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It is my pleasure to present the first research brochure of the Department of 
Mathematics at Iowa State University, Research Highlights 2010. This brochure 
highlights some of the research performed by 12 of our faculty members, 
a selection that is somewhat random in nature and other research profiles 
will follow in the coming years. To provide the reader with an overview of 
departmental research activity, we are including research publications of 
2009/10 for (almost) all members of the faculty.

This is the first departmental publication devoted to research: Neither 
mathematics news (published until 1992) nor Math Matters (published since 
2007) provided sufficient space to emphasize research accomplishments.  We 
plan to make Research Highlights a biennial event and distribute it to supporters 
and stakeholders of the department, mainly in electronic form.

Many of you, and many of us in the Department, doubt that it is possible to 
give some impression of mathematical research in a form that is accessible to 
anybody with a broad science/liberal arts education. I hope this brochure proves 
the opposite: interesting individual articles that show at least some of the old 
and new mathematics that makes things work. We have avoided any technical 
details, but included actual and potential applications to show the breadth 
of topics faculty in the Department are seriously thinking about. If you are 
interested in more specific information about any of the articles, please contact 
the corresponding researcher.  

As in other sciences, the quality of mathematical research and of the associated 
graduate programs strongly influence each other. During the last few years, 
the ‘Mathematics’ and ‘Applied Mathematics’ graduate programs have made 
tremendous progress: We now have over 80 graduate students, 74 of these 
are in the PhD program, including 23 female and 9 ethnic minority students. 
Over the last three years, we have graduated (on the average) 8 PhD and 6 MS 
students. And, as the list of research publications at the end of this brochure 

shows, our PhD students are quite 
active in publishing.

Of course, the Department has 
also increased its instructional 
responsibilities over the last years: 
We now teach more student credit 
hours than ever before (more than 
any other department on campus), 
and for the last two years we have 
seen record numbers of incoming 
students declaring ‘mathematics’ as 
their major. We have created a Center 
for Excellence in Undergraduate 
Mathematics Education with Elgin 
Johnston as director. This Center helps 
us maintain the balance between our 
instructional and research missions, 
not an easy task when both areas show 
important and promising growth.

If you enjoyed reading the articles 
in this brochure, or if you have 
comments or remarks, we would like 
to hear from you. You may email me 
at kliemann@iastate.edu, or send mail 
to the Department of Mathematics, 
396 Carver Hall, Iowa State University, 
Ames IA 50011.

Wolfgang Kliemann
Professor and Chair

Members of the Discrete Mathematics Research Cluster talk after a seminar.



From bridges to graph theory

 The history of graph theory is 
replete with incidents of unintended 
discoveries. In 1930, Frank Ramsey 
answered an important question in 
symbolic logic. Embedded in the 
proof, however, was an unexpected 
result on graphs. Roughly speaking, 
it says that in any network – no 
matter how complicated – there is a 
relatively large, “ideal”, subgraph such 
that either every two of its points are 
connected by an edge, or every two 
of its points have no edge between 
them.  I.e., an “ideal” subgraph is 
either a clique or co-clique. In the 
words of Theodore Motzkin, Ramsey’s 
theorem states that “complete disorder 
is impossible.”

The network aspect of Ramsey’s 
result received so little attention that 
it was rediscovered by Paul Erdős and 
George Szekeres in 1935. It was Erdős 
who coined the term “Ramsey theory,” 
naming it for the Scottish logician. 

Finding how large this ideal subgraph 
must be is a fundamental question, 
but one that didn’t concern Ramsey. 
In 1959, Paul Erdős and Alfred 
Rényi made an attempt to gain better 
understanding of Ramsey theory. In 
order to do so, they invented the first 
notion of a random graph. In their 
model, deciding whether two points 
are connected by an edge is random 
(and independent), like the flipping 
of a coin for each pair of points. This 
random graph model now inundates 
computer science, physics and related 
fields. Even though more complex and 
sophisticated models have since been 
developed, the Erdős- Rényi model 
is still the best for many applications. 
Yet, for the two Hungarian 
mathematicians, their interest was 
motivated solely by theory.

The boundary between abstract 
theory and concrete applications is 
consistently blurred in graph theory 
and in the more general field of 
discrete mathematics. In 2003, Maria 
Axenovich and Ryan Martin of the 
Department of Mathematics at ISU, 
together with Louisville professor 
André Kézdy, investigated a problem 
motivated by evolutionary biology. 
This research turned out to be yet 
another example of unexpected 
discovery.

The question was asked by a 
group that included ISU computer 
science professors Oliver Eulenstein 
and David Fernández-Baca who 
wanted to know how many 
changes are sufficient to perform 
on one evolutionary tree to make it 
compatible with another evolutionary 
tree, or how many obstructions make 
two evolutionary trees incompatible. 
The mathematicians, however, were 
interested in a more general question:  
“How much work is required to 
eliminate any fixed undesired 

Before it was known as Kaliningrad, the Russian city on the Baltic 
Sea was once the Prussian village of Königsberg and the source 
of a famous mathematical puzzle. The Pregel river divided the city 
into 4 land masses spanned by 7 bridges. A question asked by the 
locals is whether a traveler could traverse each bridge exactly once 
and return home. Legendary mathematician Leonhard Euler, by 
abstracting the problem and treating it as pure mathematics, proved 
that this could not be accomplished by that particular arrangement 
of bridges. 

Euler’s original diagram of the bridges of Königsberg

The graph corresponding to Euler’s 
diagram.  The points (or, vertices) A,B,C,D 
correspond to the 4 landmasses and the 
edges a,b,c,d,e,f,g correspond to the 7 
bridges.

 It is difficult to imagine that 
Euler had envisaged that this small 
brainteaser, the origin of what is now 
known as “graph theory,” would 
be an essential tool in answering 
questions of microchip design, the 
structure of the internet, computer 
science or information theory. Graphs, 
sometimes called networks, are an 
inextricable part of modern science, 
that were first developed as pure 
mathematical structures. Graphs are 
easily visualized as points connected 
by edges.



substructure in a combinatorial 
structure?” 

Axenovich and Martin called the 
problem “the edit distance problem.” 
It is related not only to biology but 
also to an important subfield of 
computer science known as property 
testing, which is devoted to finding 
efficient algorithms that decide 
whether a given network does or does 
not exhibit certain behavior. 

The methods used to prove 
theorems in the edit distance problem 
relate to some of the most profound 
and fundamental results in the 
theory of graphs, such as Szemerédi’s 
regularity lemma. This lemma links, 
again quite surprisingly, graph and 
number theory. There was a lot of 
excitement in the air when, in the 
70’s, the news broke about Endre 
Szemerédi proving that among any 
positive proportion of integers, there 
is always an arbitrarily long arithmetic 
progression. For example, if one 
picks, arbitrarily, 0.1 percent of the 
first 3 billion integers, the chosen 
set will contain a sufficiently long 
progression like 3, 14, 25, 36, 47, 
58.... Szemerédi’s lemma, the main 
tool in proving this very deep number 
theoretic result is, in fact, a theorem 
describing the regular behavior of 
graphs.

In general, professors Axenovich 
and Martin are most interested in 
what one can conclude about a large, 
complicated graph by only knowing 
general properties of small subgraphs. 
This subject – which contains the 
edit distance problem, Ramsey theory, 
Eulerian graphs and, very often, the 
Erdős-Rényi model of random graphs 
– is an active, rapidly-growing field 
that is still being developed. Extremal 
graph theory is conflagration of not 
only deep, complex, cutting-edge 
mathematical theory but also urgent, 
necessary and practical applications.

Growing up in Novosibirsk, Russia, Maria Axenovich 
was exposed to mathematics early.  At age six she was 
conducting combinatorial arguments on her daily trips to the 
bakery—figuring out which set of coins to use to purchase 
bread.

Around age 10, Axenovich began learning several 
programming languages.  “In grade school there were a 
lot of algorithmic studies and projects,” she recalled.  “For 
example, when I was in the 4th grade, I had to write a 
training program for younger kids to teach them how to take 
a measurement with a thermometer.”  Later, during a summer 
project in her mother’s lab at the Institute of Cytology and 
Genetics, she wrote a program to analyze pedigrees used to 
study the inheritance of diseases like scoliosis.

Living just minutes away from Novosibirsk State University 
and Sobolev Institute of Mathematics allowed the high-
schooler to become involved with courses and research 

activities on campus.  While attending a seminar one evening, a project on series-parallel graphs 
caught her eye and she began working to solve the posted problem.   Axenovich found working on 
graphs with Sergey Avgustinovich as an advisor very inspiring.  It was then she began to think of 
herself as a mathematician.

“I think it is very 
difficult to make 
a significant 
improvement on 
serious problems 
using methods from 
one discipline only. 
Many great results 
of graph theory 
used techniques 
from other fields. 
So, it is important to 
take a broader view 
of things.” –Maria 
Axenovich

Maria Axenovich

His love of the game led 8-year-old little league catcher 
Ryan Martin, to pick up a copy of Bill James’ Baseball 
Abstract.

 James published the baseball abstract with pages of 
statistics from the early history of the game to the prior 
season.  He attempted to rank baseball players and even 
predict the outcome of a season based on prior statistics.  
The detailed lists of statistics and sometimes very elaborate 
formulas were intended to grade a player’s value and 
performance.

 “For example, he created a simple formula called Runs 
Created,” Martin recalled. “I’d use the formula from the 
1980 abstract and then calculate the value for players after 
the 1981 season before the new abstract came out.”  This 
early use of baseball statistics grew into a study called 
“sabermetrics,” which every major league team now uses to 
assess future talent.

 Martin found that once he understood the formula and the reasons for it, the outcome didn’t 
intrigue him so much. Fortunately, in 7th grade he started algebra, giving him more interesting 
things to think about and harder problems to solve.

 Martin thinks that for most mathematicians, the goal is to solve problems.  “For me the greatest 
joy is the accomplishment in solving the problem; it is really like a puzzle,” he explains.  “For most 
math research, you know what the answer ought to be (the picture on the box), but the pleasure is 
in putting it together.”

“I think there is a very deep connection between graph 
theory and analysis that people have only recently (say, 
in the last 4 years) started to discover, even though the 
tools that we’ve had to figure it out have  been around for 
30 years or more.

 Graph theory in particular and combinatorics in 
general are about discrete things—things you can count; 
analysis is about continuous models, such as motion.

 It has always been assumed that calculus (analysis) 
doesn’t appear to be of much use in graph theory.  But 
I think it is, in a very fundamental way—and this is 
important.  It’s more than solving a problem, it’s like 
setting up a whole new theory.   I think viewing graph 
theory in this new way will enable us to solve problems 
that we could never hope to solve before, and may reveal 
interesting problems we did not previously see.” –Ryan 
Martin

Ryan Martin



Combinatorial matrix theory research group

Hogben enjoys mentoring undergraduate research groups during the summer.

The simplest relationship between two variables x and y is a 
linear one, i.e., we can write y = a  x, where a is some number. 
The graph of this relationship is simply a straight line through the 
origin. If the actual relation between x and y is more complicated, 
say y = f(x), one can often get a first impression by linearizing the 
function f at a point (say x�*), i.e., by computing the derivative 
f ’(x*�), and by looking at the straight line through the 
corresponding point (x�*, f(x*�)) with slope f ’(x*�). This is the basic 
idea of first year calculus!

If the variables have more than one component, a linear 
relation between them is given by a matrix. Consider, e.g., x1 to 
be the value of a share in an S&P 500 index fund, and x2 to be the 
value of a share in a NASDAQ stock market index fund (these 
values change with the stock markets). Suppose you inherit an 
investment of a1 shares in the S&P 500 index fund and a2 shares in 
the NASDAQ index fund (and in this example you do not change 
the number of shares you own). Then your total wealth from these 
two investments is y = a1

. x1 + a2 . x2, a linear relation with two 
variables (the values of the shares x1 and x2) on one side, and one 
variable (just y) on the other side. The matrix here is given by 
(a1 a2). In general, a linear relation between n x-variables x1,...,xn 
and m y-variables y1 ...,ym is called a system of linear equations,  
and is given by a matrix with m rows and n columns. Just as in 
the one-dimensional case, linearizing a function y = f(x) yields the 
so-called matrix of partial derivatives (Jacobian matrix), an object 
studied carefully in Calculus III.

numerical entries, but looks at certain 
patterns of the entries, e.g. their sign 
(positive, zero, negative): The sign 
pattern of xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx xxxxxxxxxxxxxxxxxxxxxxxxxxx 
is the matrix of the signs of the entries, 
i.e., xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

The study of such ‘sign matrices’ 
is very valuable in many areas of 
applications, e.g., in economics 
where often the sign of a variable is 
known (and important), but the exact 
value is not necessarily known. A 
square (i.e., n x n) sign matrix can be 
associated to a (directed) graph, i.e., 
a mathematical object consisting of 
vertices (one for each of the numbers 
1 to n) and arcs between them (one 
for each nonzero entry in the matrix). 
The graph of the sign matrix above 
has arcs representing the entries (1,1), 
(1,3), (2,1), and (3,2); a picture of this 
digraph is:

Interestingly enough, some convincing 
results about sign matrices can be 
obtained by studying the associated 
graph.

Leslie Hogben works in 
combinatorial matrix theory, using 
techniques from linear algebra, 
combinatorics, graph theory and 
other areas of discrete mathematics 
and algebra to understand pattern 
matrices. Currently she works in two 
main areas of combinatorial matrix 
theory, 1) eventually nonnegative 
matrices and their sign patterns, and 
2) the minimum rank, maximum 
nullity, and zero forcing number of a 
graph.

Nonnegative matrices are those 
whose entries are all nonnegative. 
They play a crucial role in many 
areas of mathematics and sciences 
since they describe specic dynamical 

Because of their description of 
linear relationships, and because of 
the information that can often be 
gained by linearization, matrices are 
virtually everywhere in mathematics 
and in applications to statistics, 
natural sciences, engineering, social 
sciences, etc. In this way, many 

problems in applications become 
problems in matrix theory (also called 
linear algebra). Several interesting 
subdisciplines have gained substantial 
attention lately, such as ‘combinatorial 
matrix theory.’ 

Combinatorial matrix theory does 
not study an m x n matrix with its 
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Leslie Hogben is the author of 50 
journal articles, an associate editor 
of the journal Linear Algebra and its 
Applications, the editor-in-chief of 
the reference Handbook of Linear 
Algebra, and the secretary/treasurer 
of the International Linear Algebra 
Society. A major focus of Hogben's 
work has been the enhancement and 
diversication of the US mathematical 
workforce by doing research with 
undergraduate and graduate students. 
Less than half the mathematics PhDs 
granted by US universities are earned 
by Americans, and this is regarded as a 
serious national problem by the National 
Science Foundation (NSF). Furthermore, 
African Americans, Latinos/Latinas, 
and women are under-represented in 
the mathematical workforce, wasting 
a pool of talent. Research experience 
as an undergraduate (or early graduate 
student) and the personal mentoring 
by a faculty member that occurs in 
this work have been shown to play an 
important role in increasing interest 
among undergraduates and retention 
among doctoral students, especially 
students from under-represented groups. 
Hogben directs the Department's NSF-
funded summer research experience for 
undergraduates (REU). She is a leader 
in early graduate research (EGR), having 
run a research group for many years that 
included early graduate students and 
developed the department's EGR course. 
She has mentored 24 undergraduates 
in research and 16 graduate students 
though the Combinatorial Matrix 
Theory Research Group, EGR course 
and summer research programs for 
graduate students, in addition serving 
as the major professor for 3 students 
who have earned a PhD and 3 current 
doctoral students. She strives to build 
research connections with faculty at 
colleges and universities that emphasize 
undergraduate teaching, and has 10 
faculty collaborators at such institutions.

Hogben founded and leads the Combinatorial Matrix Theory Research Group.  Pictured 
here is a group from Summer 2010.  

systems through the model xm+1 = 
Axm. Here xm+1 and xm are variables 
with n components, A is a n x n 
matrix, and m denotes a time instant, 
m + 1 the next time instant. The 
interesting question is: What will 
happen to xm as m becomes large? 
Many models in the natural and social 
sciences are of this form, and one 
would like to know if xm approaches 
zero, or grows to infinity, or shows 
some other pattern. The key to 
this problem is understanding the 

behavior of Am, which comes from the 
simple observation that xm+1 = Axm = 
A . (Axm-1) = A2xm-1 = ... = Am+1x0, 
where x0 is the initial value for 
the variable under consideration. 
Eventually nonnegative matrices 
are those for which all entries are 
nonnegative starting at some product 
Am for some m (even if this time 
instant m is very large). An example of 
such a matrix is A =                , for 
 
 
which we have A . A = A2 =
that is positive; one can  
show that Am is positive for 
all m > 2. Hogben and co-authors 
have described sign patterns for 
which all matrices having that pattern 
are eventually positive, and have 
introduced a subclass of eventually 
nonnegative matrices that has 
mathematically ‘nice’ properties.

The nullity of a matrix A is the 
number of independent solutions x to 
the system of linear equations Ax = 0. 
The maximum nullity problem for a 
graph is to determine the maximum 
nullity of the family of matrices whose 
nonzero pattern is described by the 
graph. For a fixed size of matrix, 
higher the nullity means the matrix 
carries less information. High nullity 
matrices are important in applications 
because they can be easier to work 
with. For example, in the study of 

communication in computer science, 
it is desired to find high nullity 
matrices that describe the transfer 
of information between computers, 
thereby minimizing the amount of 
information that must be exchanged.

For a (directed) graph with each 
vertex initially colored either black 
or white, apply the color change rule 
that if a vertex has an arc to exactly 
one white vertex, then that white 
vertex changes color to black. The 
zero forcing number of a graph is the 
smallest number of vertices needed 
to be initially colored black so that 
repeated applications of the color 
change rule will result in all vertices 
being black. The zero forcing number 
provides an upper bound to the 
maximum nullity of a graph. From a 
combinatorial matrix perspective, this 
is how zero forcing number arose, to 
study the minimum rank/maximum 

nullity problem. But independently, 
physicists began to study what they 
call graph infection, another term 
for applying the color change rule. 
Graph infection is used to study 
control of quantum systems. Hogben 
and her students and other coauthors 
have obtained a variety of results on 
minimum rank and zero forcing, and 
are sharing results with the physicists 
working on graph infection.
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Things that move are 
often called ‘systems’, such 
as stars, cars, blood in 
vessels, stock prices etc, 
and they are mathematically 
often represented using 
‘differential equations’. These 
are mathematical models that 
describe the current state of 
a system and its tendency for 
change. E.g., describing a car 
that travels down main street 
we note where the car is right 
now, together with its velocity 
and acceleration (in a specific 
direction), and we can predict 
quite accurately where the car 

will be in a few seconds from 
now. By the way, the ‘differential’ 
actually comes from ‘derivative’ 
as we learn it in calculus.

Of course, the actual behavior 
of a system usually depends 
on the many influences that 
act on it. Going back to the car 
example, this includes road 
parameters (such as surface 
roughness), weather (such as 
wind speed and direction), 
position of the car accelerator 
and the brake pedal, the 
position of the steering wheel 
and many others. Some of these 
parameters cannot be influenced 

by the driver (wind, potholes), 
others can (accelerator, brake, 
steering wheel). Some of these 
influences are rather random 
(weather, size and frequency 
of potholes), others are natural 
constants (gravity acting on our 
car).

All in all, we end up with 
a system description that 
has at least a few ‘differential 
equations’ with fixed or random 
parameters, and some control 
inputs that we can use to make 
the system do what we would 
like it to do (such as steering a 
car). The analysis and design 
of such systems is at the heart 
of my mathematical research. 
Here ‘analysis’ means that we 
try to understand what behavior 
the system will display, and 
‘design’ means that we try to 
come up with parameter values, 
input channels etc that allow 
us to control the system in 
the way that it is intended to 
function. Mathematically, this is 
a combination of control theory, 
dynamical systems theory, and 
the theory of random processes. 
My main area of application 
is national infrastructure, in 
particular large electric power 
systems. 

Described by colleagues as “a superb teacher at every level of the professorate,” 
Kliemann thoroughly enjoys teaching.  Also during his tenure, Kliemann has consistently 
encouraged research activity and development of research programs and ideas, and 
acted as a change agent for both educational and economic development outreach 
programs.

differential equations
Using

to understand and improve

electric power system behavior



After taking a course on numerical methods for 
differential equations Kliemann taught during 
his sabbatical at the Universidad Catolica 
de Chile, PhD student (Universidad de Chile) 
Humberto Verdejo wrote a paper with his major 
professor, Luis Vargas, and Kliemann which he 
then presented at NAPS in Calgery.  Following 
this experience, Verdejo arranged to study 
with Kliemann at ISU for one year to develp an 
analysis for real power systems.

Electric power systems are 
large interconnected systems 
of generators, lines, and loads 
(or users). The dynamic (or 
time varying) behavior of these 
systems is described by large 
systems of (several hundred) 
coupled ‘differential equations’, 
with controls used to keep 
the power supply reliable 
and stable throughout the 
country. From 1993 to 2001 I 
worked with Aziz Fouad and 
Vijay Vittal (both members 
of the National Academy of 
Engineering) on developing 
nonlinear methods for power 
systems stability design, 
resulting in over 25 papers 
and reports. These methods 
have since been adopted by the 
IEEE (Institute of Electrical and 
Electronic Engineers); compare 
the 2005 IEEE Committee 
Report Inclusion of Higher Order 
Terms for Small-Signal (Modal) 
Analysis by the Task Force on 
Assessing the Need to Include 
Higher Order Terms for Small-
Signal (Modal) Analysis. This 
technology is making its way 
into software and control 
settings at the largest utility 
companies in the US and 
Canada.

We have recently begun to 
analyze electric power systems 
for which the random influences 
are modeled explicitly. While 
loads (consumer behavior) 
always had a random character 
(the utility company does not 
know when you go home and 
turn on your lights), these 
stochastic models have become 

to understand and improve

electric power system behavior

more important with the 
recent emphasis on renewable 
energy sources: many of these 
resources themselves follow 
random dynamics (wind, 
waves, sun, …) that need 
to be incorporated into the 
power systems that use these 
sources. Together with a group 
of mathematicians, electrical 
engineers and statisticians 

(in Chile and the US) we are 
developing new methodology 
and software to understand 
reliability and stability issues of 
electric power systems under 
random perturbations – with the 
hope (and expectation) that this 
will lead to better system design 
principles that can be used some 
day by the utility industry.

Kliemann’s research interests 
encompass the areas of dynamical 
systems, stochastic differential 
equations, and control theory and their 
intersections and application to diverse 
scientific questions.  Among his more 
“pure” mathematical contributions, 
Kliemann is known for his contributions 
to “deterministic dynamical control” 
and “asymptotic analysis of stochastic 
differential equations.”  

Kliemann is also known for his ability and 
interest in interpreting theoretical work 
in terms of applications.  In particular, 
in work with a variety of researchers 
across quite different fields such as 
neuroscience, mechanical engineering, 
electrical engineering and statistics, 
Kliemann has addressed aspects of 
the growth of nerve cells in the brain, 
reliability in mechanical systems, and 
electrical power network analysis. 

Currently Chair of the Department of 
Mathematics, Kliemann is the author or 
coauthor of 90 refereed publications, 
15 books or chapters in books, 11 book 
reviews, 3 popular science articles 

and has been principle investigator or 
co-pi on 22 research grants of various 
types ranging from grants to organize 
conferences to full-fledged research 
grants.  His vita lists some eleven 
pages of plenary and invited lectures at 
international conferences, seminars and 
colloquia.  He has been actively involved 
in building international programs in 
both graduate education and research.



A mathematical paradigm for surgery 
as a cure for cancer

Cancer! The very word strikes 
terror into the hearts of those who 
are told that they or a loved one has 
it. It is not just a single disease for 
which one can obtain a preventive 
vaccination or treat with an antibiotic, 
but a family of diseases with various 
causes, genetic, environmental, or 
systemic such  as the aging process 
itself.  The longer one lives, the greater 
are the chances for biochemical 
miscues during natural cell 
replacement within the body.  Indeed, 
statistically speaking, the older one 
is, the more susceptible one is to the 
disease.

One of the classical treatments for 
cancers which manifest themselves in 
tumor form is surgery. After removal 
of the offending mass, the patient 
will ask “am I cured?” or “Will it 
come back?”  The surgeon’s cautious 
reply is usually something like: 
“Well, we think we removed all of 
it, but we cannot be sure that it did 
not metastasize or spread to other 
organs or tissues. If it doesn’t reappear 
after a few years, it probably did not 
metastasize and it is highly unlikely 
that it will return.”

So, how does cancer spread? 
Why does one need to wait so long 

to be sure that the disease does not 
return?  And why do some people 
remain disease free while for others 
the disease returns at some other site 
in the body?

Harvard scientist Bruce Zetter2 
proposed that the development of 
secondary tumors may be affected by 
behavior of the growth factors and 
growth factor inhibitors secreted by 
the primary tumor.  We know that 
growth factors secreted from the 
primary tumor have a rather short 
half life and thus cannot diffuse 
very far without being degraded or 
deactivated, while growth factor 
inhibitors have a much longer half 
life and are thus able to diffuse over 
longer distances.   This means that 
while the primary tumor is present, 
the growth factor inhibitors it secretes 
are more likely to impact potential 
nearby secondary tumors than the 
growth factors, keeping the area near 
the primary tumor free of additional 
tumors.  When the primary tumor 
is removed, the impact of growth 
factors expressed by any very small 
secondary tumors present increases 
and additional tumors may appear.

In mathematically modeling this 
phenomenon,  Boushaba, Levine and 

Nilsen-Hamilton3 began by identifying 
a suitable set of biochemical players 
and an associated biochemical wiring 
diagram that describe how the 
activating agents expressed by the 
secondary tumor are suppressed by 
the deactivating or inhibitory agents 
expressed in excess by the primary 
tumor.

Next, the group turned the wiring 
diagram into a system of partial 
differential equations that describe 
the space and time evolution of the 
concentrations of the biochemical 
players and the sizes of the primary 
and secondary tumors. The system 
was then approximated by a system of 
twelve ordinary differential equations 
(a compartment model with six odes 
in each compartment coupled by the 
separation distance L between the 
tumors).

In comparing the extinction and 
growth times for the secondary tumor 
with and without removal of the 
primary tumor, the group found that 
proximity can play a significant role.

As you can see on the graph, for 
secondary tumors more than 11.7 
cm from the primary tumor, with 

or without surgical 
removal of the primary 
tumor, the secondary 
tumor will grow.  
However, the growth 
will be faster (growth 
time smaller)  after 
surgery than  when 
the primary is present. 
Likewise, for secondary 
tumors less than 7.7 
cm from the primary 
tumor, with or without 
surgical removal of the 
primary tumor, the 

secondary tumor will become extinct.  
However, the  presence of the primary 

Thirty days after the growth of a malignant tumor (left) is removed, while no secondary tumors 
were apparent, several appeared (right) within 5-7 centimeters from the excision site.1 



tumor shortens the time of extinction.
It is within the window of 

distances between 7.7 cm and 11 cm 
from the primary tumor where the 
discussion around surgical removal 
of the primary tumor is most critical.   
In this scenario, the secondary tumor 
in this window will become extinct 
if the primary tumor is not surgically 
removed while it will grow to the size 
of the former primary tumor if the 
primary tumor is surgically removed.

The simulations illustrate that 
the size and location of this interval 
is very sensitive to the chosen values 
of the growth factor half life and the 
(latent) growth factor inhibitor half life 
(the jagged appearance of the curves is 
a numerical artifact).

The simulations illustrate that 
the size and location of this interval 
is very sensitive to the chosen values 
of the growth factor half life and the 
(latent) growth factor inhibitor half 
life.

It should be noted that the scale 
of time suggests that the model 
overestimates the time at which the 
secondary tumor will be visible (300 
to 500 days instead of 30 to 50 days). 
There are several reasons for this. 
First, as remarked above, the results 
are very sensitive to the half lives of 
the key players. The values used are 
taken from in vitro measurements 
while the tumor illustrated is clearly 
an in vivo observation. 

Moreover, transport of the 
molecular players here was assumed 
to be only by diffusion, a relatively 
slow process. Transport by convection 
cannot be excluded because the 
ambient pressure in tumors is 
known to be larger than the ambient 
pressure in the surrounding tissue 
(one of the reasons chemotherapy is 
such a traumatic cancer treatment). 
This pressure head is responsible 
for accelerating the transport of the 
molecular players from the primary to 
the secondary tumor.

The model we propose here is 
only one possible explanation for the 
growth of secondary tumors after the 

Results reveal two vertical asymptotes; one at 7.7 cm and the other at 11.7 cm. 
(The jagged appearance of the curves is a numerical artifact.)

Howard A. Levine (Math) and Marit Nilsen-Hamilton 
(Biochemistry, Biophysics and Molecular Biology)

surgical removal of a primary tumor. 
It has been suggested that perhaps 
the growth of secondary tumors 
was promoted by a large number 
of factors produced during wound 
healing following surgeon’s resection. 
This is also possible. However, most 
of the growth factor induced by the 
surgeon’s knife would be at or very 
near the wound site. This wound 
induced growth factor should induce 
secondary tumor growth very near 
the wound site and not remote from 
it as is observed. Moreover, in order 
for there to appear secondary tumors 
at a more remote distance from the 
primary tumor site, there must have 
been some secondary 
tumor cells at that remote 
site to begin with unless 
some mutational events 
occurred in consequence of 
the resection.

A more detailed report of 
this study3 is available online 
at www.math.iastate.edu/pdfs/
LevineMathMatters.pdf.

1 V. De Giorgi, D. Massai, G. 
Gerlini, F. Mannone, E. Quercioli, and 
P. Carli, Immediate local and regional 
recurrence after the excision of a polypoid 
melanoma: tumor dormancy or tumor 
activation?, Derm. Surgery, 29 (2003), 
pp. 664-667.

2 B. R. Zetter, Angiogenesis and 
tumor metastasis, review, Ann. Rev. 
Medicine, 49 (1998), pp. 407-22.

3 K. Boushaba, H. A. Levine and 
M. Nilsen-Hamilton, A mathematical 
model for the regulation of tumor 
dormancy based on enzyme kinetics, 
Bull. Math. Biol. 68(2006), pp. 1495-
1526.



Dedication, collaboration and enthusiasm are 
Liu’s equation for success
Hailiang Liu’s general research interests lie in the area of 
computational and applied mathematics. Liu is particularly 
interested in the combination of analysis and numerical methods 
for the resolution of multiscale problems arising in various scientific 
fields such as fluids, gases, plasmas and polymers.  Partial 
differential equations (PDEs), the governing equations that quantify 
physical phenomena, are the common framework in his research. 
Liu’s work has involved several PDEs which include hyperbolic wave 
equations, kinetic transport equations, and Schrödinger equations. 

Hyperbolic wave equations are 
mathematical models to describe 
wave motion in daily life.  For 
example, light waves and acoustics 
waves are governed by linear wave 
equations.  These have applications in 
geosciences, seismology and medical 
imaging.   Nonlinear hyperbolic 
conservation laws are to describe 
shock waves arising in gas motion, the 
solution is extremely important for the 
design of airplanes that are stable in 
turbulent air.

Kinetic equations play a central 
role in many areas of mathematical 
physics, from micro- and nano-physics 
to continuum mechanics. They are an 
indispensable tool in the mathematical 
description of applications in physical 
and social sciences, from semi-
conductors, polymers and plasma 
to traffic networking and swarming. 
The ultimate goal of Liu’s NSF Focus 
Research Group (FRG) is to develop 
novel analytical and numerical 
methods based on kinetic descriptions 
of complex phenomena with multiple 
scales and with a wide range of 
applications.

Fundamental in quantum 
mechanics, the Schrödinger equation 
describes the quantum state of 
physical systems in time.  It is as 
central to quantum mechanics 
as Newton’s laws are to classical 
mechanics.  It is a wave equation in 
terms of the wave function which 
predicts analytically and precisely the 
probability of events or outcomes. 
The detailed outcome is not strictly 
determined, but given a large number 
of possible events, the Schrödinger 
equation will predict the distribution 
of the results. 

Conferences organized by Liu are typically well attended, as was the Midwest Numerical Analysis Day (above) held this 
past April on the ISU campus.  Liu sees such events as opportunities to remain current and build potential collaborations.

Hyperbolic wave equations Kinetic equations Schrödinger equation



a rather difficult problem decades 
ago.  With collaborators, Liu has 
developed a systematic construction 
of Gaussian beam superpositions for 
a large class of wave equations subject 
to highly oscillatory initial data, and 
obtain the optimal error estimates in 
the appropriate norm. The obtained 
results are valid for any number of 
spatial dimensions and are unaffected 
by the presence of caustics.

Indeed, there are many cases where 
a wave motion is highly oscillatory, 
like light waves, and computing 
these can be very time consuming.  
Beams turn out to be very efficient 
for resolving these situations, creating 
enormous potential for applying 
Liu’s recovery theory to diverse 
applications.

Currently, two graduate students, 
Hui  Yu (below, left) and Nattapol 
Ploymaklam (right),  are working on  
Liu’s  NSF-funded FRG project.

Yu’s research focus is on 
development of entropy satisfying 
methods for kinetic models of 
polymers (see images below).

Ploymaklam studies fast algorithms 
for recovery of high frequency wave 
fields, for which a fast level set 
algorithm is essential (see images 
above, right).

 

In one of his current  research  
projects, Liu is working to develop 
a recovery theory of high frequency 
wave fields, as part of the National 
Science Foundation-funded  FRG 
(Focused Research Group) project  
on Kinetic description of multi-scale 
phenomena: theory, computation and 
applications.    

In the computation of wave 
propagation, when the wave field is 
highly oscillatory, direct numerical 
simulation of the wave dynamics 
can be prohibitively costly and 
approximate models for wave 
propagation must be used.   The 
conventional ray method will be 
adequate if the field of rays at no point 
loses it regularity. In realistic problems 
we virtually always have to deal with 
caustics, where rays concentrate 
and the predicted amplitude by 
the ray method is unbounded and 
hence unphysical.   Recovery of high 
frequency wave fields beyond caustics 
has long been a challenging problem.

Gaussian beams are asymptotically 
valid high frequency solutions to wave 
equations, concentrated on a single 
curve through the physical domain. 
Superpositions of Gaussian beams 
provide a powerful tool to generate 
more general high frequency solutions 
that are not necessarily concentrated 
on a single curve. The accuracy of 
Gaussian beam superpositions in 
terms of the wavelength is essential for 
the recovery theory, and was thought 

These images illustrate the capacity of the entropy satisfying method to quickly capture the equilibrium distribution of polymers when 
the initial distribution is concentrated at four isolated points.

This image shows the evolution of a circle 
placed in a single vortex flow.  The time 
required for the numerical simulation is 
reduced by a factor of 10 or more while 
maintaining the same accuracy.

A typical project

Ability to get information 
from a specific equation The Dio L. Holl Chair of Applied 

Mathematics, Liu possesses a rare 
combination of expertise in analysis, 
numerical methods and physics. These 
are talents that promise potential 
collaborations with researchers in 
science and engineering.  Liu has 
had continuous support from the 
National Science Foundation, and 
has made significant and substantive 
contributions to such diverse areas as 
critical threshold dynamics, alternating 
evolution methods, level set closure of 
kinetic equations and recovery of high 
frequency wave fields.

Mentoring student 
researchers

These images show multivalued 
velocities of the semiclassical limit of the 
Schrödinger equation.  The time required 
for the numerical simulation is reduced by 
a factor of 20 or more while maintaining 
the same accuracy.

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3



About 400 years ago, Pierre 
de Fermat wrote down on 
the margin of a book that the 
equation Xn + Yn = Zn has no
integer solutions when n > 2, 
unless X or Y or Z are 0. Since 
then, finding solutions to 
this so-called Fermat's Last 
Theorem has inspired many 
generations of mathematicians 
and mathematics amateurs. It 
is like a marvelous destination 
described by Marco Polo 
which inspired explorers like 
Columbus to adventure to new 
continents. In 1993, Andrew 
Wiles at Princeton announced 
that he had a found way to 
validate Fermat's ingenious 
claim. To outsiders, this ended 

Number theory: Solving the mysteries 
of numbers

the haunt of Fermat's spirit; to 
the insiders, Wiles' noble proof 
brought another fundamental 
revolution to mathematics. 

Wiles approach, built on 
the recent advances in algebra, 
geometry, number theory, and 
topology (the study of the 
properties of curved spaces 
that are preserved through 
deformations, from which 
we can tell the fundamental 
differences between apples 
and donuts), created powerful 
tools suited for cracking the 
some well-kept secrets of 
mathematics. His approach 
opens the door to many 
influential programs and 
philosophies initiated by 

mathematical giants like Jean-
Pierre Serre (who won the two 
highest honors in mathematics: 
the Fields medal (the ‘Nobel 
Prize of Mathematics’), and 
the Wolf price) and Robert 
Langlands (another Wolf prize 
winner).

Ling Long's main research 
interest lies in number theory, 
especially arithmetic geometry 
- the study of arithmetic using 
algebra, geometry, topology, et 
al. Modular forms are functions 
on the complex numbers 
that satisfy certain functional 
equations (or symmetries). 
The theory of modular forms, 
therefore, belongs to the area 
of complex analysis, but it also 
shows up in combinatorics 
and string theory in physics. 
Most importantly, the theory 
of modular forms has been the 
central focus of number theory 
during the past century, and its 
importance is manifested in the 
crucial role this theory played 
in the proof of Fermat's Last 
Theorem.

A profound program 
called ‘dessin d'enfants’ 
(‘child’s drawing’ in French) 
was proposed by another 
mathematical titan, Alexander 
Grothendieck, in 1984. These 
‘drawings’ of simple graphs 
connect properties of complex 
functions to certain surfaces and 
symmetries of these surfaces. 
In this setting, modular forms 
essentially catch the relations 
between different surfaces that 

Number theory - the study of numbers, in particular, whole 
numbers - is one of the most sophisticated branches of 
mathematics. 

From the time of the Greeks, many great problems in number 
theory have fascinated mathematicians, and motivated the 
developments of many fundamental theories. 

Nowadays, number theory has also become an applicable 
science and has seen applications to physics, chemistry, 
biology, computing, engineering, coding and cryptography, 
random number generation, acoustics, communications, 
graphic design and even music and business (see, e.g.,  the 
book Number theory for computing by Song Y. Yan, Springer 
Verlag, 2002 (2nd edition)). For instance, many public-key 
cryptography schemes that provide internet security use 
number theory e.g. the RSA Cryptosystem, or elliptic curve 
cryptography. 



are linked by the ‘drawings’.  
Therefore, ‘dessin d'enfants’ 
gives a nice explanation 
why modular forms arise 
naturally in many settings, 
sometimes natural sometimes 
totally unexpected.  In reality, 
modular forms are also used 
to build models for efficient 
communication networks.

Among all modular forms, 
there is a special class called 
congruence modular forms 
whose symmetries can be 
described according certain 
‘modulo n’ arithmetic on 
the numbers. The theory of 
congruence modular forms 
is well-developed due to a 
nice machinery called Hecke 
theory and continuous efforts 
of mathematicians including 
the Indian genius Srinivasa 
Ramanujan, Erich Hecke, 
and Pierre Deligne, another 
Fields Medalist.  However, 
noncongruence modular 
forms, i.e. modular forms not 
in this special class, remain 
mysterious.  As a matter of 
fact, the majority of modular 

Ling Long loves to work with motivated 
students and has an extensive 
research network. She works with 
collaborators at Cambridge, Cornell, 
McGill, Penn State, Purdue, the 
University of Illinois at Chicago, and 
elsewhere on papers and proposals. 
Long also actively mentors female 
mathematicians. One of her projects 
on modular forma involved three junior 
female number theorists at other 
institutes.

forms are noncongruence 
and it has become clear that 
noncongruence modular forms 
deserve a thorough study 
especially from the view point of 
‘dessin d’enfants’.

In late 1960's Atkin and 
Swinnerton-Dyer initiated a 
serious study of noncongruence 
modular forms using an 
ingenious empirical and 
theoretical combined method, 
and major developments in 
this direction were made by 
Scholl. Ling Long's interest 
in noncongruence modular 
forms was ignited by her earlier 
work on arithmetic geometry, 
and much of her excitement 
for the area comes from the 
Atkin-Swinnerton-Dyer and 
Scholl approaches. During the 
past few years, she has made 
several breakthroughs to long 
standing open problems in this 
area and gradually developed 
a research program with 
increased outside recognition.  
One of her fascinating projects 
is to understand a mysterious 
and intriguing link between 

noncongruence modular 
forms and automorphic 
forms, a generalization of 
congruence modular forms, in 
the framework of Langland's 
philosophy which governs 
Wiles' proof of Fermat's 
Last Theorem. Some of her 
work, such as characterizing 
the arithmetic behaviors of 
noncongruence modular 
forms, has applications to the 
conformal field theory that is 
important in physics.  Currently, 
Long’s research projects are 
supported by the National 
Science Foundation. Ling 
Long's vision is to lay down 
a fundamental framework for 
the theory of modular forms in 
general which can be applied to 
other disciplines. 

Long (left) and colleague Richard Ng (right) visit with now AMS president George 
Andrews after his presentation on the mathematical genius of Ramanujan.   Long was 
instrumental in bringing Andrews  to campus to give the Miller Distinguished Lecture.



Anastasios Matzavinos, assistant 
professor of mathematics at Iowa 
State University, said research, which 
uses differential equations, has shown 
mathematics can take the guesswork 
out of such transfers. Matzavinos and 
mathematicians and plastic surgeons 
from Ohio State University have 
developed mathematical models of 
the blood supply and oxygen in tissue 
segments. The modeling could reduce 
failures in reconstructive surgery.

Matzavinos is one of the authors 
of the study published in the July 
21, 2009 edition of the Proceedings of 
the National Academy of Sciences. The 
research is supported by the National 
Science Foundation.

Tissue transfers are often used to 
rebuild body parts damaged by disease 
or injury, such as the reconstruction 
of a patient’s breast following cancer 
surgery. In this example, a plastic 
surgeon will cut away a segment of the 
patient's tissue, often from the lower 

abdominal area, and reattach it to 
restore the patient’s breast.

The removed tissue, called the flap, 
is fed by perforator vessels, a vein and 
artery that travel through muscle to 
support skin and fat. Matzavinos said 
surgeons believe the vessels must be 
at least 1.5 millimeters in diameter 
to provide oxygen flow to sustain the 
flap.

In earlier procedures, physicians 
removed the skin and underlying 
muscle. The more-invasive procedure 
resulted in abdominal immobility 

Mathematical modeling using 
differential equations takes 
guesswork out of live 
tissue transfer

Computational simulations of oxygen distribution (a) 
in artery blood and (b) in tissue after four hours of 
tissue reperfusion in the case of a small rectangular 
tissue flap. 

Figure showing a computational simulation of the distribution of arterial blood pressure 
and the corresponding pressure streamlines within a small rectangular tissue flap.  The 
pressure streamlines indicate blood-flow trajectories.

Mathematics is playing a role in efforts by plastic surgeons 
to ensure success of live tissue transfers from one part of a 
person’s body to another.

In the first published quantitative model of tissue transfer, 
physicians and mathematicians have teamed to ensure tissue 
segments chosen for transfer will receive enough blood and 
oxygen to survive.



and loss of strength. Surgeons now 
routinely take only the fat tissue and 
the vessel. However, because the 
muscle is no longer transferred, the 
diameter of the vessel must be the 
correct size to provide enough blood 
for the flap to live.

“Right now there is no medical 
protocol for this,” said Matzavinos. 
“Surgeons only use their experience 
and trial and error.

If we know more about the 
relationship between the size of the 
perforated blood vessels and the size 
of the tissue flap to be transferred, the 
surgeries will be more reliable.”

If the initial blood oxygen levels in 
the transferred tissue are not at least 
15 percent of the corresponding levels 
in blood, according to the study, the 
tissue farthest from the vessels will 
begin to die. This results in additional 
surgery and sometimes the entire 
procedure must be redone.

Matzavinos said measuring the 
blood flow through small vessels and 
the thousands of tiny capillaries is 
the challenge. “We don’t know the 
exact vascular structure of the tissue,” 
he noted. Researchers, however, 
developed a way to average the oxygen 
concentration of the capillaries.

The mathematical model uses 
three values: the average oxygen 
concentration in the capillaries, the 
rate of exchange from vessels to tissue 
and the pressure under which the 
blood is flowing through the vessels.

Five differential equations provide 
a range between the flap size and the 
needed diameter of the vessels.

“This is a new predictive tool that 
can provide consistent results for 
physicians,” Matzavinos said.

The mathematical model is still 
under development and will need 
to be tested. However, Matzavinos is 
confident it can someday be part of 
an imaging and software package that 
will provide surgeons with reliable 
data on the likelihood of survival of 
transferred tissue.

Matzavinos’ research in computational biology spans a diverse range of topics and biological 
systems. The figure above shows computational simulations of solid tumor growth in the 
presence of an immune system response. Numerical predictions of such computational models 
make it possible to comprehend the mechanisms involved in the appearance of spatio-temporal 
heterogeneities detected in solid tumors infiltrated by cytotoxic lymphocytes. 

The need to interpret and extract 
possible inferences from high-
dimensional datasets has led over the 
past decades to the development of 
dimensionality reduction and data 
clustering techniques.

Scientific and technological 
applications of clustering 
methodologies include among others 
bioinformatics, biomedical image 
analysis and biological data mining. 

So-called fuzzy clustering methods 
are often used in the study of high-
dimensional data sets, such as 

microarray and other high-throughput 
bioinformatics data. A fuzzy clustering 
algorithm, DifFUZZY, which utilises 
concepts from diffusion processes in 
graphs and is applicable to a larger 
class of clustering problems than other 
fuzzy clustering algorithms has been 
developed by Anastasios Matzavinos, 
Sijia Liu and colleagues from the 
University of Oxford in UK and 
Lincoln University in New Zealand. 
The algorithm has been implemented 
in Matlab and C++ and is available at:  
www.maths.ox.ac.uk/cmb/difFUZZY



Hopf algebras and modular categories:
Mathematics of symmetry in nature

The sense of symmetry is a 
natural instinct of mankind, and 
the appeal of symmetry has been 
a guidance for understanding 
nature since the dawn of science. 
The symmetry of geometric 
objects can be easily visualized 
but it may not be obvious to 
formulate in a theoretical language 
which provides a foundation for 
further investigation. The “hidden 
symmetry” of a physical system is 
generally unlikely to be recognized 
unless that kind of symmetry has 
been studied or understood in a 
certain form. These theoretical 
understandings of symmetries have 
been provided by the mathematics 
culture since the beginning of 
human civilization.

The concept of group began to 
take shape in the 19th century 
in the course of studying the 
symmetry of polynomial equations. 
However, the application of group 
theory to molecular symmetry 
in inorganic chemistry, and to 
elementary particles in high 
energy physics was not discovered 
until the twentieth century. 
These historic interplays between 
mathematical symmetry and 
science have provided powerful 
testimony for the scientific 
importance of algebraic structure 
in mathematics.

The symmetry of a geometric 
figure or the symmetry of a 
3-dimensional regular array of 
points can be described by the 
collection of rotations and reflections 
which leave the figure or the array 
appearing to be unchanged. To 

illustrate this kind of symmetry 
groups, one can consider a square 
locating in a plane:

If one rotates the square by 90o, 
180o, 270o and 360o about its 
center, the square appears to be 
unchanged. The four rotations 
form the cyclic group Z4 and this 
group describes the rotational 
symmetry of the square. If one 
allows to flip over the square, then 
the reflections about any of the 
four axes of the square will also 
leave the square appearing to be 
unchanged. These eight operations 
form the group D4 which describes 
the symmetry of the square 
considered in our 3-dimensional 
space.

The concept of group is a 
mathematical abstraction of the 

symmetries of geometric figures. 
Hopf algebras can be viewed as 
generalized groups, and they 

were originally introduced by 
Heinz Hopf in algebraic topology, 
a branch of mathematics which 
studies the spatial properties that 
are preserved under continuous 
deformations of objects. Modular 
categories are algebraic structures 
that arise naturally in rational 
conformal field theory, which is a 
branch of mathematical physics 
concerning elementary particles, 
the fundamental constituents of 
matter. One important relation 
between Hopf algebras and 
modular categories is that the latter 
can be constructed from certain 
Hopf algebras.

It was realized lately by 

symmetrysymmetry

A gathering of the Representation Theory Seminar.  Ng (at board) and colleague 
Tathagata Basak started the seminar in an effort to better understand modular 
categories and their relations to different branches of mathematics and physics.



Siu-Hung Ng's present research 
interests lie in the area of 
Hopf algebras, modular tensor 
categories, and some of their 
invariants called Frobenius-Schur 
indicators. 

His research program has been 
continuously funded by the 
National Security Agency or the 
National Science Foundation since 
he joined Iowa State University. 

The philosophy of his research in 
part is to understand our nature via 
mathematics. More importantly, 
his research contributes to the 
foundation of mathematics which is 
a building block for future scientific 
discoveries.

This introduction only partially 
reveals how these mathematical 
structures interplay with 
sciences and symmetries in 
nature. In-depth understanding 
of these subjects is yet to be 
discovered. 

physicists as well as mathematicians that Hopf algebras can be used to 
describe the symmetries of some physical systems. To illustrate this point, 
one can observe the equality of the following link diagrams: 

The second diagram can simply be obtained by pulling down the 
middle string and moving up the first string of the first diagram. Let us 
simply write an invertible matrixNG4for the single braid NG9 and the 
identity matrix id for a single stringNG.  If any of these diagrams are 
put together horizontally, we simply equate the diagram with a certain 
product NG3 of the associated matrices. (To be precise this product is 
called the tensor product–its explanation would be a bit lengthy in this 
context.) If one diagram stacks on the other, then we equate the diagram 
with the multiplication of the associated matrices. In this convention, we 
have: 

The above equation NG11 of links becomes the algebraic equation: 

The equation is called the quantum Yang-Baxter equation (QYBE) 
which  arises in statistical mechanics. Obviously, not every invertible 
matrixNG4satisfies the QYBE, and obtaining non-trivial solutions for this 
equation is well known to be very difficult. However, it was discovered 
by Fields medalist Vladimir Drinfel'd that each Hopf algebra can 
systematically generate an infinite family of non-trivial solutions of the 
QYBE.

Ng (center) joins other participants at the international conference on Vertex Operator 
Algebra and related topics in talking about some questions of modular categories of 
certain vertex operator algebras.



Structure, dynamics, flow, 
growth, behavior and more
Sunder Sethuraman’s research over the past few years 
has included understanding the structure and dynamics 
of various models of traffic, fluid flow, real world network 
growth, quenched or rapidly cooling behavior, and other 
phenomena, from the point of view of statistical physics and 
random processes.  Here, Sethuraman writes about some 
contributions to the modeling of three of these systems as well 
as collaborations with faculty and students.

A basic concern in applications 
is to describe the behavior of an 
individual component as it interacts in 
complex ways with many others.  In 
the context of fluid flow, this might be 
to ask what sort of trajectories does a 
spot of oil take in a sea of water.  Or, 
can one understand the asymptotic 
motion of a single car navigating 
traffic on a network of roads? 

 Since some sort of measurement 
error is assumed present, and since 
it’s often intractable to follow all 
the interacting components, one 
frequently models the systems 
probabilistically.  In other words, 
the motion will possess some 
stochastic variability, and can be 
thought of informally as a system 

of random walks where walker 
components execute moves by 
observing their environment—
the other components—and then 
making a random displacement.  In 
such models, it is useful to view 
the distinguished particle, or tracer 
particle in certain time and space 
scales, that is much forward in time 
from a very high vantage point.  Our 
main results are to characterize the 
tracer motion in these scales as some 
sort of continuum diffusion process 
or Brownian motion, that is a type 
of random motion with continuous 
paths, with parameters determined by 
the type of interaction in the system.  

One impact, then, of this sort 
of description is that one 
can effectively follow the 
tracer motion in terms of its 
continuum limit.  In another 
vein, this sort of limit picture 
can be seen as a form of 
justification of the use of 
diffusions in applied physical 
modeling, a fundamental 
concern in statistical physics 
since Einstein’s 1905 seminal 
paper introducing Brownian 
motion.

Recently, following the explosion 
in data collection in many networks, 
such as friend or social networks, 
biological networks, the internet, 
genealogical trees, etc., there is now, 
computationally, an understanding of 
the structure of these networks.  As 
has been well reported in the media, 
such networks seem to consist of a 
few hubs connected to a majority of 
nodes with only a few connections, 
the so-called small world phenomena.  
A theme identified in the growth of 
such networks is that a node with a 
large number of connections is more 
likely to increase its connectivity 
than a node with few links.  This is 
sometimes referred to as a preferential 
attachment rule where a rich node 
tends to become richer. 

In one project, with Iowa State 
colleagues Krishna Athreya and 
Arka Ghosh, we have constructed 
a probabilistic model, in terms of 
branching processes, of a general 
network growing by preferential 
attachment.  Through this model 
construction, one can recover a 
celebrated law of large numbers, 
or in other words a precise form of 
the mean behavior, for the number 
of nodes with a given number of 
links, and explain it in more natural 
terms.  But more importantly, one 
can understand other statistics of the 
network from this construction such 
as the typical connectivity of a fixed 
node, or the node with the maximum 
links.  

In some physical observations, 
such as tornado occurrences and glass 
formation, for instance, which are 

Real world networks. 

Traffic and fluid flow. 

Time-inhomogeneous 
processes and quenched 
dynamics. 

Sethuramun lectures graduate students in real 
analysis.



time dependent, it is natural to use a 
time-inhomogeneous Markov chain 
to model the evolution over time, at 
least to first order.  In such chains, 
or sequences, the next state depends 
only on the current time and state 
of the system, and in particular not 
on the past motion up to the present 
location.  

Inhomogeneous processes are 
much less understood than their 
homogeneous cousins where the next 
step depends only on the current state 
but not the current time, which are 
computationally easier.  In particular, 
standard applied and theoretical 
concerns, such as the central limit 
theorem, which state that errors from 
the mean can be explained in terms of 
a bell curve, are not well understood 
in inhomogeneous chains.  In this 
respect, part of our theoretical work 
has been to give and explain a sharp 
condition on when a central limit 
theorem is valid.  The impact of such 
a result is that one can classify data in 
many applied time-inhomogeneous 
models as being typical or an outlier 
with confidence.  

We have also investigated the large 
deviations in inhomogeneous chains, 
that is the probabilities of rare events.  
From an applied view, computing 
such probabilities are quite important, 

as understanding how 
catastrophes and quite 
unexpected scenarios 
develop is essential 
to model analysis.  
As an example, our 
large deviation results 
shed light on the 
quenching dynamics 
of glass formation 
where a very hot 
material is cooled 
rapidly so as to form 
a glass.  Glasses are 
quite interesting, 
and still an object of interest and 
some mystery, as they lack a regular 
structure associated to a solid.  One 
can think of a glass as being matter 
in some sort of locally optimal, but 
disordered state, somehow chosen 
among many such states in the 
cooling process.  The large deviations 
established quantify the chance of 
atypical cooling, and show how 
typically the material can persist out 
of an optimal state in the quenching 
process.         

It has been a pleasure to work 
with interesting collaborators, both at 
home and around the world, mostly 
Rio de Janeiro, Paris, Bangalore, New 

York and Cincinnati, 
as well as talented 
students.  

One of the 
pleasures of 
mathematics is 
that it can be done 
most any place, and 
often the strongest 
collaborations 
occur outside usual 
academic halls.  In 
particular, in the age 
of e-mail, it is now 

normal to conduct mathematical 
conversations in text, a case in point 
being a recent collaboration between 
a colleague in Budapest, one in 
Bangalore, and myself where at no 
time were all three of us in the same 
place.  

I have had the privilege of working 
with very good students both in 
mathematics and statistics, and enjoy 
this type of collaboration quite a bit.  
Often, together we have embarked 
upon new fields, as was the case 
with time-inhomogeneous chains, 
and real world networks.   Also, 
sometimes students have worked on 
more established projects.  Discussing 
research with students has certainly 
been a high point in these years. 

Sethuraman focuses on probability theory, 
specifically with respect to some interacting 
particle systems. He is also interested in 
random media, random graphs, random 
walks, time-inhomogeneous models, among 
other things.  His research is continuously 
supported by National Science Foundation 
and National Security Agency grants.

Sethuraman received the 2008 Prix de 
l’Institut Henri Poincare for best paper 
in Annales de l’Institut Henri Poincare 
Probabilites et Statistiques, and in 2009 was 
awarded the Lambert Faculty Award by the 
Department.

Collaborators and students.

 Jihyeok Choi reviews research with Sethuramun.

Youngsoo Seol discusses a problem with Sethuraman.



These days, University 
Professor Stephen Willson’s 
work focuses in the mathematics 
of biological evolution.  

Darwin’s Theory of Evolution 
suggests that species of animals 
and plants gradually accrue 
modifications.  With time, 
new species occur.  A diagram 
showing the relationships 
among certain species is called 
a phylogeny or a phylogenetic 
graph.  The public commonly 
sees these in museums of 
natural history, for example 
showing relationships among 
the dinosaurs or among 
mammals. 

Willson’s research concerns 
methods of building 
phylogenetic graphs, usually 
from the DNA of extant plants 

and animals.
Until recently, almost all 

phylogenetic graphs were 
thought to be “trees” in the 
mathematical sense.  That is, 
the branches never grew back 
together.  Increasingly it has 
been found that events like 
hybridization and lateral gene 
transfer are important.  

For Willson, taking the 
possibility of these events into 
account, the diagrams become 
“networks” rather than “trees.”  
His recent research focuses 
on methods of building and 
interpreting these networks that 
are not necessarily trees. 

Willson saw that generalizing 
this concept from trees to 
networks presented a challenge: 
if it was too general, there would 

The continuing evolution of Stephen Willson

be no interesting theorems; if it 
were too specific, it would not 
apply to real problems.

While Willson’s research 
is application-driven, the 
results can be stated in purely 
mathematical terms.

“Biologists work to discover 
aspects of the history of the 
evolution of species.  It has 
recently become clear that 
hybridization and lateral 
gene transfer are important 
phenomena that have greatly 
influenced this history; they 
had previously been ignored,” 
said Willson.  “My work tries 
to understand some of the 
implications for the mathematics 
behind these reconstructions.”

The integration of mathematics 
and biology is a natural 
development for someone who 
started out studying to become a 
medical doctor only to learn that 
he was, in fact, a mathematician.

An undergraduate in science, 
Willson was studying to become 
a medical doctor when he 
discovered the beauty and 
utility of mathematics.  During 
freshman and sophomore 
chemistry and physics classes, 
Willson recalls, “I observed that 
the most interesting parts were 
where the most mathematics 
was utilized to explain what was 
happening.  I thought that the 
way mathematical structures 
illuminated a subject was very 
beautiful as well as useful.”  
While most of his friends 

Janson Professor of Mathematics and University Professor Stephen Willson enjoys 
discussing mathematics with students and colleagues.



“A display of currently existing 
species may reveal peculiarities 
such as the fact that whales and 
dolphins are more closely related 
to cows than to horses.  How do we 
know that this is true?  What does it 
really mean?  These are questions 
about phylogeny.”

“People repeatedly ask whether 
mathematics is a discovery or an 
invention.  I think that the practice 
of mathematics is both.  Once the 
definitions are set, a mathematician 
discovers relationships.  Part 
of the art of mathematics, 
however, is inventing the exact 
definitions that fit the situation.  In 
mathematical biology, there are 
vague ideas that need to be made 
into precise definitions.  Giving 
precision is a kind of invention.  
The goal is precision (invention) 
that permits interesting theorems 
(discoveries).”

“To be an effective teacher, you 
need to be sensitive to the level of 
the student you are addressing.  
Too detailed an answer will lose 
some students and be inadequate 
for others.  When a student comes 
to office hours, the student should 
work each step if possible; I must 
resist the temptation to work the 
problem for the student, but instead 
give the smallest possible hint when 
the student gets stuck.  Often it is 
hard to recognize the step that stops 
them.”

Lateral gene transfer is any 
process in which an organism 
incorporates genetic material from 
another organism without being the 
offspring of that organism

Hybridization is an event where 
viable fertile offspring arise from 
parents of different species	
	

did not share his vision of 
mathematics, it was enough for 
Willson to change the course of 
his future.

Forty-four years later, Stephen 
Willson still finds mathematics 
illuminating.

It was an interdisciplinary 
seminar established in the mid-
90’s by former ISU professor Jim 
Cornette that piqued Willson’s 
interest in phylogenetics.  
Faculty members from different 
departments shared basic ideas 
and described techniques 
for many applications of 
mathematics to biological 
subjects.  Willson found that 
he had some ideas about 
phylogenetics that were new and 
potentially useful.

Willson has written 
software which can 
detect potential 
hybridization events 
from the DNA of 
extant species.

Willson has 
explored the 
possible complexity 
of networks 
representing 
hybridizations 
that satisfy simple 
hypotheses.



Wu says many engineering and 
science problems are formulated 
as optimization problems, as 
they want to decide some of the 
variables or parameters so they 
can optimize certain values of their 
systems.

“Optimal means not only 
maximizing benefits but also 
minimizing some harms,” Wu 
adds.  “Put all these together, we 
still have an optimization problem 
– optimization for all concerns.”

In his work with optimization 
Wu focuses on mathematical 
and computational biology.  
In particular, he studies the 
microscopic biology of protein 
modeling and the macroscopic 
biology of evolutionary dynamics.

Proteins allow biological systems 
to work at all levels:  chemical 
reactions, metabolism, moving, 
digesting, thinking, etc.

Studying proteins and their 
functions—those supporting life or 
causing disease—help researchers 
understand biological systems.

Hundreds of thousands of 

Optimization

Wu-ing 
optimization

What does mathematical 
research have to do with my 
health?

proteins in biological systems form 
certain structures that perform 
biological functions or transport 
biological ingredients.

Determining the structure of 
a protein helps find its most 
stable state and understand its 
biological function. Mathematics 
and computation allow Wu and his 
team to identify the 3D structures 
of proteins.

Using data from nuclear magnetic 
resonance (NMR) Wu’s team can 
find the structure for a protein that 
best fits the experimental data such 
as the distance data (between pairs 
of atoms).  

The problem of finding the 
positions of the atoms of a protein 
given the atomic distances or 
their ranges is called the distance 
geometry (DG) problem and is 
nontrivial to solve, for there are 
usually tens of thousands of atoms 
in a protein, while the distance 
data is not complete and contains 
errors. An efficient, accurate, and 
biologically meaningful solution 
to the problem is always a great 
challenge to obtain.

With support from NIH and 

Growing up in China, Zhijun Wu 
was 12 years old when persistent 
respiratory problems kept him out 
of school for an entire semester.  
Instead of falling behind, Wu 
found his interest as well as his 
ability in mathematics blossoming 
as he studied independently.  
Devouring exercise after exercise 
on his own, he advanced to the 
point that upon returning to class, 
he was asked to tutor all the other 
students in mathematics.  It was 
the quiet beginning of a fascinating 
professional career.

Over his 20 years of research 
experience with engineers and 
scientists, Wu says he finds 
mathematics everywhere.

“Mathematics is such an 
important field.  A common 
tool for all the scientific fields, 
it builds the foundations for 
many disciplines such as physics, 
chemistry, mechanics, and even 
some social sciences such as 
economics, psychology, and 
linguistics.  

Wu’s interdisciplinary research in 
optimization and its applications, 
particularly its applications in 
biology, has afforded opportunity 
to collaborate with many 
biologists, biochemists, and 
biophysicists.

In this field of applied 
mathematics, the goal is to find 
an optimal solution among 
all possible solutions to a 
mathematical, engineering, 
or science problem where 
the standard is defined by a 
mathematical function.  “For 
example,” Wu explains, “if we are 
looking at the profit a company 
can earn, then the optimal solution 
will be the one that maximizes the 
profit.”

Protein modeling



To young people interested in mathematics, Wu advises:

Broaden your view of mathematics to include classical 
subjects as well as new developing fields. The impact 
mathematics can make in sciences and society is exciting.

For young people challenged by mathematics, he offers:

While mathematics may challenge you, remember that it is very 
useful to your life and career. As reading helps us to obtain 
knowledge, mathematics helps us to think.

Mathematics is necessary to compete and advance in modern 
society.

NSF, Wu’s team has developed 
a linear time algorithm for the 
solution of the DG problems with 
exact distances and a least-squares 
approximation algorithm for the 
problems with inexact distances. 
They have also formulated a 
new class of DG problems called 
generalized DG problems for 
modeling structures with distance 
intervals. An optimization 
algorithm has been developed 
and tested for the solution of the 
generalized DG problem.

Two particular proteins that Wu 
has been developing methods to 
solve structures for are the prion 
protein that causes Mad Cow 
disease and HMV1, which helps 
the HIV virus infect its host.

Determining the structure of the 
prion protein, Wu explains, helps 
understand how it changes and 
causes Mad Cow Disease, while 
finding the structure of the HMV1 
protein, will assist researchers 
in designing drugs to destroy its 
3D structure and hence its (bad) 
biological function.

Evolutionary dynamics

Wu’s team has also developed protein geometry databases for 
atomic and residue level distance and angle distributions. Available 
online at www.math.iastate.edu/pidd and www.math.iastate.edu/
prtad, the databases provide statistical information on various 
structural elements (distances or angles) derived from known 
protein structures.  The information can be used to analyze, classify, 
and refine protein structures. 

Protein geometry databases

Mad Cow, HIV and more

Wu explains a problem to a student in his differential 
equation class.

The process where individuals 
adapt and species evolve to 
survive—for better or worse—from 
generation to generation is called 
evolutionary dynamics.  At times, 
elements like viruses or bacteria 
may cause systems to change or 
evolve in very short time periods. 

To model how biological systems 
evolve and illustrate their eventual 
steady state, Wu uses evolutionary 
game theory.

“In evolutionary game theory, 
species compete for resources,” 
Wu explains.  “In the end, some 
survive and some become extinct.”

One particularly common 
outcome in game theory is a 
special steady state known as Nash 
Equilibrium.

 Originally developed for 
solving mathematical problems in 
economics, the Nash equilibrium 
occurs when the players work 
with their strategies and eventually 
reach a state where winning and 
losing average out.  In economics 
this is called market equilibrium.

Biological systems also reach the 
Nash Equilibrium after certain time 
period.

Mathematical models allow 
researchers to compute and predict 
the final equilibrium of a biological 
system.

“While models allow us to 
predict which viruses will go away 
ultimately, and which bacteria may 
be able to sustain,” said Wu, “they 
also help us understand how the 
systems evolve.”
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