2n+1)

and

log £(@) = JJ mp™
p,m

by equating the coefficients of powers of p'_0

LEMMA 2. With Ay defined as above, lAN[ < 1.8 for all N.

PROOF. By Stirlings formula, k! = (k/e)k(Zﬂk)%ee/(le).
Hence

2m. -2 » s .
™2™ = () %58/ 24m). oy (1, 250m™ )
= -
oy % e gy S



for'. m.> 1, By the mean-value-theoremn,

)
2

o .
m ° = (mts) = ,256m °.

Therefore,

3/2

7
2

2m, ,—2m

(m)Z = (mte)m ° + .36m

so that

7
-%

B ™ (—;7;—)/2 ) pn) 2m+l) "2 + .99

n(2m+1)=N

-3/2 3

by Lemma 1 and the fact that ZIZm 3. Suppose that N is odd. Then

the above sum is a convolution of multiplicative functions and is therefore

=
multiplicative. Let f(n) = % p(n/d)d 2, Then f is multiplicative and
din

f(pr) > p—r/2 D p—(r—l)/2

so that lf(pr)l < 1. Hence lf(n)l <1 for all n. Thus, for odd N,
%
Ao % 2/7)* + .9 < 1.8.

But if N dis odd then AZN = —AN, and AZrN =0 if r > 2. This proves
the Lemma.

LEMMA 3. If o >1 and M > 1 then

R 0y 6 —(MM+1)0
E = z s 1iog LANO)| < w2 ”
1 R R S ML
PROOF. If o > 1, then
£@ = J n%<1+27 4+ I x %40 = 1+ D2
n=1 2 a-1

Hence



log £(0) < 27°

for ¢ > 3. Thus, if N. 1is odd, then by Lemma 2,

A l
% log ¢ (No) - —3—‘; log gmm{ - —%‘- (log T(No) - % log L (2N0))

2-No
log £(No) < —f—-

Hence we may ignore the even terms. Thus,

) : ;, ,2-(2n+1)0 : ,2-(2M+1)0 bl kY
Mel S b T Znkl = gy g0y — 24

as stated.

We list the first few AN with N odd:

N 1 3 5 7 9 11 13 | | 15
R S 5 PR b2 193 _ _793 3079
By 2 8 16 128 756 1024 6144

By the last lemma with M =8 and o0 > 1.1,
15 A
; arcsin p_cj = ; qg-log z(No) + 2610—6.
P N=1

We use the Euler-Maclaurin summation formula to evaluate 7 (0)

(see Rademacher [4,838].). Thus

N-1 1-0 v
= -0 N___ 1N~ C
z (o) nzl TR kL i kzl 8, * Ry
where
Bok ~g-2k+1
S = 2K 1 g (o+l)...(0+2k=-2)N
and IR | < |s..,|. Here B, is the 2k*®  Bernoulli number:
v MR - 2k :
B2 =1/6, 34 = 1/30, and B6 = 1/42. 1In our calculations we used

N=10, v=2 for 11<06 <3; N=10, v=1:for 3|<0< 6; N=10,



v=0 for 6<0.513; and N=7,v=0 for 13 <0 < 20. It is easily

checked that the error IRV+1I in each calculation of ¢ (o), 1.1 <0 < 20,

4 -6
is ﬁ_% 10 °. This leads to an error in log z(o), 1.1 < o < 20, which
is 5_%~10_ . Hence the error in calculating
15
) - log & (NO)
N=1

by replacing {(No) by the appropriate Euler-Maclaurin sum is
15
5_%10'6 ] <2 107
N=1
44N
for,' L.l <'g < L; 3y

The round off errors are negligible in a small calculation such as

this, but are certainly < 10—6. Hence by Lemmas 1, 2, and 3 we are able

' -0 . b g
to calculate 2 arcsin p with an error < 5 X 10 ~. But our calculations

B _ - = v
give z arcsin p 9 < %—- 510 6 for 0 = 1.192349 and z arcsin p 9 %—+ 5+10
P

6

P
for O = 1.192345. Hence the result.

§3. Proofs of Theorems 2, 3, 4 and 5
Theorem 2 is an easy consequence of

LEMMA., If o > 5, then arg(z (o+it)-1) is a decreasing function

of t.

PROOF. We observe that if f is regular and not zero on the

vertical line 0 = Ol, then
oS arg £(o,+it) = Re Ei-(s)' (5)
“dt b f !

= “+1
S Gl 1t

Therefore




£'(s) _ po L) E()-1)

¥ _ 3
arg (g (o+it)-1) = Re =377 “legey-1)”

dt
1f 0 > 3, then
ot 5 o 4 -G
Z n_g 5_3—0 + J x_odx ="3 (l-+6:i) <2 (6)
n=3 3

so that Z(s) # 1 for o > 3. Thus it suffices to show that
Re 2'(s)(t(s)-1) < O

for 0 >5. If © > 5 then

z-12%‘2_<_3‘010g3+rx'°1ogxdx=3"’(1og3+3é‘j§3+ 5
n=3 n 3 (o-1)
< (2,237
so that
o log 2 -0
g'(s) = - ) =282 =208 24 92837,
5
n=2 n 2
By (6),
[ee] — -
Z(s) - 1= ) n e, 278 7543
n=2
for- 0 >'35:; Hence
' —— -log 2 -0, =0
Re ¢'(s) (z(s)-1) = ———ia—-+ 48(6 749 )
2
=”—1—°—§—2—+566'°<0
(o}
2
for o > 5 which proves the Lemma.
To prove Theorem 2, observe that Im t(s) = 0 precisely when
arg(z(s)-1) = 0 mod m. But by (6),
arg(z(s)-1) = arg 27° + arg(1+2° | n™°)
n=3
g,-0 i
= -t log 2 + arg(1+62°3 "+1.75) (7)

i

-t log 2 + 1.18(2/3)°



for 0 > 5. The first part of Theorem 2 now follows from (7) and
.

Lemma 4. Moreover, by (7) we see that tn _satisfies
g
-t log 2 +1.16(2/3) = -nr

or

nm ’ \ eerl (2/3)0 P 2(2/3)0

tﬁ-log 2 | —log 2

which proves the theorem.

To prove Theorem 3 we observe that

+1 1if n 4dis even
2inﬂ/log <.
"] -1 if n is odd

so that if s dis on an 12 s line with n even then
L B

i -0
z(s) _l+20+e(0)+0(3 )
where €(0) > 0 as 0 > © yhile if s 1is on an 12 0 line with n
b
odd, then
1 -0
C(s) = 1 - 20+€(o) + 0(3 7).

In the case that n is even, Re Z(s) > 1 for all sufficiently large ©
while if n is odd, then Re G(s) < 1 for all sufficiently large J.
Taken with the remarks immediately preceding Theorem 3, this establishes
the theorem.

To prove Theorem 4 we need an estimate for the logarithmic

derivative of C(s).

LEMMA 5. If 0 <0 and t > 0 then

-t
me

T,

).

]
1
e, = ~log por + S o e

X
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PROOF. We have x(s) = ZSﬂs—l sin 2; I'(l1=s) so that
\J . L/
%Z (s) = log 21 + %-cot E;-- ;F-(l—s).

It is easy to see that

=P
y 20e

cot z = -1
l--e—2y

for z =x + iy, y > 0. Also (see Whittaker and Watson [9, 12.31]),

I/ _ 9
—F-(z+l) = log z + .

for x > 0. The Lemma follows easily from the formulae.
The assertion in Theorem 4 that the solutions of Re g (o+it) =0
are interlaced with the solutions of Im g (o+it) = 0 follows immediately

from

LEMMA 6. Let o < -3 be fixed. Then arg ;(o+it) 1is a decreasing

function of  t for it > 10,
PROOF. By (3) and (5),

1
- arg g (o+it) = Re 8 (s) = Re %Z (s) + Re %} (1-s).

dt %
But
1 hed Ioe)
%;-(l—s) =9 z A%%% =g Z l%%_ﬂ, - 9(1%%—2 T [ xc—l log x dx)
n=2 n n=2 o ° gr-7q 12
=529
.
if o < -3. Hence, by Lemma 5,
2.2 -t
—é-arg z(o+it) = =% log(0 si? ) + 8(20 + 1 L ) < 0
dt 42 lo] J-u-Tt



if t > 10 and o0 < -3. This proves the Lemma.

The rest of Theorem 4 follows from

LEMMA 7. If o0 < -2 and t > 1, then

2
arg z(o+it) = -t log §%€-+ %~+ ()4-0)arctan 1%9,_ %—log(l + Sg:%l—)
. t
-t 1 a
+ 0(e in TET'+ 2 (&)

. t
= -t log gy + Od(l)

L

-0 5 = t log lo| + Ot(l).

PROOF. By the functional equation (1),

arg ¢(s) = arg X(s) + arg z(1-s)
= Im(s log 2m + log sin E§-+ log T'(1-s) + log g (1-s))
=t log 2m + %-— E§-+ O(e—ﬁt) + Im log T'(l-s) + 0(20).
Also,
log I'(z) = (z2-%)log z - z + % log 2m + O(T%T)

for -m + 8 < arg z < T =6 (see Whittaker and Watson [9,812.31]).
The Lemma follows easily.

From equation (8) we see that on the curve

arg ¢(s) = a

o >> 1, we have 0 > = and t > +° as Isl + o, By (1) and (9) it is
easy'to see that IC{S)I + ® as Is[ + © on this curve. This proves

the Corollary to Theorem 4.

(9)
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Theorem 5 is easy to prove. By the functional equation (1) we

have for s =% + it,

Re £(s) = %(g(s) + g (1-s)) = %L {l-s) (L+x(s))
and

Im £ (s) =-Léi'(§(;) + C(1=8)) =—’/zig(l?é)(l+x(8))

from which the Theorem follows.

§4. Proof of Theorem 6

In this section we assume the validity of the Conjecture. We
need to show that all of the R-lines and I-lines, except those which
intersect the real axis, are described by Theorems 2and 4. That is, we

need to show that there are no R- or I-lines located entirely in the half

strip -3 <0 <5, t>0. Wecan do this with the help of the Conjecture.

LEMMA 8. Suppose that s; = 0q + ity with o, > o2t t, > 0,

and that s1 is on an R-line (or I-line) which lies entirely in the
upper half-plane. Then that R-line (or I-line) intersects the line

% *
0 =0 for any 0 < %. Moreover, any R-line or I-line is bounded

: %
above in the t-direction for o0 > 0 .
REMARK. Speiser [5,p.517] proves something similar to this.

PROOF. We first prove the Lemma for Iz—lines. We can identify

the I,-lines, as before, accordingto the value of n for which the

oy ; VA : i
12 line is asymptotic to t = Tog 3. we call this the IZ,n line. Note
that if n # n' then I and I , really are distinct I -lines.

2,n 2,n 2
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For as 0 = © on any szline we have Z(s) - 1, so that I and I

2,n 2,n"

are distinct by the Proposition. Now if I N > 0, did not intersect

2,N°
* . 7 3
0 =0 , then it must contain points s with arbitrarily large t. However,

this would imply, by the Proposition, that if n > N then also does

I

2,n
s * %

not intersect o0 = 0 , But then the line segment o + iT, 0 < 0 < 3,

would contain (by Theorem 2) >> T points at which Im Z(s)

0. However,
it is well-known how to use Jensen's Theorem to show that the number of such
points is << *log T. (See Titchmarsh [7,89.4], for example.) Hence all
(e}
*

the Iz-lines intersect 0 =0 ,

Now it is clear that an -line which contains a point s

Il 1

with Ol > % must intersect o = G*. For if not it would intersect the
Iz—lines, contrary to the Proposition.

Finally, an R-line which contains a point s; with 0o > % must
intersect 0o = O*. For if not it would intersect infinitely many I2—lines.
But each such intersection is at a zero of Z(s) and any R-line (or I-line)
can have at most one zero of Z(s) on it, by the Proposition. This proves
the Lemma.

It follows from this Lemma that on any R-line or Il—line which
does not intersect the real axis, O > -® as |s[ + o, so that by the
Corollary to Theorem 4, |Z(s)| ~ ® as |s| > o on such a curve, For
an Iz—line, IC(S)[ > ® as ls‘ + o 4in one direction while z(s) - 1

as lsi + o in the other direction. Hence, by the monotonicity asserted

in the Proposition, we have proved

LEMMA 9. Any R-~line, Il—line, or Z-curve which does not

intersect the real-axis has precisely omne zero of ¢(s) on it. A G-curve

does not have any zeros of [(s) on it.



We now prove Theorem 6. Suppose, first of all, that the Riemann-
Hypothesis is false. We will show that (ii) and (iii) of Theorem 6 are
also false. Let s, =_Ol + itl,‘ 9 > %, be a zero of z(s). Then there
is an R-line which passes through S This R-line could not intersect
6 =% at a zero of z(s) by Lemma 9. Hence (ii) is false. Similarly
there is an I-line, which is either an Il-line or a Z-curve, which passes
through S1° But thi; I-line could not intersect O = % 1in a zero of
z(s), again by Lemﬁa 9.

To complete the proof of Theorem 6 ié suffices to show that the
Riemann-Hypothesis implies (ii) and (iii). Assume the Riemann-Hypothesis.
As usual we let S(T) = %—arg z (% +iT) where the value of arg z(s) 1is
determined by continuous variation along line segments from s =3 to
s =34+ iT to s =% + iT (and arg £(3) = 0). Since we are assuming
the Riemann-Hypothesis it follows from the argument principle that we may
determine S(T) by continuous variation along any path from 3 to % + iT

which does not cross 0O = %,

LEMMA 10. Suppose that a G-curve traced leftward (i.e. for
decreasing ©) from o =5 first intersects 0 =% at the point % + iT.
Then S(T) = 0.

This Lemma is obvious since Re {(s) > 0 for any s on a  G-curve
and since (% +iT) is real and positive.

The significance of S(T) is apparent in the following

LEMMA 11. Let N(T) be the number of zeros of g (3 +it) with
b A :
0<t<T and let L(T) =1 - E;-arg X (% +it) where arg "x(s) is deter-

mined by continuous variation from s =% to s =% + iT along the line

segment and arg y(%) = 0. Then

N(T) = L(T) + S(T).



The proof is well-known (see Titchmarsh [7,§9.3] for example).

We now proceed to deduce (ii) and (iii). Every R-line or I-line
which does not intersect the real axis must intersect o = %. This is true
for Iz-lines by Lemma 8, and it ié true for R-lines and Il—lines by
Lemma 9 and the Riemann-Hypothesis. Moreover, an R-line or an Il—line
must intersect ¢ =% an eﬁen number of times (counting multiplicities)
while an Iz~line must intersect 0 =% an od§ number of times. Hence
any R-line has at least one Gram -point and an Il—line has at least one
Gram+—point. We will also use the fact that the R-lines may be identified

by the unique zero of z(s) which they contain. We prove that (ii) and

(iii) hold on each segment % + it, T, < t <T

1 2 of the line o0 =%,

where Tl and T2 are the ordinates of the first intersection of consecu-
tive G-curves with o = % (as in Lemma 10). By Lemmas 10 and 11, z(s)

has precisely

& (arg X(s+iT)) - arg X (s +iT,))

zeros in this interval. Clearly, this is the same as the number of Gram -
points in the interval. Thus the Gram -points in this interval are in one-
to-one correspondence with the zeros of z(s), which are in one-to-one
correspondence with the R-lines they are on. Since each R-line has at
least one Gram——point, it follows that each has precisely one Gram——point.
This proves (ii). Similarly, in this same interval the Gram——points out-
number the Gram+-points by one. Thus, the number of zeros of z(s) exceeds
the number of Gram+—points bv one. But there is a unique Z-curve which
intersects this interval in a zero of 7(s). The rest of the zeros of

z(s) are in one-to-one correspondence with the Gram+—points of the interval

and with the Il—lines which intersect the interval in a zero of T{s).
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But each Il-line has at least one Gram -point on 1t. This accounts for
all the Gram*—points in the interval, and it follows that an Il-line or
L IR ; ‘
a G-curve has precisely one Gram -point, while a Z=-curve has no Gram -

points. This proves (iii) and the Theorem.

§5. Open Questions

Since the Gram-points can easily be determined to any degree of
accuracy and the same is trﬁe for the G-curves to the right of o = 3,
it might be possible to determine which Gram-points are on G-curves.
Moreover, the midpoint between successive Gram—boints on G-curves might
be very close to a zero of z(s) on a Z-curve. Thus it may be possible
to predict the location of certain zeros of z(s) with greater accuracy

than usual.

*
Let O denote the infimum of numbers O suchitthat if " s - is

K
. *
on an Il-llne then 0 < 0 . It would be of interest to give an alternate
- characterization of 0, such as (2) for 0p, and to determine it
numerically.
From Lemmas 1 and 2 we see that A, =1 and

1
~%

A =-1+0 .
o r )

We wonder if IAN] <1 for all N.
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Legends for Figures

Figure 1  Real and Imaginary Curves for (r(s) with s near 1
( —— R-line, --- I-line, © Gram——point, o] Gram+—point,

x zero of Z(s))

Figure 2 Looping Effect for R-lines near 0 = %

( —— R-line, ® Gram -point, X zero of Z(s))

Figure 3 Possible Winding Effect for R-lines near 0 =1

( ——— R~line)
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