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ABSTRACT

A new formula M} = 2*¥—3 is proposed to generate primes with the least
primitive root = 2 for use as the modulus in number theoretic transforms.
The maximum sequence-length, M — 1, is achieved with a = 2. The well
known hardware word-length / sequence-length constraint problem in the
Fermat Transform is solved herein. Due to the special structure of the
new formula, the multiplication of a power of 2 can be implemented by
simple shifts and additions with binary logic circuits. Therefore, the speed
of the number theoretic transform with those moduli and a = 2 is faster
than that of the fast Fourier transform. The results of computations are
perfectly accurate without round-off error.

In summary, the number theoretic transform with the new moduli may
replace the Fermat Transform. It also has the potentla.l to replace the fast
Fourier transform in a la.rger area.



I. Introduction

In the past two decades, Fermat numbers
F, =241 (1)

and Mersenne numbe.rs
M,=2" -1 2)

where p is a prime, have been used as moduli in number theoretic transforms
for fast circular (i.e., periodical) convolution &1'1& precise deconvolution in
the area of digital signal processing [1-14]. This transform is defined as
follows. Let M be the modulus. We shall assume that M is a prime though
this assumption is not absolutely necessary. We shall workin Ry = Z/M Z,
the ring of integers modulo M. Let n be a divisor of M — 1 and let a be
an element of order n in the multiplicative group of Ryy. (If n = M —1,
then « is a primitive root of M.) Let T be the n x n matrix with entries
t;; = a' where i,j = 0,1,..,n — 1, and let U = (ug,u1,...,un_1) be an
n-vector. The transform of U is the n-vector T,,U. It is easy to see that
the inverse transform 77! has ij entry n~'a™*, where ¢,j = 0,1,...,n —
1. It is called Fermat Transform (or Mersenne Transform) if a Fermat
number (or a Mersenne number) is used as the modulusin the above number
theoretic transform. The Fermat Transform with a = 2 is also called Rader
Transform. : V

The transform behaves well under convolution. Thus, if U and V are

two n-vectors, then, their convolutionis W = U ® V, where kth component

of W is
Wk = E UmVk—m | (3)

m=0

where k = 0,1,..n — 1.

Then, in the ring Ry, we have

UV =T TuU +T.V) (4)
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where * denotes pointwise multiplication. '
|

When F; or M, have been used as modul in the number theoretic
transform, a is often chosen as 2 or \/5, and the radix is chosen as 2 for
implementation of arithmetic operations. The advantages of the number
theoretic transform over the Fast Fourier Transform (FFT) are described
as follows: '

(1) the results are exact since only integers are used;

(2) the computation speed is faster than that of FFT since the multi-
plication of a power of 2 when using the above moduli is implemented by
shifts and additions with binary logic circuits. |
However, there are some drawbacks to the use 'of F; and M, as moduli.
First of all, it is most convenient for the modulus M to be a prime. While
there is an ample su;;ply of primes of the form M, where p is a prime, the
only prime values known for F; are whent =0, 1, 2, 3, or 4. A more serious
problem though is known as the sequence-length constraint problem. When
using the above moduli it is natural to represent integers using the radix-2
since as mentioned above the multiplications necessary to compute trans-
forms become simple. However, the order of 2 in the ring Ry is relatively
small, only about the size of logM. Therefore, the maximum length of a
sequence which can be transformed is only a linear function of the hard-
ware word-length (=number of bits needed to represent the modulus). A
two dimensional implementation method was proposed by Rader, Ararwal,
and Burrus(2][4]. Usiﬁg a two dimensional implementation of a one dimen-
sional convolution, the maximum length of sequences is twice the square
of the hardware word-length. Recently, Lu and Lee[14] proposed a new
formula, M = p?" + (p = 1), to generate more primes M (including Fermat

and Mersenne numbers) for number theoretic transforms. They obtained
the maximum sequence-length equal to M — 1, which is exponentially pro-

portional to hardware word-length. However, the implementation of the



transform involves the use of radix-3 arithmetic.

In this paper, a different solution with fast speed execution to the se-
quence length problem is offered. Namely, we propose a new formula to
generate primes, M. Using these primes as moduli for number theoretic
transform, we can have both maximum sequence-length M —1 and fast im-
plementation of transforms with convenient radix-2 arithmetic. This paper
contains four sections. In section II, a special new formula for the number
theoretic transform is introduced. In Section III, a simple scheme for the
implementation of arithmetic operations require|d in the number theoretic
transform and circular convolution computati?n is presented. Section IV

gives conclusions.

II. New Moduli for Number Theoretic Transforms
In general, modulo M does not have to be a prime in number theoretic
transforms. However, we have to satisfy that both « and n are relatively

prime to M for the existence of n™!

, and for @” = 1 to hold. Moreover,
we have to satisfy the condition that a® — 1 is relatively prime to M for
each integer ¢,1 < ¢ < n — 1 which is a necessary and sufficient condition
for obtaining 7,7}, = I in modular arithmetic. If the modulus is a prime,
all conditions indicated above are easily satisﬁeh. Therefore, let M be a
prime. ‘

We propose to use moduli, My, of the form
M,=2"-3 (5)

with 2 as the least primitive root for the primes Mj. Some desired primes

generated by the above formula are listed in Table 1.



Table 1 ,
Some desired primes with least primitive root = 2

k | M = 2* — 3 | Maximum sequence-length with o = 2
3 5 4

4 13 12

5 29 28

6 61 60

9 509 508

10 1,021 : 1,020

12 4,093 - 4,092

14 16,381 16,380

20| 1,048,573 1,048,572

The hardware word-length required to represent each prime, My, listed
in Table 1 equals k which is less than 32 bits using binary logic circuits. The
maximum sequence-lenth which can be transformed is exponentially pro-
portional to the hardware word-length. This is |a., tremendous improvement
of traditional Fermat g,nd Mersenne transforms with binary logic circuits.
The sequence-length constraint problem in one dimentional circular con-
volution using number theoretic transform is solved herein. The execution
speed of the number theoretic transform with the new modulus is fa.ster‘
than that of FFT since the multiplication by a power of 2 can be imple-
mented by shifts and additions(+3) as shown in the next section.

The primes listed in Table 1 have the range 5 to 1,048,573. Among those
moduli, we can choose a suitable modulus for practical use. In general, the
above primes should provide enough choice. .

As is well known, n~! exists in a ring of intle_éers modulo M if and only
if n is relatively prime to M. Thus, an advantzlllgti‘a of M being prime is that
n~* necessarily exists. A

In the next section, we provide the implementation of the basic arith-
metic operations which are required in the number theoretic transforms

and the circular convolution.
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III. Implemention of Arithmetic Operatirf:o!ns

In this section, a scheme of the implementz:.tion of arithmetic opera-
tions for the transforms, inverse transforms, and circular convolution of the
two sequences, are presented. It includes number representation, addition,
subtraction, multiplication by a power of m, and general multiplication in
the ring of integers. Assume that the range [0,M/2] is used to represent
zero and positive numbers, and the range (M/2,M) is used ta represent
negative numbers. The integers whose absolute values do not exceed M/2
can be exactly represented in the ring of integers modulo M. In order to
obtain the fast computation speed, the value of the radix, m, should be
chosen as the value of a in the number theoretic transform, i.e., m = a.
If a prime listed in Table 1 is used as a modulu; for the number theoretic
transform, m = a = 2 is the best choice for obta.{ning the fastest execution
speed of arithmetic operations.

The method presented below is a simplified version of the general method
proposed by Lu and Lee[14].

(1) Number Representation
Use 2’s complement modulo M represent the numbers. Then, the posi-

tive number D = d;d;_1...dp in radix-2 arithmetic is

D= fjd;z‘ (6)

1=0
where d; = 0,1. The absolute value of D should not exceed M/2 as we
proposed. The negative number in the ring of integers modulo M in radix-
2 arithmetic is
t ¢
— D =—-3d2 = M — 3 d;2'(mod M). (7
=0 =0

We can implement — D by setting

— D = M + 2's complement of D(mod M) (8)
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and discarding the carry bit from the most significant bit.

(2) Addition/Subtraction

An addition operation in Modulo M arithmetic can be implemented by a
conventional addition, and a subtraction can be performed as an addition
except negating the subtrahend. If the sum exceeds the modulo M, an
additional addition of adding the 2’s complement of the modulo M to the
non-modular sum is necessary for residue reduction, where the carry from

most significant bit is discarded.

Example 1: Subtract 6 from 12 in a ring of integers modulo M =
29.

Let modulo M = 29. Assume the subtraction is implemented by radix-2
arithmetic since 2 is the least primitive root for the prime 29.

12-6 = 12 + 23 = 35 = 6 (mod 29).

29 = (11101),adiz=2

2’s complement of 29 is 00011.

01100
+10111
100011
100011
00110

We discard the most significant bit of 100011 since it is greater than 11101,
and add 00011 to it as residue reduction, we have the result of the compu-

tation, 00110 in radix-2 representation.



(3) Multiplication by a Power of «

Multiplication by a power of a is required frequently as a transform
proceeds. As o = 2, the multiplication by a power of a can be implemented
by shifts and additions. When radix-2 arithmetic is used, k-bit hardware
word-length is required to represent the numbers from 0 to M —1 in a ring
of integers modulo M. Multiplication by 2 requires a shift of one position

left and an addition of r to it, where

r = 3e, 9

cis the carry at (k + 1)th position. An example is given below to show this
method.

[

Example 2: Multiply 10 by 2? in a ring of integers modulo 29.
M =2°%—3 =29 =(11101),04iz=2,k = 5,a = 3
Let radiz = a = 2.

10 % 22 = 40 = 11(mod 29)

10 = 01010
shift left 010100
shift left 101000
+(r =)00011
01011

Product = (01011)raze=2 = 11(mod 29)



(4) General Multiplication

We store the product of non-modular multiplication of two integers
modulo M in a radix binary logic register with length equal to 2n bits. We
denote the high and low half register by P, and P, as shown below.

2k k+1 k 1

7 \. /

Fig.1 An illustration of P, and P,.

Thus, the residue reduction of the product with modulo M may be written

as

P =P+ P, x2" (10)

i.e.,

P =P +3P, (11)
Example 3 is given to illustrate this method.

Example 3: Multiply 12 by 12 in a ring of integers modulo M = 29.
M=2-3=29

. 2k = 2% 5 = 10 bits.

12x12 =144

144 = (0010010000), 4diz=2

P, = 10000, P, = 00100

Product = (11100),44iz=2 = 28 = —1(mod 29)



The above scheme of arithmetic operations for the number theoretic

transform can be imi)lemented by assembler language easily.

IV. Conclusions

Nine primes of a range from 5 to 1,048,573 are generated by a new
formula. 2 is the least primitive root for these primes. We propose to
use these primes as moduli, and 2 as the a in the number theoretic trans-
form and circular convolution calculations. Then, the maximum sequence-
length, M —1, is obtained. The sequence-length which can be transformed
is exponentially proportional to the hardware word-length. Therefore, the
hardware word-length of a micro-computer or a mini-computer-is enough
for general application purposes. The hardware word-length / sequence-
length constraint problem in the Fermat Transform has been solved herein.
Moreover, due to the special structure of the formula, the multiplication
of a power of @ (=2) in number theoretic transforms can be implemented
by shifts and additions using binary logic circuits. This results in that the
execution speed of this number theoretic transiorm is faster than that of a
fast Fourier transform.

A simple scheme of implementation of basic arithmetic operations which
are required in the number theoretic transforms and circular convolution
has been proposed. The result of calculation is exact without round-off
error.

In summary, the number theoretic transform with new moduli may
replace the Fermat Transform. It also is a good replacement of DFT and

FFT in a large area.
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