
A method for characterizing graphs with specified throttling numbers

by

Joshua Carlson

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Mathematics

Program of Study Committee:
Leslie Hogben, Major Professor

Michael Young
Ryan Martin
Eric Weber

Tathagata Basak

The student author, whose presentation of the scholarship herein was approved by the program
of study committee, is solely responsible for the content of this dissertation. The Graduate

College will ensure this dissertation is globally accessible and will not permit alterations after a
degree is conferred.

Iowa State University

Ames, Iowa

2019

Copyright c© Joshua Carlson, 2019. All rights reserved.

ii

DEDICATION

I dedicate this work to my amazing wife Janelle. Since I decided to start this journey, she has

always been by my side helping me carry the weight. I could not have done this without her and

I am looking forward to our next adventure.

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES . v

ABSTRACT . vi

1. INTRODUCTION . 1

1.1 Organization . 3

1.2 Basic graph theory . 3

1.3 Literature review . 7

1.3.1 Zero forcing parameters . 7

1.3.2 Propagation time . 11

1.3.3 Throttling . 15

Bibliography . 18

2. THROTTLING FOR ZERO FORCING AND VARIANTS 21

2.1 Introduction . 21

2.2 General propagation time and throttling . 24

2.3 Throttling for the minor monotone floor of Z . 26

2.4 A characterization for standard throttling . 38

2.5 Extreme throttling . 40

2.6 Concluding remarks . 42

iv

3. CHARACTERIZATIONS OF THROTTLING FOR POSITIVE SEMIDEFINITE ZERO

FORCING AND ITS MINOR MONOTONE FLOOR . 45

3.1 Introduction . 46

3.2 Throttling positive semidefinite zero forcing . 48

3.3 Throttling the minor monotone floor of PSD zero forcing 56

3.4 A reduction perspective on PSD zero forcing . 58

3.5 Concluding remarks . 63

4. GENERAL CONCLUSION . 65

ACKNOWLEDGMENTS . 68

v

LIST OF FIGURES

Page

Figure 1.1 The path P5, cycle C8, complege graph K6, and star K1,6 shown left to right. . . . 4

Figure 1.2 If G = C8, C6 � G is not a subgraph, P8 ≤ G is not induced, and P5 ≤ G is not

spanning. 6

Figure 1.3 The dashed arrow in the above graph is a poor choice for hopping. 10

Figure 1.4 Two minimum zero forcing sets are shown with different propagation times. . . 12

Figure 1.5 The path P22 is snaked in a 4× 4 square box with some overhang. 16

Figure 2.1 The cycle Cn with n = m2 and m = 5. 31

Figure 2.2 The star on n vertices alongside the wheel as a spanning supergraph. 31

Figure 2.3 G, B, and F are illustrated alongside the extension E(G; B;F). 34

Figure 2.4 The graphs G, G′, and H are minors of K3�P3 used in the proof of Theorem 2.3.18. 38

Figure 3.1 The graph G is shown at time t = 0 and t = 1 alongside the graphs {Gi,j(F)}2
i,j=1. 50

Figure 3.2 The trees E1(F) and E2(F) are constructed in the top and bottom row, respectively. 52

Figure 3.3 A graph G (left) is shown before and after its extension E+(G; B;F) (right). . . . 54

Figure 3.4 The PSD zero forcing process as seen from the reduction perspective. 60

Figure 3.5 The component W2 breaks into two components, but W1 only breaks into one. . . 60

Figure 3.6 A graph G (left) is shown before and after its extension E∗+(G; B;F) (right). . . . 62

vi

ABSTRACT

Zero forcing is a combinatorial game played on graphs in which a color change rule is used to

progressively change the color of vertices from white to blue. The (standard) color change rule is

that a blue vertex u can force a white vertex w to become blue if w is the only white vertex adjacent

to u. When using the color change rule, the goal is to eventually change the color of every vertex

in the graph to blue. Some interesting questions arise from this process that are heavily studied.

What is the smallest possible size of an initial set of blue vertices that can eventually color the

entire graph blue? How much time is required to complete this process? The answer to the first

question is called the zero forcing number of a graph and the answer to the second question is

called the propagation time of the initial set. A more recent area of study is throttling which bal-

ances the cost of the initial set with the cost of its propagation time in order to make the process

as efficient as possible. Specifically, the (standard) throttling number of a graph is the minimum

value of the sum of the size of an initial set and its propagation time taken over all possible initial

sets. Many variations of the color change rule also lead to variations of propagation time and

throttling. These include positive semidefinite (PSD) zero forcing, the minor monotone floor of

zero forcing, and the minor monotone floor of PSD zero forcing. In this dissertation, general defi-

nitions are given that allow for the study of propagation and throttling for many variants of zero

forcing. In addition, a technique is introduced that is used to characterize all graphs with specified

throttling numbers. This technique is then generalized and applied to obtain similar characteriza-

tions for the variants of zero forcing mentioned above.

Keywords: Zero forcing, propagation time, throttling, positive semidefinite, minor monotone

floor

1

CHAPTER 1. INTRODUCTION

Graphs are used to model various objects and the relationships between them (see Section 1.2

for precise definitions). An acquaintanceship graph can model a group of people and how they

know each other. The internet graph can model websites and the links from one site to another.

Graph theory provides tools that can be used to study a wide range of topics such as optimal

travel in a transportation network and influence in a social network.

The graph parameters studied in this dissertation can be used to model concepts like spread

or infection. For simple examples, consider a rumor spreading throughout a crowd or a computer

virus infecting software. Zero forcing is an infection process that uses a color change rule to

increase the number of blue vertices in a graph. The (standard) color change rule is that a blue vertex

with a unique white neighbor can force that neighbor to become blue. If u is the blue vertex and w

is the white vertex, the notation u→ w is used to denote that u forces w to become blue. Suppose

G is a graph with B ⊆ V(G) colored blue and V(G) \ B colored white. A set of blue vertices in G

obtained by iteratively applying the color change rule until no more forces are possible is called a

final coloring of B. If V(G) is a final coloring of B, then B is called a zero forcing set of G. The size of

the smallest possible zero forcing set in a graph G is the zero forcing number of G and is denoted by

Z(G). The zero forcing number was introduced in [1] as a tool for bounding the minimum rank

of a graph (see [9]). Zero forcing also has connections in physics and is used in [5] to model the

control of a quantum system.

Let G be a graph and B ⊆ V(G) be a zero forcing set of G. Start with B colored blue and count

one time step by performing as many independent forces simultaneously as possible. Starting

with the new set of blue vertices, repeat this process to count another time step. Continue in

this fashion until all vertices in V(G) are blue. The (standard) propagation time of B in G, denoted

pt(G; B), is the number of time steps required to color V(G) blue starting with B as the initial set

2

of blue vertices. Propagation time is particularly important in the context of quantum control and

is studied in [11]. The propagation time of minimum zero forcing sets is studied in [10].

If the size of the initial set of blue vertices is larger than necessary, it is possible to dramatically

speed up (or throttle) the propagation process. However, it is still undesirable for the initial set

of blue vertices to be too large. The goal is to find the ideal zero forcing set in a given graph that

makes the zero forcing process as effective as possible. The (standard) throttling number of a graph

G is the minimum value of |B|+ pt(G; B) over all zero forcing sets B of G. In [6], upper bounds for

the throttling number of a graph are given in terms of the order of the graph and its zero forcing

number.

There are many forms of zero forcing that use modified color change rules. The Positive semidef-

inite (PSD) color change rule is a variant introduced in [2] that breaks a graph into components and

applies standard zero forcing in each component. Hopping is a color change rule that allows a

blue vertex u with no white neighbors to force any white vertex to become blue if u has not yet

performed a force. The bZc color change rule is to either apply the standard color change rule or

apply the hopping rule. Analogous to PSD zero forcing, the bZ+c color change rule breaks a graph

into components and applies bZc forcing in each component. Both the bZc and bZ+c forcing rules

were introduced in [3] and they have connections to graph parameters that measure the width of

trees and paths.

Every variation of zero forcing leads to an associated propagation time and throttling number.

One contribution of this dissertation is to introduce a general theory of zero forcing, propagation

time, and throttling. It is shown in [4] that for certain variants of zero forcing, determining whether

a given graph has throttling number less than a given integer is NP-complete. Another main

contribution of this dissertation is a technique for characterizing graphs with specified throttling

numbers as certain minors of the Cartesian product of a complete graph and a tree.

3

1.1 Organization

This dissertation is organized in journal paper format. Some basic graph theory notation and

definitions are outlined in Section 1.2. Section 1.3 familiarizes the reader with the research topic

by reviewing previous literature on zero forcing, propagation time, and throttling.

Chapter 2 contains the paper “Throttling for Zero Forcing and Variants” which is currently

under review for publication in The Australasian Journal of Combinatorics. Section 2.2 introduces

general definitions and notation for studying multiple variations of propagation and throttling.

In Section 2.3, throttling for the minor monotone floor of zero forcing (denoted bZc) is studied

and a tool is introduced that characterizes graphs with specified bZc throttling numbers. The

same tool is used in Section 2.4 to obtain a similar characterization for standard throttling. Finally,

these characterizations are used in Section 2.5 to classify graphs with extreme standard and bZc

throttling numbers.

Chapter 3 contains the paper “Characterizations of Throttling for Positive Semidefinite Zero

Forcing and its Minor Monotone Floor”. This paper will be submitted for publication after further

editing. In Section 3.2, the techniques in Chapter 2 are generalized to obtain a characterization of

positive semidefinite (PSD) throttling numbers. Section 3.3 uses this characterization to prove a

similar result for a variant of throttling called the minor monotone floor of PSD zero forcing. In

Section 3.4, a different perspective on PSD zero forcing is described that is useful for further study

of PSD throttling.

General conclusions are discussed in Chapter 4. This includes related research topics and

directions for future work.

1.2 Basic graph theory

This section outlines some of the basic tools and definitions in graph theory. A graph is a pair

G = (V(G), E(G)) where V(G) is a set of vertices and E(G) is a set of edges. The order of a graph

G is the number of vertices in V(G) and is denoted as |G|. In a simple graph G, the edge set E(G)

4

consists of two-element subsets of the vertex set. An edge {u, v} ∈ E(G) is often written as uv and

the vertices in {u, v} are said to be adjacent (or neighbors). The neighborhood of a vertex v ∈ V(G),

denoted NG(v), is the set of vertices in G that are adjacent to v. The closed neighborhood of v ∈ V(G)

is NG[v] = {v} ∪ NG(v). The G is dropped from the neighborhood notation (e.g., N(v) and N[v])

if the graph G is clear from context. A vertex v ∈ V(G) is incident to (alternatively, an endpoint of)

an edge e ∈ E(G) if e contains v as an element. For each v ∈ V(G), the degree of v is defined as

d(v) = |N(G)|. The maximum and minimum degree over all vertices in V(G) is denoted as ∆(G)

and δ(G) respectively. The degree sequence of a graph G is the non-increasing sequence of degrees

of the vertices in G. Graphs are often illustrated with vertices drawn as nodes and edges drawn as

line segments that connect one node to another. There are many common families of graphs that

are indexed by the order of the graph.

Example 1.2.1. The path Pn has vertex set {v1, v2, . . . vn} and edge set {vivi+1 | 1 ≤ i ≤ n− 1}. The

cycle Cn is a path on n vertices with the additional edge v1vn. The complete graph Kn is the graph

on n vertices with every possible edge. The star on n vertices is denoted K1,n and has one vertex

of degree n− 1 and every other vertex has degree 1. These graphs are illustrated left to right in

Figure 1.1.

Figure 1.1 The path P5, cycle C8, complege graph K6, and star K1,6 shown left to right.

There are many important operations on graphs that change the structure of the vertices or the

edges. Suppose G is a graph and S is a set of edges. Then G− S is the graph with V(G− S) = V(G)

5

and E(G − S) = E(G) \ S. Whenever a vertex is deleted from a graph, all edges incident to that

vertex are also deleted. If S is a set of vertices, G− S is the graph obtained from G by deleting the

vertices in S. A graph H is a spanning subgraph of a graph G if H can be obtained from G by deleting

edges. In this case, G is a spanning supergraph of H. If H can be obtained from G by deleting edges

and/or vertices from G, then H is a subgraph of G which is written as H ≤ G. In the case that

H ≤ G, it is said that G is a supergraph of H. If S ⊆ V(G), the subgraph induced by S is defined as

G[S] = G − (V(G) \ S). Let e = uv be an edge in a graph G. The graph G/e is obtained from G

by deleting the vertices {u, v} and adding a vertex ve such that NG/e(ve) = NG(u) ∪ NG(v). This

operation is called edge contraction and G/e is read as “G contract e”. If H can be obtained from

G by deleting edges, deleting vertices, and/or contracting edges, then H is a minor of G which is

denoted as H � G. In this case, it is said that G is a major of H. Note that spanning subgraphs

are subgraphs, induced subgraphs are subgraphs, and subgraphs are minors. However, there

are minors that are not subgraphs, subgraphs that are not induced, and subgraphs that are not

spanning.

Example 1.2.2. Let G = C8 be the cycle on 8 vertices as depicted in Figure 1.1. Note that C6 is

a minor of G obtained by contracting any two edges. Since C6 cannot be obtained from G by

deleting edges and/or removing vertices, C6 is not a subgraph of G. The path P8 is a subgraph of

G obtained by deleting an edge, but it is not induced. Finally, the graph P5 is a subgraph of G that

is not spanning because it is obtained from G by deleting vertices. All three of these graphs are

minors of G and are illustrated in Figure 1.2.

6

C6 P8 P5

Figure 1.2 If G = C8, C6 � G is not a subgraph, P8 ≤ G is not induced, and P5 ≤ G is not

spanning.

Some graph operations combine two different graphs to build a larger graph. If G and H are

graphs, the Cartesian product of G and H is the graph G�H with vertex set V(G�H) = {(u, v) | u ∈

V(G) and v ∈ V(H)} and edge set as follows. Vertex (a1, a2) is adjacent to vertex (b1, b2) in G�H

if and only if either a1 = b1 and a2 ∈ NH(b2) or a2 = b2 and a1 ∈ NG(b1). For example, P4�P6

is a 4× 6 rectangular grid. The disjoint union of G and H is denoted as G∪̇H with V(G∪̇H) =

V(G)∪̇V(H) and E(G∪̇H) = E(G)∪̇E(H). Note that if u ∈ V(G) and v ∈ V(H), then there is no

path from u to v in G∪̇H.

A graph G is connected if for every u, v ∈ V(G), there is a path from u to v in G. The distance

betweeen two vertices u, v ∈ V(G), denoted d(u, v), is the number of edges in the shortest path in

G from u to v. The components of G are the maximally connected subgraphs of G. In other words, if

C is a component of G, then there is no connected subgraph of G other than C that is a supergraph

of C. A graph T is a tree if T is connected and has no subgraphs that are cycles. If T is a tree and

v ∈ V(T) with d(v) = 1, then v is called a leaf of T. A rooted tree is a tree that is built from a single

vertex v (the root) by iteratively adding leaves to the existing graph. In a rooted tree T, vertex u is

a parent of vertex v if v was added as a leaf to u at some point in the construction of T. In this case,

v is a child of u.

7

A common question in graph theory is to determine the maximum or minimum size of a subset

of vertices with a given property. It is often the case that one of these extremes is easier to find

than the other. Suppose G is a graph and S ⊆ V(G). The set S is an independent set of G if the

graph G[S] has no edges. Of course, the smallest independent set in any graph is a single vertex.

The maximum size of an independent set in G is the independence number of G and is denoted as

α(G). The subset S ⊆ V(G) is a dominating set of G if for every u ∈ V(G), u ∈ N[s] for some s ∈ S.

Note that the largest dominating set in any graph G is the entire vertex set V(G). The domination

number of a graph G, denoted γ(G), is the minimum size of a dominating set in G.

1.3 Literature review

This section reviews the literature on zero forcing, propagation time, and throttling.

1.3.1 Zero forcing parameters

Zero forcing is a process on graphs that was introduced in [1] using a color change rule. The

colors used in this process were originally black and white, but the new convention in the litera-

ture is to use blue and white. In a graph whose vertices are colored blue or white, the (standard)

color change rule is that a blue vertex u can force a white vertex w to become blue if w is the only

white neighbor of u. Suppose G is graph with B ⊆ V(G) colored blue and V(G) \ B colored white.

If it is possible to start with this coloring and repeatedly apply the color change rule in order to

color the entire vertex set blue, then B is a zero forcing set of G. It is mentioned in Section 1.2 that

finding the extreme sizes of particular subsets of vertices is usually easier for one extreme than the

other. This is also true for zero forcing since the maximum zero forcing set in a graph G is always

V(G). It is much more interesting to try to find small zero forcing sets. The zero forcing number of

a graph G, denoted Z(G), is the minimum size of a zero forcing set in G.

It is shown in [5] that zero forcing can be used to model control of a quantum system. Orig-

inally, zero forcing was introduced in [1] as a tool in combinatorial matrix theory. For an n × n

real symmetric matrix A = [ai,j], G(A) is the graph with vertex set {1, 2, . . . , n} and edge set

8

{ij | i 6= j and ai,j 6= 0}. If G is a graph of order n, S(G) is the family of n× n real symmetric ma-

trices A such that G(A) = G. The maximum nullity of a graph G, denoted M(G), is the maximum

nullity of the matrices in S(G). The next proposition serves as one of the main motivations for

studying zero forcing.

Proposition 1.3.1. [1] If G is a graph, then M(G) ≤ Z(G).

The minimum rank of a graph G, denoted mr(G), is the minimum rank of the matrices in S(G).

The problem of determining the minimum rank of a graph is a rich area of study (see [9]). As a

consequence of the rank/nullity theorem, mr(G) = |G| −M(G) for any graph G. The next result

concerns the zero forcing number of Cartesian products.

Proposition 1.3.2. [1] If G and H are graphs, then Z(G�H) ≤ min{Z(G)|H|, Z(H)|G|}.

In a path, a single leaf is a zero forcing set which means that Z(Pt) = 1 for all t ≥ 1. Thus,

Proposition 1.3.2 leads to an immediate corollary.

Corollary 1.3.3. [1] For any graph G and integer t > 0, Z(G�Pt) ≤ min{Z(G)t, |G|}.

The hypercube of dimension n can be defined recursively as Qn = Qn−1�P2. Therefore, Corol-

lary 1.3.3 can be used to give an upper bound for the zero forcing number of hypercubes.

Corollary 1.3.4. [1] If Qn is the n-dimensional hypercube, then Z(Qn) ≤ 2n−1.

Sometimes for a graph G, the minimum rank is considered over certain subsets of the matrices

in S(G). The positive semidefinite minimum rank of a graph G, denoted mr+(G), is the minimum

rank of the matrices in S(G) that are positive semidefinite. Likewise, the maximum nullity of

the positive semidefinite matrices in S(G) is the positive semidefinite maximum nullity of G and is

denoted M+(G). The phrase “positive semidefinite” is often abbreviated to PSD for convenience.

In [2], it is shown that the PSD maximum nullity of a graph is also bounded above by a zero

forcing parameter. Suppose G is a graph, B ⊆ V(G) is the set of blue vertices in G, and there are

k ≥ 1 components of G− B. Let W1, W2, . . . Wk be the sets of white vertices in the components of

G− B. The PSD color change rule is that if u ∈ B, w ∈Wi for some 1 ≤ i ≤ k, and w is the only white

9

neighbor of u in G[B ∪Wi], then u can force w to become blue. Starting with B ⊆ V(G) colored

blue and V(G) \ B colored white, if it is possible to repeatedly apply the PSD color change rule to

color V(G) blue, then B is a PSD zero forcing set of G. The minimum size of a PSD zero forcing set

in a graph G is the PSD zero forcing number of G and is denoted as Z+(G).

Theorem 1.3.5. [2] For any graph G, M+(G) ≤ Z+(G).

It is shown in [12] that M+(G) = 1 if and only if G is a tree. In [2], it is observed that if T is a tree,

any single vertex of T is a PSD zero forcing set of T. This leads to the following characterization.

Corollary 1.3.6. [2, 12] For a graph G, Z+(G) = 1 if and only if G is a tree.

More extreme PSD zero forcing numbers are characterized in [8]. Also, a connection is made in

[8] between PSD zero forcing and tree covers. The tree cover number of a graph G, denoted T(G), is

the minimum number of vertex disjoint trees (as induced subgraphs of G) such that every vertex

in V(G) is in exactly one of the trees. Suppose G is a graph and B ⊆ V(G) is a PSD zero forcing set

of G. By keeping track of the pattern of forces that are performed in G as V(G) is colored blue, G

can be decomposed into forcing trees. (For a precise definition, see Chapter 3.) These forcing trees

are used to prove the following theorem.

Theorem 1.3.7. [8] For any graph G, T(G) ≤ Z+(G).

The zero forcing color change rule can be altered in many different ways. Certain variants of

zero forcing are shown in [3] to have connections to parameters that measure the width a graph

(i.e., tree-width and path-width). Suppose G is a graph and let B ⊆ V(G) be an initial set of blue

vertices in G. An active vertex is a vertex that is blue and has not yet performed a force. If u is

active, the CCR-bZc color change rule allows for the following two possibilities. First, if u has one

white neighbor w, u can force w to become blue. Alternatively, if u has no white neighbors, then u

can force any white vertex w to become blue. This second option is called hopping. For a graph G,

CCR-bZc zero forcing sets and the CCR-bZc zero forcing number, denoted CCR-bZc(G), are defined

analagously to standard zero forcing sets and the standard zero forcing number. With the ability

10

to hop, there are more choices involved in CCR-bZc zero forcing than standard zero forcing. In

fact, it is possible to start with a CCR-bZc zero forcing set, but fail to color the entire graph due to

poor hopping choices.

Example 1.3.8. Let G be the graph obtained by adding a leaf to C4 (illustrated in Figure 1.3).

Suppose u is the leaf, v is its neighbor, and B = {u, v}. Note that B is a CCR-bZc zero forcing

set of G because u can force a white neighbor of w and that neighbor can force around the cycle.

However, suppose the first force performed is the one depicted by the dashed arrow in Figure 1.3.

Then the CCR-bZc forcing cannot progress because all active vertices have more than one white

neighbor.

Figure 1.3 The dashed arrow in the above graph is a poor choice for hopping.

Suppose G is a graph and p is a graph parameter that is well-ordered. The minor monotone floor

of p is defined in [3] as bpc(G) = min{p(H) | G � H}. Note that bpc(G) gets its name because of

the fact that it is minor monotone (i.e., bpc(G) ≤ bpc(H) if G � H). To see why CCR-bZc gets its

name, it is necessary to discuss linear k-trees. A linear k-tree is a graph that is built inductively from

a Kk+1 by repeatedly adding new vertices that connect to an existing Kk+1 that contains a vertex

of degree k. For example, a linear 1-tree is a path built by starting with K2 and adding new leaves

to the existing leaves. The proper path-width of a graph G, denoted ppw(G), is the smallest k such

that G is a subgraph of a linear k-tree. The next theorem exhibits a connection between CCR-bZc

zero forcing and linear k-trees.

Theorem 1.3.9. [3] If G is a graph and |E(G)| ≥ 1, then CCR-bZc(G) = ppw(G).

11

If B is a minimum CCR-bZc zero forcing set of a graph G, then B is a standard zero forcing set

of the graph H obtained from G by adding the edges where hops occur. Since G is a minor of H,

this means that bZc(G) ≤ |B| = CCR- bZc(G). In addition, Theorem 1.3.9 is used in [3] to show

that CCR-bZc(G) ≤ bZc(G) which leads to the following result.

Theorem 1.3.10. [3] For any graph G, CCR-bZc(G) = bZc(G).

Therefore, CCR-bZc is the color change rule whose zero forcing parameter is bZc and CCR-bZc

can be abbreviated to bZc.

In the same way that hopping is added to standard zero forcing to create bZc forcing, hopping

can be added to PSD zero forcing. In PSD zero forcing, standard zero forcing is applied in each

component of the white vertices. The CCR-bZ+c color change rule is to apply the bZc color change

rule in each component of white vertices (i.e., hopping is allowed in each component). This leads

to CCR-bZ+c zero forcing sets and the CCR-bZ+c zero forcing number of a graph G, denoted as CCR-

bZ+c(G). The next theorem states that the CCR-bZ+c color change rule is the color change rule

whose zero forcing parameter is bZ+c.

Theorem 1.3.11. [3] For any graph G, CCR-bZ+c(G) = bZ+c(G).

In [3], the proof of Theorem 1.3.11 is analogous to the proof of Theorem 1.3.10 except that a

generalization of linear k-trees is used (namely, two-sided k-trees).

1.3.2 Propagation time

The idea of zero forcing propagation is to partition a zero forcing process into time steps where

every possible independent force is performed simultaneously in each time step. Suppose G is a

graph and B ⊆ V(G) is a zero forcing set of G. Partition the vertices of G as follows. Define

B(0) = B and for each t ≥ 0 and w ∈ V(G), w ∈ B(t+1) if and only if there exists a vertex

b ∈ ⋃t
i=0 B(i) such that w is the only neighbor or b that is not in

⋃t
i=0 B(i). Note that for each t ≥ 0,

B(t) is the set of vertices in G that become blue at time t if all possible forces are performed at each

12

time step. The propagation time of B in G, denoted pt(G; B), is defined in [10] as the minimum t′

such that
⋃t′

i=0 B(i) = V(G).

Propagation time for zero forcing was introduced in [10] and it is used in [11] to measure

the time required to gain control of quantum systems. There are many questions that concern

uniqueness in the early literature on zero forcing and propagation. For example, it is shown in

[2] that minimum zero forcing sets are not unique in connected graphs with at least two vertices.

In [10], it is determined that the propagation time of minimum zero forcing sets in a graph is not

unique.

Example 1.3.12. Once again, let G be the graph obtained from C4 by adding a leaf. It is clear that

since G has a cycle as a subgraph, Z(G) ≥ 2. Therefore, if B ⊆ V(G) is a zero forcing set of G

with |B| = 2, then B is a minimum zero forcing set of G. Suppose B1 = {u1, v1} is the subset of

V(G) shown on the left of Figure 1.4. Note that u1 forces around the cycle in the first two time

steps and v1 cannot force the leaf until time step 3. Thus, pt(G; B1) = 3. Let B2 = {u2, v2} be the

subset of V(G) shown on the right of Figure 1.4. Now v2 performs a force in the first time step

and the two blue vertices in the cycle force the rest of V(G) in the second time step. Therefore,

pt(G; B2) = 2 6= 3 = pt(G; B1).

Figure 1.4 Two minimum zero forcing sets are shown with different propagation times.

Since two distinct minimum zero forcing sets in a given graph can have different propagation

times, it is natural to minimize the propagation time over all such sets. The minimum propagation

13

time of a graph G is defined in [10] as pt(G) = min{pt(G; B) | B is a minimum zero forcing set of G}.

Since at least one vertex is forced in each time step, pt(G) ≤ |G| − 1 for any graph G. In [10],

graphs with extreme minimum propagation times |G| − 1, |G| − 2, and 0 are characterized. An

efficient zero forcing set of a graph G is a minimum zero forcing set B ⊆ V(G) such that pt(G; B) =

pt(G). A reasonable question to ask is whether the efficient zero forcing sets of a given graph are

unique. To answer this question, a few more definitions are needed.

A zero forcing set of a graph G is a subset B ⊆ V(G) such that V(G) is a final coloring of

B. For standard zero forcing, final colorings of a given subset of vertices are shown in [1] to be

unique. Consider a zero forcing set B of a graph G and write down each force that is performed

(write u → w whenever u forces w to become blue) chronologically as the final coloring of B is

obtained. This list of forces is called a chronological list of forces of B. The unordered set of forces

in a chronological list of forces of B is called a set of forces of B. Sets of forces are used to study

propagation because multiple vertices are forced at the same time.

The idea of propagation also applies to sets of forces F where as many forces in F as possible

are performed simultaneously in each time step. If G is a graph, B is a zero forcing set of G, and

F is a set of forces of B, define F (0) = B. Then for each t ≥ 0, define F (t+1) to be the set of vertices

w ∈ V(G) \⋃t
i=0 F (i) such that (u → w) ∈ F for some u ∈ ⋃t

i=0 F (i). The propagation time of F in

G, denoted pt(G;F), is the minimum t′ such that
⋃t′

i=0 F (i) = V(G). A set of forces F is efficient

in G if pt(G;F) = pt(G). Note that for every t ≥ 0,
⋃t

i=0 F (i) ⊆ ⋃t
i=0 B(i) which implies that

pt(G; B) ≤ pt(G;F). This means that if F is an efficient set of forces of B, then B is an efficient

zero forcing set of G. Since performing every possible force in G at each time step yields a valid

set of forces of B,

pt(G; B) = min{pt(G;F) | F is a set of forces of B}.

Suppose G is a graph and F is a set of forces of a zero forcing set B of G. A forcing chain of F is

a sequence of vertices v1, v2, . . . , vk such that for each 1 ≤ i ≤ k− 1, (vi → vi+1) ∈ F . The reverse

set of forces of F , denoted Rev(F), is the set of forces obtained from F by replacing each force

(u→ v) ∈ F with the force v→ u. The set of vertices that do not perform a force in F is called the

14

terminus ofF and is denoted as Term(F). The terminus and reverse forces were originally defined

in [2] for chronological lists of forces. Using these ideas, it is observed in [10] that the reverse set of

forces of F is a set of forces of Term(F). Furthermore, an induction argument on the times steps

of F is used to show that pt(G; Rev(F)) ≤ pt(G;F). This fact is used to determine that efficient

zero forcing sets of a given graph are not unique.

Theorem 1.3.13. [10] If G is a graph, B ⊆ V(G) is an efficient zero forcing set of G, and F is an efficient

set of forces of B, then Rev(F) is an efficient set of forces of Term(F).

It is also natural to maximize the propagation time achieved by minimum zero forcing sets of

a given graph. The maximum propagation time of a graph G is defined in [10] as

PT(G) = max{pt(G; B) | B is a minimum zero forcing set of G}.

The propagation time interval of a graph G, denoted [pt(G), PT(G)], is the set of integers k such

that pt(G) ≤ k ≤ PT(G). The propagation time interval of G is said to be full if for each k ∈

[pt(G), PT(G)], there exists a minimum zero forcing set B of G such that pt(G; B) = k. A spider is

a tree T such that exactly one vertex v ∈ V(T) has d(v) ≥ 3. Certain spiders are shown in [10] to

have propagation time intervals that are not full.

The concept of propagation time is extended to PSD zero forcing in [13]. For a graph G and

PSD zero forcing set B ⊆ V(G), the PSD propagation time of B in G, denoted pt+(G; B), is defined

analogously to standard propagation time by performing every possible force at each time step.

Note that in PSD propagation, a single vertex can force in multiple components of G − B at the

same time. If G is a graph, the minimum PSD propagagation time of G is denoted pt+(G) and the

maximum PSD propagation time of G is denoted PT+(G). The PSD propagation time interval is the set

of integers in [pt+(G), PT+(G)] and this interval is full if every value in the interval is achieved

as the PSD propagation time of some minimum PSD zero forcing set of G. The minimum and

maximum PSD propagation times are examined in [13] for many families of graphs and extreme

values of pt+ and PT+ are characterized. Many of the graphs studied in [13] are shown to have

15

full PSD propagation time intervals and the author conjectures that this is true for all graphs. This

is an interesting distinction between standard and PSD propagation.

1.3.3 Throttling

Propagation time is studied in [10] exclusively for minimum zero forcing sets. Suppose G is

a graph and the cost of each vertex in an initial set B ⊆ V(G) of blue vertices is comparable to

the cost of each time step of propagation. In this case, if B is a zero forcing set of G that is not

minimum and |B| − Z(G) < pt(G)− pt(G; B), then it is more cost-effective to start with B as the

set of initial blue vertices than a minimum zero forcing set of G. In other words, by throttling the

propagation time, it could be worth using more vertices than necessary in the initial set of blue

vertices. The idea of balancing the size of a zero forcing set with its propagation time was first

studied in [6]. The (standard) throttling number of graph G is defined as

th(G) = min{|B|+ pt(G; B) | B is a zero forcing set of G}.

Let G be a graph of order n and B ⊆ V(G) be a zero forcing set of G. At each time step in the

propagation process of B, each blue vertex in G can force at most one white vertex to become blue.

So at most |B| vertices become blue at each time step. Since B is a zero forcing set, all vertices in

V(G) are blue after time step pt(G; B). This means that |B|(1 + pt(G; B)) ≥ n for any graph G of

order n and zero forcing set B ⊆ V(G). A lower bound for the throttling number of a graph is

obtained in [6] by minimizing |B|+ pt(G; B) subject to the constraint that |B|(1 + pt(G; B)) ≥ n.

Proposition 1.3.14. [6] If G is a graph and |V(G)| = n, th(G) ≥ d2
√

n− 1e.

The bound in Proposition 1.3.14 is shown in [6] to be tight for paths by snaking the path into

a square box. For example, consider the path Pn and let m be the largest integer such that r =

n−m2 ≥ 0. Figure 1.5 illustrates snaking the path into as many rows as possible with m vertices

in each row.

16

Figure 1.5 The path P22 is snaked in a 4× 4 square box with some overhang.

Since m2 is the largest perfect square less than or equal to n, n < m2 + 2m + 1 = (m + 1)2. So

the number of rows in the snaked Pn is at least m and at most m + 2. The set B of vertices in the

left column (as shown in Figure 1.5) has pt(Pn; B) = m− 1 and m ≤ |B| ≤ m + 2. Therefore,

th(Pn) ≤



2m− 1 if n = m2;

2m if m2 < n ≤ m2 + m;

2m + 1 if m2 + m < n ≤ m2 + 2m.

It can be verified algebraically that the above upper bound for th(Pn) is equal to d2
√

n− 1e. Since

pt(Pn) = n− 1, it is significantly less efficient to force every vertex in a path to become blue by

starting with a minimum zero forcing set.

Note that the snaking method constructs a zero forcing set that is guaranteed to have propaga-

tion time on the order of
√

n. In [6], such a zero forcing set is constructed in any graph by starting

with a minimum zero forcing set and carefully choosing vertices along the forcing chains. This

leads to the following theorem which shows that for graphs G with bounded zero forcing number,

th(G) is on the order of
√

n.

Theorem 1.3.15. [6] If G is a graph of order n and Z(G) ≤ k, then th(G) ≤ (2k + 1)d
√

ne+ k.

It is also interesting to consider changing the relative cost of vertices in a zero forcing set B and

the propagation time of B. This idea is called weighted throttling and the proof of Theorem 1.3.15

17

can be used to obtain a similar result when the size of the zero forcing set and the propagation

time of that set are given different weights.

Theorem 1.3.16. [6] If G is a graph of order n, Z(G) ≤ k, and a1 and a2 are fixed weights, then

min{a1|B|+ a2 pt(G; B) | B is a zero forcing set of G} ≤ (2ka1 + a2)d
√

ne+ ka1.

In [7], the study of throttling is extended to PSD zero forcing. For a graph G and PSD zero

forcing set B ⊆ V(G), define th+(G; B) = |B|+ pt(G; B). The PSD throttling number of a graph G

is defined as

th+(G) = min{th+(G; B) | B is a PSD zero forcing set of G}.

Much of the work in [7] is analogous to the research that was done in [6]. For PSD throttling,

the fact that a single vertex can simultaneously force in multiple components makes some of the

results in [7] more complicated than their counterparts in [6]. For example, if B is a PSD zero

forcing set of a graph G, then at most |B|∆(G) vertices can become blue in the first time step. Then

in each time step t > 1, a vertex that became blue in time step t− 1 can force at most ∆(G)− 1

new vertices to become blue. This is used to prove the following inequality.

Lemma 1.3.17. [7] For every graph G of order n and PSD zero forcing set B ⊆ V(G),

n ≤


|B|(1 + 2 pt+(G; B)) if ∆(G) = 2;

|B|
(

1 + ∆(G)(∆(G)−1)pt+(G;B)−∆(G)
∆(G)−2

)
if ∆(G) > 2.

In both of the cases ∆(G) = 2 and ∆(G) > 2, a lower bound for the PSD throttling number of

a graph is obtained by minimizing |B|+ pt+(G; B) subject to the constraints in Lemma 1.3.17.

Theorem 1.3.18. [7] For every graph G of order n,

th+(G) ≥


⌈√

2n− 1
2

⌉
if ∆(G) = 2;⌈

1 + log(∆(G)−1)

(
(∆(G)−2)n+2

∆(G)

)⌉
if ∆(G) > 2.

18

Similar to standard throttling, a snaking argument is used in [7] to show that the bound in

Theorem 1.3.18 is tight for cycles of order at least 4 and paths. In the case that ∆(G) > 2, Theorem

1.3.18 is shown to be tight for a certain family of rooted trees. It is also shown in [7] that given a

tree T and a PSD zero forcing set B ⊆ V(T), there exists a PSD zero forcing set B′ of T such that

|B| = |B′|, pt+(T; B′) ≤ pt+(T; B), and B′ contains no leaves. This fact is used in an induction

argument to prove the following monotonicity result.

Theorem 1.3.19. [7] If T and T′ are trees with T′ ≤ T, then th+(T′) ≤ th+(T).

If G is a graph and W ⊆ V(G) is an independent set of G, then every component of G[W] is a

single vertex. So in this case, V(G) \W is a PSD zero forcing set of G with pt+(G; V(G) \W) = 1

which means th+(G) ≤ |G| − |W|+ 1. Choosing W to be a maximum independent set of G gives

an upper bound for the PSD throttling number of a connected graph in terms of the independence

number of G.

Proposition 1.3.20. [7] For any connected graph G of order n, th+(G) ≤ n− α(G) + 1.

Proposition 1.3.20 is used in [7] to characterize all graphs G with th+(G) = |G| − 1. Graphs

with th+(G) ∈ {1, 2, 3, |G|} are also characterized and weighted PSD throttling is explored.

Bibliography

[1] AIM Minimum Rank – Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler,

S.M. Cioabă, D. Cvetković, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson,

S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K. Vander

Meulen, A. Wangsness). Zero forcing sets and the minimum rank of graphs. Linear Algebra

Appl., 428 (2008), 1628–1648.

[2] F. Barioli, W. Barrett, S. Fallat, H.T. Hall, L. Hogben, B. Shader, P. van den Driessche, H. van

der Holst. Zero forcing parameters and minimum rank problems. Linear Algebra Appl., 433

(2010), 401–411.

19

[3] F. Barioli, W. Barrett, S. Fallat, H.T. Hall, L. Hogben, B. Shader, P. van den Driessche, H. van

der Holst. Parameters related to tree-width, zero forcing, and maximum nullity of a graph.

J. Graph Theory, 72 (2013), 146–177.

[4] B. Brimkov, J. Carlson, I.V. Hicks, R. Patel, L. Smith. Power domination throttling. Available

at https://arxiv.org/abs/1810.01009.

[5] D. Burgarth, D. D’Alessandro, L. Hogben, S. Severini, M. Young. Zero forcing, linear and

quantum controllability for systems evolving on networks. IEEE Trans. Auto. Control, 58

(2013), 2349–2354.

[6] S. Butler, M. Young. Throttling zero forcing propagation speed on graphs. Australas. J. Com-

bin., 57 (2013), 65–71.

[7] J. Carlson, L. Hogben, J. Kritschgau, K. Lorenzen, M.S. Ross, S. Selken, V. Valle Martinez.

Throttling positive semidefinite zero forcing propagation time on graphs. Discrete Appl.

Math., 254 (2019), 33–46.

[8] J. Ekstrand, C. Erickson, H.T. Hall, D. Hay, L. Hogben, R. Johnson, N. Kingsley, S. Osborne,

T. Peters, J. Roat, A. Ross, D.D. Row, N. Warnberg, M. Young. Positive semidefinite zero

forcing. Linear Algebra Appl., 439 (2013), 1862–1874.

[9] S. Fallat, L. Hogben. The minimum rank of symmetric matrices described by a graph: a

survey. Linear Algebra Appl., 426 (2007), 558–582.

[10] L. Hogben, M. Huynh, N. Kingsley, S. Meyer, S. Walker, M. Young. Propagation time for

zero forcing on a graph. Discrete Appl. Math., 160 (2012), 1994–2005.

[11] S. Severini. Nondiscriminatory propagation on trees. J. Physics A., 41 (2008), 482–002.

[12] H. van der Holst. Graphs whose positive semi-definite matrices have nullity at most two.

Linear Algebra Appl., 375 (2003), 1–11.

https://arxiv.org/abs/1810.01009

20

[13] N. Warnberg. Positive semidefinite propagation time. Discrete Appl. Math., 198 (2016), 274–

290.

21

CHAPTER 2. THROTTLING FOR ZERO FORCING AND VARIANTS

A paper submitted to The Australasian Journal of Combinatorics.

Joshua Carlson

Abstract

Zero forcing is a process on a graph in which the goal is to force all vertices to become blue by

applying a color change rule. Throttling minimizes the sum of the number of vertices that are

initially blue and the number of time steps needed to color every vertex. This paper provides a

new general definition of throttling for variants of zero forcing and studies throttling for the minor

monotone floor of zero forcing. The technique of using a zero forcing process to extend a given

graph is introduced. For standard zero forcing and its floor, these extensions are used to char-

acterize graphs with throttling number ≤ t as certain minors of cartesian products of complete

graphs and paths. Finally, these characterizations are applied to determine graphs with extreme

throttling numbers.

Keywords: Zero forcing, propagation time, throttling, minor monotone floor

AMS subject classification: 05C57, 05C15, 05C50

2.1 Introduction

Zero forcing is a process on graphs in which an initial set of vertices is colored blue (with the

remaining vertices colored white) and vertices can force white vertices to become blue according to

22

a color change rule. When using the color change rule, the goal is to eventually color every vertex

in graph. Zero forcing can be used to model graph searching [11], the spread of information on

graphs [5], and control of quantum systems [4, 9]. Naturally, it is useful to know the smallest

possible size of an initial set that can be used to color all vertices in the graph blue. It is also useful

to know the time it takes to complete this process (often called propagation time). The idea of

throttling is to study the relationship between the size of the initial set and its propagation time.

Richard Brualdi posed the problem of minimizing the sum of these two quantities in 2011 (see [5]).

Unless otherwise stated, the graphs in this paper are simple, undirected, and finite. For a graph

G, V(G) and E(G) denote the sets of vertices and edges of G respectively. The cardinality of V(G)

is often denoted as |G|. The (standard) color change rule is that a blue vertex u can force a white

vertex w to become blue if w is the only white neighbor of u. In this case, it is said that u forces

w which is denoted as u → w. A vertex is active if it is blue and has not yet performed a force.

Note that in standard zero forcing, any vertex that performs a force becomes inactive and cannot

perform another force. Let G be a graph with B ⊆ V(G) colored blue and V(G) \ B colored white.

If every vertex in V(G) can be forced to become blue by repeatedly applying the standard color

change rule, then B is a (standard) zero forcing set of G. The (standard) zero forcing number, Z(G),

is the minimum size of a standard zero forcing set of G. In [1], it is shown that the zero forcing

number can be used to bound the minimum rank of a matrix associated with a graph.

Zero forcing propagation is studied in [8]. The idea is to simultaneously perform all possible

forces at each time step. Define B(0) = B and for each t ≥ 0, define B(t+1) to be the set of vertices w

for which there exists a vertex b ∈ ⋃t
s=0 B(s) such that w is the only neighbor of b not in

⋃t
s=0 B(s).

The (standard) propagation time of B in G, denoted pt(G, B), is the smallest integer t′ such that

V(G) =
⋃t′

t=0 B(t). Propagation time is particularly important in the control of quantum systems

(see [9]).

Throttling for standard zero forcing was first studied by Butler and Young in [5]. If B is a zero

forcing set of a graph G, the throttling number of B in G is th(G, B) = |B|+ pt(G, B). The (standard)

throttling number of G is the minimum value of th(G, B) where B ranges over all zero forcing sets of

23

G. For a given graph G and an integer k, the ZERO FORCING THROTTLING problem is to determine

if the standard throttling number of G is less than k. The many variations of zero forcing (see [2])

lead to many variations of throttling. In [3], it was shown that ZERO FORCING THROTTLING and

other variants are NP-Complete.

Commonly studied variants of zero forcing include positive semidefinite zero forcing and loop

zero forcing (see [2]). Let G be a graph. A connected component of G is a maximally connected

subgraph of G. Suppose B is a set of blue vertices in G and G − B has k separate connected

components. Let W1, . . . , Wk be the sets of (white) vertices of the connected components of G− B.

The positive semidefinite color change rule applies the standard color change rule in G[Wi ∪ B] for

any 1 ≤ i ≤ k. The positive semidefinite zero forcing number of a graph G is denoted Z+(G) and

the positive semidefinite throttling number (studied in [6]) is defined analogously to standard

throttling. Loop zero forcing (see [2]) arises by considering a graph where every vertex has a loop.

The loop color change rule for simple graphs is to apply the standard color change rule, or if every

neighbor of a white vertex w is blue, then w can force itself to become blue. The loop zero forcing

number of a graph G is denoted Z`(G).

If G and H are graphs and G is a subgraph of H, write G ≤ H. If G ≤ H and |V(G)| = |V(H)|,

G is a spanning subgraph of H and H is a spanning supergraph of G. If G is a minor of H, write

G � H. Note that this paper breaks the convention of using H to denote a minor or subgraph of a

graph G because it considers many graph parameters that depend on majors or supergraphs of a

given graph. For example, suppose p is a graph parameter whose range is well-ordered. The minor

monotone floor of p is defined as bpc(G) = min{p(H) | G � H}. In [2], it was shown that bZc, bZ+c,

and bZ`c are zero forcing parameters with their own unique color change rules. In particular, the

bZc color change rule is to either apply the standard color change rule, or alternatively if a vertex

v is active and all neighbors of v are blue, then v can force any single white vertex w to become

blue. The latter condition of the bZc color change rule is called “hopping”. If this condition is

used, then it is said that v forces w by a hop. It was also shown in [2] that the minor monotone

floors of various zero forcing parameters are related to tree-width, path-width, and proper path-

24

width. In addition, the concepts of path-width and proper path-width were shown in [10] to have

connections to search games on graphs.

In Section 2.2, a general definition of propagation and throttling is given that allows for the

study of further variations. Throttling for bZc is studied in Section 2.3 and an “extension” tech-

nique that can be used to characterize graphs with bZc throttling number at most t for a fixed

positive integer t is introduced. A similar characterization for standard throttling is given in Sec-

tion 2.4. These characterizations are applied in Section 2.5 in order to quickly characterize graphs

with extreme throttling numbers. Finally, in Section 3.5, an observation is made about proving the

complexity of bZc throttling and possibilities for future work are given.

2.2 General propagation time and throttling

This section gives new general definitions of propagation time and throttling for color change

rules. Define an (abstract) color change rule to be a set of conditions under which a vertex u can

force a white vertex w to become blue in a graph whose vertices are colored white or blue. The

notation u→ w is used to indicate that vertex u forced vertex w to become blue. Let G be a graph

with B ⊆ V(G) colored blue and V(G) \ B colored white. Let R be a given color change rule.

Repeatedly apply R to G until it is no longer possible to do so and write down the forces u → w

in the order in which they are performed. This list of forces is called a chronological list of R forces

of B and the unordered set of forces that appear in the list is a set of R forces of B. Suppose G is a

graph and F is a set of R forces of B ⊆ V(G). An R forcing chain of F is a sequence of vertices

(v1, v2, . . . , vk) in G such that (vi → vi+1) ∈ F for each 1 ≤ i ≤ k− 1. An R forcing chain of F is

maximal if it is not properly contained in any other R forcing chain of F . The set of vertices in G

that are blue after all forces in F have been performed is an R final coloring of B.

Remark 2.2.1. Suppose B′ is an R final coloring of a set B ⊆ V(G) obtained by performing the

forces in a chronological list of R forces of B (denoted by L). Note that B′ consists of the vertices

in B together with all vertices that become forced in L. Therefore, B′ does not depend on the

25

chronological ordering of L. This means that R final colorings depend on sets of forces and not

chronological lists of forces.

Let G be a graph and let R be a given color change rule. An R forcing set of G is a set B ⊆ V(G) of

vertices such that V(G) is an R final coloring of B for some set of R forces. The R forcing parameter,

R(G), is the minimum size of an R forcing set of G. An R forcing set B is a minimum R forcing set of

G if |B| = R(G).

Note that the definition of standard propagation time of a set of vertices does not use sets of

forces. This is because final colorings in standard zero forcing are unique and depend only on

the initial set of blue vertices (see [1]). However, there are variants of zero forcing that do not

have unique final colorings (e.g., bZc forcing). When performing a bZc force by hopping, there

are many choices for the white vertex that gets forced. Example 2.36 in [2] illustrates that it is

possible to start with a blue bZc forcing set B and fail to color every vertex in the graph due to

poor hopping choices. In this case, B has at least two distinct sets of bZc forces with different

propagation times. This motivates the following definitions.

For a set of R forces F of B ⊆ V(G), define F (0) = B and for t ≥ 0, F (t+1) is the set of vertices

w such that the force v→ w appears in F and w can be R forced by v if the vertices in
⋃t

i=0 F (i) are

colored blue and the vertices in V(G) \
(⋃t

i=0 F (i)
)

are colored white. The R propagation time of F

in G, denoted ptR(G;F), is the least t′ such that V(G) =
⋃t′

i=0 F (i). If the R final coloring induced

by F is not V(G), then define ptR(G;F) = ∞. Note that B is colored blue at time 0, and for each

1 ≤ t ≤ ptR(G;F), time step t takes place between time t− 1 and time t in F . A vertex in G is

active at time t if it is blue at time t and has not performed a force in time step s for any s ≤ t.

Definition 2.2.2. Let G be a graph with B ⊆ V(G) and let R be a given color change rule. The R

propagation time of B is defined as

ptR(G; B) = min{ptR(G;F) | F is set of R forces of B}.

Note that Definition 2.2.2 doesn’t require the set B to be an R forcing set of G. This is because

a set F of R forces that fails to color every vertex in G has ptR(G;F) = ∞. Therefore, such a set F

26

does not realize ptR(G; B) when B is an R forcing set of G. If B is not an R forcing set of G, then

every set of R forces of B has infinite propagation time and ptR(G; B) = ∞. Another advantage of

Definition 2.2.2 is that it is not required to prove that a subset of vertices is an R forcing set before

discussing its propagation time. This is useful for proving Proposition 2.3.1 in the next section.

The (standard) propagation time of a graph (see [8]) considers the smallest propagation time

among minimum zero forcing sets. The next definition generalizes this idea.

Definition 2.2.3. Let G be a graph and let R be a given color change rule. The R propagation time of

G is defined as

ptR(G) = min{ptR(G; B) | B is a minimum R forcing set of G}.

Definition 2.2.4. Let G be a graph with B ⊆ V(G) and let R be a given color change rule. The R

throttling number of B in G is

thR(G; B) = |B|+ ptR(G; B).

Definition 2.2.5. Let G be a graph and let R be a given color change rule. The R throttling number

of G is defined as

thR(G) = min
B⊆V(G)

{thR(G; B)}.

When comparing propagation time and throttling for various color change rules, Z is used to

denote the standard zero forcing color change rule (i.e., ptZ and thZ).

2.3 Throttling for the minor monotone floor of Z

This section investigates propagation and throttling for the bZc color change rule. Definition

2.2.2 exhibits the connection between the bZc propagation time of a subset B ⊆ V(G) and the bZc

propagation time of a set of bZc forces of B. The following proposition shows that the ptbZc(G; B)

can also be calculated by minimizing the standard zero forcing propagation time of B on spanning

supergraphs of G.

27

Proposition 2.3.1. If G is a graph and B ⊆ V(G), then

ptbZc(G; B) = min{ptZ(H; B) | G ≤ H and |G| = |H|}. (2.1)

Proof. LetF be a set of bZc forces of B such that ptbZc(G; B) = ptbZc(G;F). Note that every force in

F is either a Z force or a force by a hop. Let G′ be the graph obtained from G by adding the edges

uw such that u→ w appears inF and u→ w by a hop. Note that for each edge uw ∈ E(G′) \ E(G),

w is the only white neighbor of u in G′ and u is active at the time that u → w in F . This means

that u → w is a valid Z force in G′ for each such edge. Thus, F is a set of Z forces of B in G′ and

ptZ(G
′;F) = ptbZc(G;F). Therefore,

ptbZc(G; B) = ptZ(G
′;F) ≥ min{ptZ(H; B) | G ≤ H and |G| = |H|}.

Now let H′ be a spanning supergraph of G such that the right hand side of (2.1) is equal to

ptZ(H′, B). Let F be a set of Z forces of B such that ptZ(H′,F) = ptZ(H′, B). Consider applying

F to B in G and hopping when an edge is missing. If (u → w) ∈ F and uw ∈ E(H′) \ E(G), then

u can bZc force w in H′− uw by a hop when u→ w in F . If (u→ w) ∈ F and uw /∈ E(H′) \ E(G),

then u will Z force w in G exactly the way u → w in H′. If (u → w) /∈ F , then the propagation

time of F does not change regardless of whether uw is removed from H′ to obtain G. This means

that F is a set of bZc forces of B in G with ptbZc(G;F) = ptZ(H′;F). Thus,

ptbZc(G; B) ≤ ptbZc(G;F) = ptZ(H′, B) = min{ptZ(H; B) | G ≤ H and |G| = |H|}.

By the definition of minor monotone floor given in Section 2.1, bZc is minor monotone (i.e.,

bZc(G) ≤ bZc(H) if G � H). Since any Z forcing set of a graph G is also a bZc forcing set of G,

bZc is bounded above by Z. These facts together with Definitions 2.2.3, 2.2.4, and 2.2.5 can be used

to extend the above proposition and give similar results for the bZc propagation time of a graph

and bZc throttling.

Corollary 2.3.2. Let G be a graph. Then

ptbZc(G) = min{ptZ(H) | G ≤ H with |G| = |H| and bZc(G) = Z(H)}.

28

Proof. Let H be a spanning supergraph of G with B a standard zero forcing set of H. Then,

bZc(G) ≤ bZc(H) ≤ Z(H) ≤ |B|. Therefore, assuming that |B| = bZc(G) gives |B| = Z(H)

which means that B is a minimum zero forcing set of H. By Proposition 2.3.1, it follows that

ptbZc(G) = min{ptbZc(G; B) | bZc(G) = |B|}

= min{min{ptZ(H; B) | G ≤ H and |G| = |H|} | bZc(G) = |B|}

= min{ptZ(H; B) | G ≤ H with |G| = |H| and bZc(G) = |B|}

= min{ptZ(H) | G ≤ H with |G| = |H| and bZc(G) = Z(H)}.

Corollary 2.3.3. If G is a graph and B ⊆ V(G), then

thbZc(G; B) = min{thZ(H; B) | G ≤ H and |G| = |H|}.

Corollary 2.3.4. Let G be a graph. Then

thbZc(G) = min{thZ(H) | G ≤ H and |G| = |H|}.

Theorem 2.3.5. The bZc throttling number is subgraph monotone. In particular, if G and H are graphs

with G ≤ H, then thbZc(G) ≤ thbZc(H).

Proof. Let H be a graph. By Corollary 2.3.4, thbZc(G′) ≤ thbZc(H) for any spanning subgraph G′ of

H. Let v ∈ V(H) and let E(v) be the set of all edges in H incident with v. Define G′ = H − E(v).

Note that thbZc(G′) ≤ thbZc(H). Choose B′ ⊆ V(G′) such that thbZc(G′; B′) = thbZc(G′). Let F ′

be a set of bZc forces of G′ with ptbZc(G′;F ′) = ptbZc(G′; B′). The goal is to produce a set B ⊆

V(G′− v) and a set of bZc forces, F , of B such that |B| ≤ |B′| and ptbZc(G′− v,F) ≤ ptbZc(G′;F ′).

Let v1 → v2 → · · · → vk be the maximal bZc forcing chain of F ′ that contains v. If k = 1, then

it suffices to choose B = B′ \ {v} and F = F ′. Now assume k > 1. Note that v = vi for some

1 ≤ i ≤ k. Define B and F as

B =


(B′ \ {vi}) ∪ {vi+1} if i = 1,

B′ otherwise,

29

and

F =



F ′ \ {vi → vi+1} if i = 1,

(F ′ \ {vi−1 → vi, vi → vi+1}) ∪ {vi−1 → vi+1} if 1 < i < k,

F ′ \ {vi−1 → vi} if i = k.

Recall that v is an isolated vertex in G′. So when 1 < i < k, vi−1 → vi and vi → vi+1 by hopping

in G′. This means at the time that vi−1 → vi in G′, vi−1 can force vi+1 by a hop in G′ − v. In the

other cases, simply remove the appropriate force from F ′. So in all cases, it is clear that |B| ≤ |B′|

and ptbZc(G′ − v;F) ≤ ptbZc(G′;F ′). Also note that G′ − v = H − v. Thus, for all 1 ≤ i ≤ k,

thbZc(H − v) ≤ |B|+ ptbZc(G
′ − v;F) ≤ |B′|+ ptbZc(G

′;F ′) = thbZc(G
′) ≤ thbZc(H).

Since v was chosen arbitrarily, it follows that removing vertices from H will not increase the bZc

throttling number.

Since bZc is minor monotone, it is natural to ask if Theorem 2.3.5 can be strengthened to say

that thbZc is minor monotone. This question is answered negatively (see Theorem 2.3.18) once

a characterization of thbZc is obtained. Note that Theorem 2.3.5 can be extended in other ways.

For each p ∈ {Z+, Z`}, the color change rule for bpc takes the color change rule for p and allows

hopping. This leads to the following corollary.

Corollary 2.3.6. Suppose G is a graph and B ⊆ V(G). Then for each p ∈ {Z+, Z`},

ptbpc(G; B) = min{ptp(H; B) | G ≤ H and |G| = |H|},

thbpc(G; B) = min{thp(H; B) | G ≤ H and |G| = |H|},

and thbpc is subgraph monotone.

It is likely that Corollary 2.3.6 will hold for any graph parameter p such that bpc has a corre-

sponding color change rule that takes the color change rule for p and allows hopping. However,

no other parameters p have been shown to have this property. Note that if B is a standard zero

30

forcing set of a graph G, then B is also a bZc forcing set of G with ptbZc(G; B) ≤ ptZ(G; B). Thus,

it is immediate that for any graph G, thbZc(G) is bounded above by thZ(G). Butler and Young

showed in [5, page 66] that for any graph G of order n, thZ(G) is at least
⌈
2
√

n− 1
⌉
. By Corollary

2.3.4, this lower bound holds for thbZc(G) as well.

Corollary 2.3.7. If G is a graph of order n, then

thbZc(G) = min{thZ(H) | G ≤ H and |G| = |H|} ≥
⌈
2
√

n− 1
⌉

.

Since the bZc throttling number is bounded above by the standard throttling number, any

graph G that achieves thZ(G) =
⌈
2
√

n− 1
⌉

also achieves thbZc(G) =
⌈
2
√

n− 1
⌉
. It was shown

in [5] that thZ(Pn) =
⌈
2
√

n− 1
⌉
. Thus, it can be concluded that thbZc(Pn) =

⌈
2
√

n− 1
⌉
. The

standard throttling number of a cycle was determined in [6] as follows.

Theorem 2.3.8. [6, Theorem 7.1] Let Cn be a cycle on n vertices. Define m to be the largest integer such

that m2 ≤ n and n = m2 + r. Then

thZ(Cn) =



2m− 1 if r = 0 and m is even,

2m if 0 < r ≤ m or (r = 0 and m is odd),

2m + 1 if m < r < 2m + 1.

Theorem 2.3.8 can be used to determine the bZc throttling number of a cycle.

Proposition 2.3.9. Let Cn be a cycle on n vertices. Then thbZc(Cn) =
⌈
2
√

n− 1
⌉
.

Proof. Define m to be the largest integer such that m2 ≤ n and n = m2 + r. Note that if m is even

or r > 0, then the conditions in Theorem 2.3.8 are equivalent to the conditions for thZ(Pn) in [5].

So in this case, thbZc(Cn) = thZ(Pn) =
⌈
2
√

n− 1
⌉
. Now suppose m is odd and r = 0. So n = m2

and thZ(Cn) = 2m =
⌈
2
√

n− 1
⌉
+ 1. In this case, construct a bZc forcing set B with |B| = m

and ptbZc(Cn; B) ≤ m− 1 as follows. Draw Cn by arranging the vertices in an m by m array and

adding the edges as in Figure 2.1. Let B be the set of vertices in the left column. Note that in

each time step, every active vertex can force the vertex to its right to become blue (sometimes

31

by a hop), so every vertex becomes blue one column at a time. Let F be the set of bZc forces

of B obtained by this process. Clearly |B| = m and ptbZc(Cn; B) ≤ ptbZc(Cn;F) = m − 1. Thus

thbZc(Cn) ≤ 2m− 1 =
⌈
2
√

n− 1
⌉
.

Figure 2.1 The cycle Cn with n = m2 and m = 5.

Example 2.3.10 uses Theorem 2.3.5 to demonstrate that if thZ(G) >
⌈
2
√

n− 1
⌉
, then thbZc(G)

can differ greatly from thZ(G).

K1,n−1 Wn−1

Figure 2.2 The star on n vertices alongside the wheel as a spanning supergraph.

32

Example 2.3.10. Let G be the star K1,n−1 on n vertices as shown on the left in Figure 2.2. Since

Z(G) = n − 2, it can be verified by inspection that thZ(G) = n. Consider the wheel Wn−1 on n

vertices as a spanning supergraph of G (shown on the right of Figure 2.2). Obtain B ⊆ V(Wn−1)

by choosing the center vertex of the wheel and a set of vertices on the outside cycle that achieves

optimal bZc throttling for a cycle of order n − 1. By Theorem 2.3.5, thbZc(G) ≤ thbZc(Wn−1) ≤

thbZc(Cn−1) + 1 ≤
⌈
2
√

n− 1− 1
⌉
+ 1. Recall that thbZc(G) ≥

⌈
2
√

n− 1
⌉
. Note that there are

infinitely many integers n such that
⌈
2
√

n− 1− 1
⌉
+ 1 =

⌈
2
√

n− 1
⌉
. So in these cases, thbZc(G) =⌈

2
√

n− 1
⌉
.

The largeur d’arborescence of a graph was defined by Colin de Verdière in [7] to measure the

width of trees. Note that largeur d‘arborescence is french for tree width. The largeur de chemin of

G, denoted by lc(G), was introduced in [2] as the analog of largeur d’arborescence that measures

the width of paths. Formally, lc(G) is defined as the minimum k for which G is a minor of the

Cartesian product Kk�P of a complete graph on k vertices with a path. The proper path width of a

graph G, ppw(G), is the smallest k such that G is a partial linear k-tree (see [2]). These parameters

are connected to bZc by the following theorem.

Theorem 2.3.11. [2, Theorems 2.18 and 2.39] For every graph G having at least one edge, lc(G) =

ppw(G) = bZc(G).

It is known that proper path-width is equivalent to the mixed search number of a graph (see

[10]). Since ppw(G) = bZc(G) ≤ thbZc(G) for any graph G, Theorem 2.3.11 connects bZc throt-

tling to mixed searching. Theorem 2.3.11 also exhibits a relationship between bZc and graphs of

the form Kk�P. It is useful to capitalize on this relationship in order to characterize thbZc(G). For a

given a graph G, the idea is to extend G by using a set of forces in G. The next definition constructs

a graph from a given graph G, a standard zero forcing set B ⊆ V(G), and a set of standard forces

F . This construction is illustrated in Figure 2.3.

Definition 2.3.12. Let G be a graph and let B ⊆ V(G) be a standard zero forcing set of G. Suppose

F is a set of Z forces of B with ptZ(G; B) = ptZ(G;F). Let P1, P2, . . . , P|B| be the induced paths in

33

G formed by the maximal forcing chains of F . For each vertex v ∈ V(G), consider the path Pi that

contains v and let τ(v) be the number of times in the propagation process of F at which v is active

(possibly including time 0). Define the (zero forcing) extension of G with respect to B and F , denoted

E(G, B,F), to be the graph obtained by the following procedure.

1. From each path Pi in G, construct a new path P′i so that for each v ∈ Pi, there are τ(v) copies

of v in P′i , and for each pair va, vb ∈ Pi such that va is forced before vb in Pi, every copy of va

is to the left of every copy of vb in P′i . Note that for each 1 ≤ i ≤ |B|, |V(P′i)| = ptZ(G; B) + 1

and the paths {P′1, P′2, . . . , P′|B|} can be arranged into a |B| by pt(G; B) + 1 array of vertices.

2. For each edge uv ∈ E(G) \ ⋃|B|i=1 E(Pi), suppose Pq and Pr are the paths that contain u and v

respectively. Since u and v must both be active before u or v can perform a force in G, there

is at least one column in the |B| by pt(G; B) + 1 array such that a copy of u and a copy of v

appear in that column. Draw an edge connecting the copy of u in P′q and the copy of v in P′r

that are in the least such column.

Example 2.3.13. Let G be the graph shown on the left in Figure 2.3. Choose B = {v1, v4, v7} and

let F be the set of standard forces F = {v1 → v2, v2 → v3, v4 → v5, v5 → v6, v7 → v8, v8 → v9}.

Note that the forces in F correspond to the horizontal edges in G as shown in Figure 2.3. The

numbers above the vertices of G indicate the time step in F when that vertex is forced (making

that vertex active at the next time in the propagation process). For example, v7 → v8 in time step 1

and v8 → v9 in time step 3. Since there are two times in F at which v8 active, there are two copies

of v8 in E(G; B;F), which is shown on the right in Figure 2.3.

34

G E(G; B;F)

Figure 2.3 G, B, and F are illustrated alongside the extension E(G; B;F).

Consider the graph G = Ka�Pb. Define the path edges of G to be the edges in each copy of Pb

in the Cartesian product. Likewise, define the complete edges of G to be the edges in each copy of

Ka in the Cartesian product. For example, if G is drawn so that V(G) is arranged as an a by b

array where each column induces a Ka and each row induces a Pb, then the path edges of G are

the horizontal edges and the complete edges of G are the vertical edges. Given a graph G, an edge

e ∈ E(G), a standard zero forcing set B ⊆ V(G), and a set F of standard forces in G that uses e to

perform a force, the following definition constructs a standard zero forcing set in G/e and a set of

standard forces in G/e that mimic B and F respectively.

Definition 2.3.14. Let G be a graph with standard zero forcing set B ⊆ V(G) and suppose F

is a set of forces of B. Let e ∈ E(G) be an edge that is used to perform a force in F . Define

v1 → v2 → · · · → vk to be the maximal forcing chain of F that contains e. Note that k ≥ 2. For

each 1 ≤ j ≤ k− 1, let ej be the edge vjvj+1 and let~ej denote the force vj → vj+1. So e = ei for some

1 ≤ i ≤ k− 1. Define ve to be the vertex in G/e obtained by contracting e in G and define the sets

B/e and F/e as follows.

B/e =


(B \ {vi}) ∪ {ve} if i = 1,

B if i > 1,

35

and

F/e =



(F \ {~ei−1,~ei,~ei+1}) ∪ {vi−1 → ve, ve → vi+2} if k > 2 and 1 < i < k− 1,

(F \ {~ei,~ei+1}) ∪ {ve → vi+2} if k > 2 and i = 1,

(F \ {~ei−1,~ei}) ∪ {vi−1 → ve} if k > 2 and i = k− 1,

F \ {~ei} if k = 2.

Lemma 2.3.15 is used to prove Theorem 2.3.16 which exhibits a relationship between thbZc and

graphs of the form Ka�Pb+1.

Lemma 2.3.15. Let G be a graph. Suppose B ⊆ V(G) is a standard zero forcing set of G with a set of

standard forces F . If e = uv is an edge in E(G) and (u → v) ∈ F , then F/e is a set of standard forces

of B/e in G/e such that ptZ(G/e,F/e) ≤ ptZ(G;F). Furthermore, if F and B satisfy ptZ(G;F) =

ptZ(G; B) and thZ(G) = thZ(G; B), then thZ(G/e) ≤ thZ(G).

Proof. Let G be a graph with standard zero forcing set B ⊆ V(G). Let F be a set of forces of B

and suppose e = uv ∈ E(G) is an edge that is used to perform a force in F . Assume without

loss of generality that (u → v) ∈ F . Proceed by induction on ptZ(G;F). If ptZ(G;F) = 0, then

B = V(G) and no such edge e exists and there is nothing to prove. Suppose ptZ(G;F) = 1. In this

case, it is clear that F/e is a set of forces of B/e in G/e and ptZ(G/e;F/e) ≤ 1 = ptZ(G;F).

Now suppose that for some k ≥ 1, the result is true for any graph H and set of forces Q with

ptZ(H;Q) ≤ k. Again, let G be a graph with standard zero forcing set B ⊆ V(G). Now, suppose

F is a set of standard forces of B with ptZ(G;F) = k + 1. Let e = uv be a given edge in G such

that (u→ v) ∈ F . Define T(F) to be all vertices in G that are forced last in F (at time step k + 1).

For all vertices q ∈ T(F), let q′ be the vertex in G that forces q at time step k + 1. Note that for any

q ∈ T(F) and any neighbor y of q in G with y 6= q′, y is also in T(F). This is because if y /∈ T(F),

then y cannot perform a force until q is forced. However, q is forced in time step k + 1 which

implies that y forces in a time step greater than ptZ(G;F), and this is a contradiction. Suppose

uv = q′q for some q ∈ T(F). Since N(v) \ {u} ⊆ T(F), F/e is a set of forces of B/e in G/e such

that ptZ(G/e;F/e) ≤ k + 1 = ptZ(G;F).

36

Finally, suppose u → v in F at a time step less than k + 1. Construct G/e by the following

process. First, remove T(F) from G to obtain H = G − T(F). Next, contract e in H to obtain

H/e. Finally, add T(F) to H so that the neighborhood in H of each q ∈ T(F) is the same as the

neighborhood of q in G (except that there may be a q ∈ T(F) such that ve ∼ q in G/e whereas

v ∼ q in G). Let F ′ = F \ {q′ → q | q ∈ T(F)}. Clearly ptZ(H;F ′) ≤ k. So by the induc-

tion hypothesis, ptZ(H/e;F ′/e) ≤ ptZ(H;F ′) ≤ k. When T(F) is added to H/e and the set of

forces F/e is considered instead of F ′/e, the propagation time will increase by at most 1. Thus,

ptZ(G/e;F/e) ≤ ptZ(H/e;F ′/e) + 1 ≤ k + 1 = ptZ(G;F). Note that if F and B are chosen such

that ptZ(G;F) = ptZ(G; B) and thZ(G) = thZ(G; B), then

thZ(G/e) ≤ |B/e|+ ptZ(G/e;F/e) ≤ |B|+ ptZ(G;F) = |B|+ ptZ(G; B) = thZ(G).

Theorem 2.3.16. Given a graph G and a positive integer t, thbZc(G) ≤ t if and only if there exists integers

a ≥ 1 and b ≥ 0 such that a + b = t and G can be obtained from Ka�Pb+1 by contracting path edges and

deleting edges.

Proof. First suppose thbZc(G) ≤ t. Let H be a spanning supergraph of G such that H has a standard

zero forcing set B with thZ(G; B) ≤ t. Let F be a set of Z forces of B in H such that ptZ(H;F) =

ptZ(H; B). Let a = |B|, b′ = ptZ(H; B) = thZ(G; B)− a, and b = t− a. Then b′ ≤ b and

G ≤ H � E(H, B,F) ≤ Ka�Pb′+1 ≤ Ka�Pb+1.

Note that by the construction of H and E(H, B,F), H can be obtained from Ka�Pb+1 by contracting

path edges. Then G can be obtained from H by deleting edges.

For the other direction, suppose G′ = Ka�Pb+1 with a + b = t and G can be obtained from G′

by contracting path edges and deleting edges. Choose B′ ⊆ V(G′) such that B′ induces a copy of

Ka in G′ that corresponds to an endpoint of Pb+1. Note that B′ is a standard zero forcing set of G′

with set of forces F ′ such that the set {uv | (u → v) ∈ F ′} is the set of path edges in G′. In other

words, F ′ propagates along the path edges of G′. Also note that ptZ(G′;F ′) = b and |B| = a. Let

D be a set of edges and let C be a set of path edges in G′ such that G can be obtained from G′ by

first contracting the edges in C, then deleting the edges in D. Let H′ be the graph obtained from

37

G′ by contracting the edges in C. Note that D ⊆ E(H′). By repeated applications of Lemma 2.3.15,

it is possible to obtain a standard zero forcing set B ⊆ V(H′) with set of forces F such |B| ≤ |B′|

and ptZ(H′;F) ≤ ptZ(G′;F ′) = b. Thus,

thbZc(H′) ≤ thZ(H′) ≤ |B|+ ptZ(H′;F) ≤ |B′|+ ptZ(G′;F ′) = a + b = t.

By Theorem 2.3.5, thbZc(G) ≤ thbZc(H′) ≤ t.

Note that if a fixed integer t ≥ 1 is given, then the graphs that have bZc throttling number at

most t are exactly the graphs given by Theorem 2.3.16. The following corollary is immediate from

this observation.

Corollary 2.3.17. If t is a fixed positive integer, then there are finitely many graphs with bZc throttling

number equal to t.

The next theorem uses Theorem 2.3.16 to show that thbZc does not inherit the property of minor

monotonicity from bZc. Recall that the maximum degree of a graph G is denoted as ∆(G).

Theorem 2.3.18. The bZc throttling number of a graph is not minor monotone.

Proof. Consider the graph K3�P3 and let B ⊆ V(K3�P3) be the three vertices in a copy of K3 that

corresponds to an endpoint of P3. Since ptbZc(K3�P3; B) ≤ 2, thbZc(K3�P3) ≤ 5. Let G be the

minor of K3�P3 shown on the left in Figure 2.4. The following argument shows that G cannot be

obtained from Ka�Pb+1 with a + b = 5 by contracting path edges and/or deleting edges. Since

|V(K1�P5)| = |V(K5�K1)| = 5 < 8 = |V(G)|, G cannot be obtained from K1�P5 or K5�P1

without adding vertices. Note that |V(K2�P4)| = |V(K4�P2)| = 8 which means that contractions

are not allowed in order to obtain G from those graphs. Since ∆(K2�P4) = 3, ∆(K4�P2) = 4, and

∆(G) = 5, G cannot be obtained from those graphs by deleting edges. To obtain G from K3�P3

using the operations in Theorem 2.3.16, exactly one contraction of a path edge is required since

|V(G)| = 8 and |V(K3�P3)| = 9. Note that by the symmetry of K3�P3, contracting any single path

edge yields the same graph. Let G′ be the graph obtained by contracting a path edge of K3�P3

shown in the middle of Figure 2.4. The degree sequences of G′ and G are (5, 4, 4, 3, 3, 3, 3, 3) and

38

(5, 3, 3, 3, 3, 3, 3, 3) respectively. Thus, the only possible way to delete edges in G′ and obtain G is

by deleting the edge between the two vertices of degree 4. Delete this edge from G′ and let H

be the resulting graph shown on the right in Figure 2.4. If v1 and v2 are the vertices of degree 5

in G and H respectively, then H − v2 contains a 6-cycle and G − v1 does not. Therefore, G is not

isomorphic to H and G cannot be obtained from Ka�Pb+1 with a+ b = 5 by contracting path edges

and/or deleting edges. By Theorem 2.3.16, this means that thbZc(G) ≥ 6. Since thbZc(K3�P3) ≤ 5,

it follows that thbZc is not minor monotone.

G G′ H

Figure 2.4 The graphs G, G′, and H are minors of K3�P3 used in the proof of Theorem

2.3.18.

In the next section, the proof of Theorem 2.3.16 is modified in order to characterize standard

throttling.

2.4 A characterization for standard throttling

Since there are graphs (e.g., stars) for which thZ 6= thbZc, it is clear that the characterization in

Theorem 2.3.16 does not also characterize thZ. However, the only part of this characterization that

does not work for standard throttling is the deletion of edges. In fact, Example 2.3.10 demonstrates

that standard throttling is not spanning subgraph monotone. The next theorem shows how thZ

can be characterized by being more careful about which edges can be deleted.

39

Theorem 2.4.1. Given a graph G and a positive integer t, thZ(G) ≤ t if and only if there exists integers

a ≥ 0 and b ≥ 1 such that a + b = t and G can be obtained from Ka�Pb+1 by contracting path edges and

deleting complete edges.

Proof. First suppose thZ(G) ≤ t. Let B ⊆ V(G) be a standard zero forcing set of G with thZ(G; B) ≤

t and let F be a set of standard forces of B in G with ptZ(G;F) = ptZ(G; B). Let a = |B|,

b′ = ptZ(G; B) = thZ(G; B)− a, and b = t− a. Then b′ ≤ b and

G � E(G, B,F) ≤ Ka�Pb′+1 ≤ Ka�Pb+1.

Note that by the construction of E(G, B,F), G can be obtained from Ka�Pb+1 by contracting path

edges and deleting complete edges.

For the other direction, suppose G′ = Ka�Pb+1 with a + b = t and G can be obtained from G′

by contracting path edges and deleting complete edges. Choose B′ ⊆ V(G′) such that B′ induces

a copy of Ka in G′ that corresponds to an endpoint of Pb+1. Note that B′ is a standard zero forcing

set of G′ with set of forces F ′ such that the set {uv | (u → v) ∈ F ′} is the set of path edges in

G′. In other words, F ′ propagates along the path edges of G′. Also note that ptZ(G′;F ′) = b and

|B′| = a. Let D be a set of complete edges in G′ and let C be a set of path edges in G′ such that G

can be obtained from G′ by first deleting the edges in D, then contracting the edges in C. Let H′

be the graph obtained from G′ by deleting the edges in D. Since no edge in D is used to perform

a force in F ′, F ′ is still a set of forces of B′ in H′ with ptZ(H′;F ′) ≤ ptZ(G′;F ′) = b. Also, G can

be obtained from H′ by contracting the edges in C. By repeated applications of Lemma 2.3.15, it

is possible to obtain a standard zero forcing set B ⊆ V(G) with set of forces F such |B| ≤ |B′| and

ptZ(G;F) ≤ ptZ(H′;F ′) ≤ b. Thus,

thZ(G) ≤ |B|+ ptZ(G;F) ≤ |B′|+ ptZ(H′;F ′) ≤ |B′|+ ptZ(G′;F ′) = a + b = t.

Corollary 2.4.2. If t is a fixed positive integer, then there are finitely many graphs G with standard throt-

tling number equal to t.

40

Suppose G is a graph on n vertices and t is a postive integer with thZ(G) ≤ t. Note that t can be

used to bound the number of vertices in G. Since
⌈
2
√

n− 1
⌉
≤ thZ(G) ≤ t, |V(G)| = n ≤ (t+1)2

4 .

By Corollary 2.3.7, this bound still holds when thbZc(G) ≤ t.

In order to construct forcing sets in paths and cycles that are optimal for throttling, it has been

useful to “snake” the graph in some way. This idea was used for thZ(Pn) in [5], and again for

thZ(Cn) in [6]. A “snaking” construction was also used for thbZc(Cn) in Proposition 2.3.9 (see

Figure 2.1). Note that in most of these cases, the “snaked” graph is a spanning subgraph or a

minor of a graph of the form Ka�Pb+1. It is interesting to observe that the “snaking” method is

present in Theorems 2.3.16 and 2.4.1.

2.5 Extreme throttling

This section uses Theorems 2.3.16 and 2.4.1 to quickly characterize graphs with low throttling

numbers. The connection between thbZc and the independence number of a graph is also investi-

gated. This connection is used to give a necessary condition for graphs G with thbZc(G) = n.

For a fixed positive integer t, Theorem 2.3.16 characterizes all graphs G with thbZc(G) ≤ t.

Clearly thbZc(G) = t if and only if thbZc(G) ≤ t and thbZc(G) � t − 1. So all graphs with

thbZc(G) = t can be characterized by applying Theorem 2.3.16 and removing the graphs with

bZc throttling number at most t− 1. This is done by hand for t ≤ 3 as follows.

Observation 2.5.1. The graph G = K1 is the only graph with thbZc(G) = 1.

Proposition 2.5.2. For a graph G, thbZc(G) = 2 if and only if G = K2 or G = 2K1.

Proof. By Theorem 2.3.16, thbZc(G) ≤ 2 if and only if G can be obtained from K1�P2 = K2 or

K2�P1 = K2 by deleting edges and contracting path edges. Thus, thbZc(G) ≤ 2 if and only if

G ∈ {K1, K2, 2K1}. Since G = K1 is the only graph that satisfies thbZc(G) = 1, thbZc(G) = 2 if and

only if G ∈ {K2, 2K1}.

Proposition 2.5.3. For a graph G, thbZc(G) = 3 if and only if G ∈ G where

G = {C4, P4, 2K2, K1∪̇P3, K2∪̇2K1, 4K1, K3, P3, K1∪̇K2, 3K1}.

41

Proof. By Theorem 2.3.16, thbZc(G) ≤ 3 if and only if G can be obtained from K3�P1 = K3,

K2�P2 = C4, or K1�P3 = P3 by deleting edges and contracting path edges. Let H be the set

of all subgraphs of C4 and K3. It is clear that thbZc(G) ≤ 3 if and only if G ∈ H. Note that

G = H \ {K1, K2, 2K1}.

Theorems 2.3.16 and 2.4.1 reinforce the fact that for any graph G, thbZc(G) ≤ thZ(G). Let G

be a graph. Since thZ is bounded below by thbZc, if there is a subset B ⊆ V(G) with thZ(G; B) =

thbZc(G), then thZ(G) = thbZc(G).

Corollary 2.5.4. If t ∈ {1, 2, 3} and G /∈ {K1∪̇P3, K2∪̇2K1, 4K1}, then thZ(G) = t if and only if

thbZc(G) = t.

Proof. Let J = {K1∪̇P3, K2∪̇2K1, 4K1}. For each graph G with thbZc(G) ≤ 3 and G /∈ J , it is

possible to produce a standard zero forcing set B ⊆ V(G) with thZ(G; B) = thbZc(G). If G ∈ J ,

then thbZc(G) = 3, but thZ(G) = 4 because forcing by a hop is no longer allowed.

High bZc throttling values are harder to characterize. Clearly, thbZc(Kn) = thZ(Kn) = n. Let

(Kn)e be the complete graph on n vertices minus a single edge. It is also clear that thbZc((Kn)e) =

thZ((Kn)e) = n. More generally, thbZc(G) = n implies that thZ(G) = n. For a given graph G, the

following proposition gives an upper bound for thbZc(G) in terms of the independence number,

α(G).

Proposition 2.5.5. If G is a graph of order n, then thbZc(G) ≤ n− α(G) +
⌈

2
√

α(G)− 1
⌉

.

Proof. Suppose G is a graph with independent set A ⊆ V(G). Let B = V(G) \ A. Note that

G − B has no edges and by Theorem 2.3.5, thbZc(G − B) ≤ thbZc(C|A|) =
⌈

2
√
|A| − 1

⌉
. Choose

C ⊆ A such that thbZc(G − B, C) =
⌈

2
√
|A| − 1

⌉
. Then B ∪ C is a bZc forcing set of G with

ptbZc(G; B ∪ C) ≤ ptbZc(G− B, C). Thus, thbZc(G) ≤ n− |A|+
⌈

2
√
|A| − 1

⌉
. If A satisfies |A| =

α(G), the desired result is obtained.

Since α(K1,n−1) = n− 1, Example 2.3.10 shows that the bound in Proposition 2.5.5 is tight.

Corollary 2.5.6. If G is a graph with thbZc(G) = n, then α(G) ≤ 3.

42

Proof. Let G be a graph and define f (x) = x−
⌈
2
√

x− 1
⌉
. So Proposition 2.5.5 says that thbZc(G) ≤

n− f (α(G)). If x ≥ 4 is an integer, then f (x) ≥ 1. So if α(G) ≥ 4, then thbZc(G) ≤ n− f (α(G)) ≤

n− 1.

Note that the converse of Corollary 2.5.6 is false. For example, let G = P6. Then α(G) = 3 and

thbZc(G) =
⌈

2
√

6− 1
⌉
= 4 < 6 = n.

2.6 Concluding remarks

For a graph G and an integer k, define the Z FLOOR THROTTLING problem as the decision

problem of determining whether thbZc(G) < k. The complexity of Z FLOOR THROTTLING is an

interesting question. Recall that for two graphs G1 and G2, the graph G1∪̇G2 has vertex set and

edge set equal to V(G1)∪̇V(G2) and E(G1)∪̇E(G2) respectively. For any graph G, let X(G) be the

set of subsets of V(G) that are bZc forcing sets of G. A list of conditions is given in [3, Theorem

1] that would guarantee that Z FLOOR THROTTLING is NP-Complete. One of these conditions is

that X(G1∪̇G2) = {S1∪̇S2 | S1 ∈ X(G1) and S2 ∈ X(G2)} for any two graphs G1 and G2. Due to

hopping, this condition is not satisfied for bZc forcing sets. For example, let G1 and G2 each be

the graph consisting of a single vertex labeled v1 and v2 respectively. Let S1 = ∅ and S2 = {v2}.

Note that S1∪̇S2 is a bZc forcing set of G1∪̇G2 since v2 can force v1 by a hop. However, S1 is not

a bZc forcing set of G1. So the conditions given in [3, Theorem 1] cannot be used to prove that Z

FLOOR THROTTLING is NP-Complete. It would be useful to have other tools to help determine

the complexity of the Z FLOOR THROTTLING problem.

Corollary 2.5.6 states that a low independence number is necessary in order to achieve a max-

imum bZc throttling number. Another possible direction for future work is to completely charac-

terize high bZc throttling numbers. It would also be interesting to determine the exact relationship

between α and thbZc. It is noted in [2, Remark 2.47] that for any graph G, bZ`c(G) ≤ bZc(G) ≤

bZ`c(G) + 1. This motivates a comparison of thbZc and thbZ`c. If thbZc and thbZ`c can be arbitrarily

far apart, then studying bZ`c throttling may be of interest on its own.

43

Bibliography

[1] AIM Minimum Rank – Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler,

S.M. Cioabă, D. Cvetković, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson,

S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K. Vander

Meulen, A. Wangsness). Zero forcing sets and the minimum rank of graphs. Linear Algebra

Appl., 428 (2008), 1628–1648.

[2] F. Barioli, W. Barrett, S. Fallat, H.T. Hall, L. Hogben, B. Shader, P. van den Driessche, H. van

der Holst. Parameters related to tree-width, zero forcing, and maximum nullity of a graph.

J. Graph Theory, 72 (2013), 146–177.

[3] B. Brimkov, J. Carlson, I.V. Hicks, R. Patel, L. Smith. Power domination throttling. Available

at https://arxiv.org/abs/1810.01009.

[4] D. Burgarth, V. Giovannetti. Full control by locally induced relaxation. Phys. Rev. Lett., 99

(2007), 100501.

[5] S. Butler, M. Young. Throttling zero forcing propagation speed on graphs. Australas. J. Com-

bin., 57 (2013), 65–71.

[6] J. Carlson, L. Hogben, J. Kritschgau, K. Lorenzen, M.S. Ross, S. Selken, V. Valle Martinez.

Throttling positive semidefinite zero forcing propagation time on graphs. Discrete Appl.

Math., in press, Available at https://doi.org/10.1016/j.dam.2018.06.017.

[7] Y. Colin de Verdière. Multiplicities of eigenvalues and tree-width of graphs. J. Combin. Theory

Ser. B, 74 (1998), 121–146.

[8] L. Hogben, M. Huynh, N. Kingsley, S. Meyer, S. Walker, M. Young. Propagation time for

zero forcing on a graph. Discrete Appl. Math., 160 (2012), 1994–2005.

[9] S. Severini. Nondiscriminatory propagation on trees. J. Physics A., 41 (2008), 482–002.

https://arxiv.org/abs/1810.01009
https://doi.org/10.1016/j.dam.2018.06.017

44

[10] A. Takahashi, S. Ueno, Y. Kajitani. Mixed searching and proper-path-width. Theoret. Comput.

Sci., 137 (1995), 253–268.

[11] B. Yang. Fast-mixed searching and related problems on graphs. Theoret. Comput. Sci., 507

(2013), 100–113.

45

CHAPTER 3. CHARACTERIZATIONS OF THROTTLING FOR POSITIVE

SEMIDEFINITE ZERO FORCING AND ITS MINOR MONOTONE FLOOR

A paper to be submitted for publication after further editing.

Joshua Carlson

Abstract

Zero forcing can be described as a combinatorial game that uses a color change rule to change the

color of the vertices in a graph to blue. The throttling number of a graph minimizes the sum of

the number of vertices initially colored blue and the number of time steps required to color the

entire graph. Positive semidefinite (PSD) zero forcing is a commonly studied variant of standard

zero forcing that alters the color change rule. This paper introduces a method for extending a

graph using a PSD zero forcing process. Using this extension method, graphs with PSD throttling

number at most t are characterized as specific minors of the Cartesian product of complete graphs

and trees. A similar characterization is obtained for the minor monotone floor of PSD zero forcing.

Finally, a new perspective on PSD zero forcing is described that aids the study of PSD extensions

and throttling.

Keywords: Zero forcing, propagation time, throttling, minor monotone floor, positive semidefi-

nite

AMS subject classification: 05C57, 05C15, 05C50

46

3.1 Introduction

Consider a process that requires initial resources and suppose that changing the initial re-

sources can change the time it takes to complete the process. For a simple example, consider the

process of spreading a rumor. The set of people who know the rumor initially are the initial re-

sources and the time it takes for everyone to know the rumor is the completion time. The general

idea of throttling is to balance the amount of initial resources with the completion time in order to

make the process as effective as possible. Many of these kinds of processes can be described in the

context of graph theory. An example of this is zero forcing in which an initial set of blue vertices

and a color change rule are used to progressively change the color of all vertices in the graph to

blue. Zero forcing was introduced in [1] as a way to bound the maximum nullity of a family of

matrices corresponding to a given graph. Throttling for zero forcing was first studied by Butler

and Young in [5]. Recently, the study of throttling has been expanded to include many variations

of zero forcing in [4, 6, 7] and cops and robbers in [3].

The graphs in this paper are simple, finite, and undirected. If G is a graph, V(G) and E(G)

denote the sets of vertices and edges of G, respectively. The edges of a graph can be denoted as

subsets or by juxtaposition of the endpoints (i.e., uv is an edge if {u, v} ∈ E(G)). The order of a

graph G is |G| = |V(G)|. The notation G ≤ H is used if G is a subgraph of H. If G ≤ H and

|G| = |H|, then G is a spanning subgraph of H. If G is a minor of H, write G � H. In the case that

H ≤ G, H ≤ G and |H| = |G|, or H � G, it is said that G is a supergraph, spanning supergraph, or

major of H, respectively. For a graph parameter p whose range is well-ordered, the minor monotone

floor of p is defined as bpc(G) = min{p(H) | G � H}.

In [6], definitions are given that generalize throttling for zero forcing and many of its variants.

In a graph whose vertices are white or blue, an (abstract) color change rule for zero forcing is a set of

conditions that allow a vertex u to force a white vertex w to become blue. If R is the color change

rule, it is said that u R forces w to become blue. The R can be dropped if the rule is clear from

context, and forces are denoted by u→ w. Let R be a given color change rule and let G be a graph

with B ⊆ V(G) colored blue and V(G) \ B colored white. A chronological list of R forces of B is an

47

ordered list of valid R forces that can be performed consecutively in G resulting in a coloring in

which no more R forces are possible. After all forces in a chronological list have been performed,

the resulting set of blue vertices in G is an R final coloring of B. The set B is an R forcing set of G if

V(G) is an R final coloring of G for some chronological list of forces of B. The minimum size of an

R forcing set of G is the R forcing parameter of G and is denoted by R(G).

The set of forces in a particular chronological list of R forces of B is called a set of R forces

of B. Sets of forces are used to define propagation time. If F is a set of R forces of B, F (0) =

B and for each t ≥ 0, F (t+1) is the set of vertices w such that (u → w) ∈ F for some u ∈

V(G) and u can R force w in G if
⋃t

i=0 F (i) is colored blue and V(G) \ ⋃t
i=0 F (i) is colored white.

The smallest t′ such that
⋃t′

i=0 F (i) = V(G) is the R propagation time of F in G and is denoted

by ptR(G;F). Note that if the forces in F do not eventually color every vertex in V(G) blue,

then ptR(G;F) = ∞. The propagation process of F breaks F into time steps that transition

from one time to the next by progressively changing the color of vertices in G to blue. At time

t = 0, B is blue and V(G) \ B is white. For each t ≥ 1, time step t starts at time t − 1 with⋃t−1
i=0 F (i) colored blue and performs every possible force in F at that time (transitioning to time t

by coloringF (t) blue). For a set B ⊆ V(G), the R propagation time of B in G is defined as ptR(G; B) =

min{ptR(G;F) | F is a set of R forces of B}. The R throttling number of B is thR(G; B) = |B| +

ptR(G; B) and the R throttling number of a graph G is thR(G) = min{thR(G; B) | B ⊆ V(G)}.

The (standard) zero forcing color change rule, denoted Z, is that a blue vertex u can force a white

vertex w to become blue if w is the only white neighbor of u. If G is a graph, Z(G) is the zero forcing

parameter for Z and Z forces are also called “standard” forces. It is shown in [2] that the minor

monotone floor of Z, bZc, can be described as a zero forcing parameter. In this variant, vertices

becomes active when they become blue and they become inactive after they perform a force. The

bZc color change rule is that an active blue vertex u ∈ V(G) can force a white vertex w ∈ V(G) to

become blue if u has no white neighbors in V(G) \ {w}. Note that if w is the only white neighbor

of u in G, then the force u → w is a standard force. If u has no white neighbors in G, u is said to

force w by hopping. So a bZc force is either a Z force or a force by hopping. In [6], certain minors

48

of the Cartesian product of a complete graph and a path are shown to characterize the graphs G

that have thZ(G) at most t for any fixed positive integer t. An analogous characterization is also

shown for bZc throttling. The proofs of these characterizations use a method of extending a given

graph G into a major of G by considering a set of forces.

Suppose G is a graph and B ⊂ V(G) is the set of vertices in G that are colored blue. Let

W1, W2, . . . , Wk be the sets of white vertices in the k connected components of G− B. The positive

semidefinite (PSD) zero forcing color change rule, denoted Z+, is that a blue vertex u ∈ B can force a

white vertex w to become blue if w is the only white neighbor of u in G[B∪Wi] for some 1 ≤ i ≤ k.

PSD zero forcing can be thought of as standard zero forcing in each G[B ∪Wi] and Z+ forces are

also called PSD forces. PSD propagation and throttling were studied in [9] and [7] before the in-

troduction of the general definitions in [6]. Consistent with the original literature, Z+ propagation

and throttling are denoted by pt+ and th+, respectively.

If F is a set of PSD forces of B, then for each u ∈ B, Vu is the set of vertices w such that there

is a sequence of vertices u = v1, v2, . . . , v` = w with (vi → vi+1) ∈ F for each 1 ≤ i ≤ ` − 1.

The induced subgraph Tu(F) = G[Vu] is a forcing tree of F . If k is a positive integer, a k-ary tree

is a rooted tree such that every vertex either has k children or is a leaf. In Section 2, an extension

technique is defined for PSD zero forcing and it is used to characterize all graphs G with th+(G) ≤

t as certain minors of the Cartesian product of a complete graph and a k-ary tree. Section 3 gives

a similar characterization for a variant of PSD zero forcing that uses hopping (called the minor

monotone floor of Z+). A more natural perspective of PSD zero forcing is introduced in Section 3.4

and directions for future work are outlined in Section 3.5.

3.2 Throttling positive semidefinite zero forcing

In this section, a technique is given for extending a graph using a PSD zero forcing process that

generalizes the extension for standard zero forcing in [6, Definition 3.12]. This extension is used

to obtain a characterization for all graphs G that satisfy th+(G) ≤ t for any fixed positive integer

t. The following definitions are useful for describing the PSD extension process.

49

Suppose G is a graph and B ⊆ V(G) is a PSD zero forcing set of G. Let F be a set of PSD

forces of B with pt+(G;F) = pt+(G; B) and for each 0 ≤ t ≤ pt+(G;F), let B[t] =
⋃t

i=0 F (i) be the

set of blue vertices in G at time t. Also for each 1 ≤ i ≤ pt+(G;F), define Ci(F) to be the set of

components of G − B[i−1] and label the components in Ci(F) as Wi,1, Wi,2, . . . , Wi,|Ci(F)|. For each

1 ≤ i ≤ pt+(G; B) and 1 ≤ j ≤ |Ci(F)|, define Gi,j(F) to be the graph G[B[i] ∪Wi,j]. Note that a

Z+ force that occurs in the jth component of Ci(F) during the ith time step is a Z force in Gi,j(F).

The next example illustrates these definitions and is used throughout this paper.

Example 3.2.1. Let G be the graph shown in the top-left of Figure 3.1 with V(G) = {1, 2, . . . , 7}.

Choose B = {1, 2} and F = {1→ 7, 2→ 5, 2→ 3, 1→ 4, 5→ 6}. Note that B is PSD zero forcing

set of G and F is a set of PSD forces of B with pt+(G;F) = 2. The components in C1(F) are

labeled as W1,1 and W1,2. The graph G1,1(F) is shown in the top-middle of Figure 3.1 and G1,2(F)

is shown in the top-right. In the first time step of F , the forces 2 → 5, 1 → 7, and 2 → 3 are

performed simultaneously. This is illustrated in the bottom-left of Figure 3.1 alongside the graphs

G2,1(F) and G2,2(F) in the bottom-middle and bottom-right, respectively. Note that in the second

time step of F , 1→ 4 and 5→ 6.

50

1 2

34

5

6

7

1 2

5

6

7 1 2

34

W1,1

W1,2

G (at t = 0) G1,1(F) G1,2(F)

1 2

34

5

6

7

W2,1

W2,2

1 2

5

6

7

1 2

34

57

3

G (at t = 1) G2,1(F) G2,2(F)

Figure 3.1 The graph G is shown at time t = 0 and t = 1 alongside the graphs

{Gi,j(F)}2
i,j=1.

If {ak}m
k=1 is a sequence of positive integers, let T(a1, a2, . . . , am) denote the rooted tree such that

for each 0 ≤ k ≤ m− 1, the vertices at distance k from the root each have ak+1 children. The next

definition (illustrated in Example 3.2.3) constructs a copy of T(|C1(F)|, |C2(F)|, . . . , |Cpt+(G;F)(F)|)

from a forcing tree of F .

Definition 3.2.2. Suppose G is a graph and F is a set of PSD forces of a PSD zero forcing set

B of G with pt+(G;F) = pt+(G; B). For each u ∈ B, define Eu(F) to be a copy of the graph

T(|C1(F)|, |C2(F)|, . . . , |Cpt+(G;F)(F)|) whose vertices and edges are labeled as follows.

51

1. Let Eu(F) = T(|C1(F)|, |C2(F)|, . . . , |Cpt+(G;F)(F)|) and let Di denote the vertices that are

distance i from the root of Eu(F). For each 1 ≤ i ≤ pt+(G;F) and vertex v ∈ Di−1, label the

edges of Eu(F) that connect v to its children as ordered pairs (i, 1), (i, 2), . . . (i, |Ci(F)|).

2. Label the root of Eu(F) as u. Suppose v ∈ V(Tu(F)) is forced in F during time step i > 0.

Let {cn}i
n=1 be a sequence of indices such that for each 1 ≤ n ≤ i, the graph Gn,cn(F) contains

v. Label as v the unique vertex in Eu(F) that is distance i from u and is obtained by starting

at u and following the edges labeled (1, c1), (2, c2), . . . , (i, ci).

3. Finally, give each unlabeled vertex in Eu(F) the label of its parent recursively.

Example 3.2.3. Let G, B, and F be given as in Example 3.2.1. Since |C1(F)| = |C2(F)| = 2, the

edges of E1(F) and E2(F) are labeled as shown in the left column of Figure 3.2. Vertex 7 is forced

in the first time step and is contained in G1,1(F). Vertex 4 is forced in the second time step and is

contained chronologically in G1,2(F) and G2,2(F). Vertices 5 and 3 are forced in the first time step

and are contained in G1,1(F) and G1,2(F), respectively. Vertex 6 is forced in the second time step

of F and is contained chronologically in G1,1(F) and G2,1(F). Steps 2 and 3 of Definition 3.2.2 are

shown in the middle and right columns of Figure 3.2.

52

(1,1)

(2,1)

(2,2)

(2,1)

(2,2)

(1,2)

(1,1)

(2,1)

(2,2)

(2,1)

(2,2)

(1,2)

1

7

4

(1,1)

(2,1)

(2,2)

(2,1)

(2,2)

(1,2)

1

7

4

1
1

7

7

(1,1)

(2,1)

(2,2)

(2,1)

(2,2)

(1,2)

(1,1)

(2,1)

(2,2)

(2,1)

(2,2)

(1,2)

2

5

6

3

(1,1)

(2,1)

(2,2)

(2,1)

(2,2)

(1,2)

2

5

6

3

5

3

3

Figure 3.2 The trees E1(F) and E2(F) are constructed in the top and bottom row, respec-

tively.

The next proposition concerns edges that are not contained in the forcing trees of a PSD zero

forcing process.

Proposition 3.2.4. Let G be a graph with PSD zero forcing set B ⊆ V(G) and let F be a set of PSD

forces of B with pt+(G;F) = pt+(G; B). Suppose v1v2 ∈ E(G) is not in any forcing tree of F and

choose u1, u2 ∈ B such that v1 ∈ Tu1(F) and v2 ∈ Tu2(F). If {v1, v2} * B, then there exists a sequence

{(ai, bi)}
j
i=1 of edge labels such that for each k ∈ {1, 2}, the path in Euk(F) obtained by starting at the root

and following the edges labeled (a1, b1), (a2, b2), . . . , (aj, bj) leads to a copy of vertex vk.

Proof. Since {v1, v2} * B, at least one of v1 and v2 is white at time t = 0. Suppose the first time at

which both v1 and v2 are blue is time t = j > 0. Without loss of generality, suppose v2 is forced

during time step j. Let u′2 be the copy of u2 that is the root of Eu2(F) and let v′2 be the copy of

v2 in Eu2(F) that is distance j from u′2 (i.e., closest to u′2). Suppose {(ai, bi)}
j
i=1 is the sequence of

53

edge labels in Eu2(F) along the path from u′2 to v′2. Since v1v2 ∈ E(G) and v2 remains white in G

during the first j− 1 time steps of F , v1 and v2 are both contained chronologically in the graphs

Ga1,b1(F), Ga1,b1(F), . . . Gaj,bj(F). Note that by the PSD color change rule, v1 cannot perform a force

in Gaj,bj(F) until both v1 and v2 are colored blue, which happens first in time step j. Therefore,

starting at the root u1 in Eu1(F) and following the edges labeled (a1, b1), (a2, b2), . . . , (aj, bj) leads

to a copy of v1.

The next definition gives the full description of the extension of a graph using a set of PSD

forces. Propositon 3.2.4 guarantees that the definition is well-defined.

Definition 3.2.5. Suppose G is a graph and F is a set of PSD forces of a PSD zero forcing set

B ⊆ V(G) such that pt+(G;F) = pt+(G; B). For each edge uv ∈ E(G), let t(uv) denote the

earliest time in F at which both u and v are blue. Define the (PSD) extension of G with respect to B

and F , denoted E+(G; B;F), to be the graph obtained by the following procedure.

1. Start with T1 =
⋃̇{Eb(F) | b ∈ B}. For each v ∈ V(T1), let r(v) be the root of the tree in T1

that contains v.

2. For each edge v1v2 ∈ E(G) with v1, v2 ∈ B, add to T1 the edge that connects the root of

Ev1(F) to the root of Ev2(F). Call the resulting graph T2.

3. For each edge v1v2 ∈ E(G) with {v1, v2} * B that is not in any forcing tree of F , add to T2

the edge that connects the copies of v1 and v2 that are distance t(v1v2) away from the roots

in Er(v1)(F) and Er(v2)(F), respectively.

Example 3.2.6. Let G, B, andF be given as in Example 3.2.1. The forcing tree T1(F) has vertex 1 as

a root and vertex 1 has two children (namely, vertices 4 and 7). The forcing tree T2(F) has vertex

2 as a root with children {5, 3} and vertex 5 is the parent of vertex 6. On the left of Figure 3.3, G

is shown with T1(F) drawn above T2(F). The sequence of edge labels guaranteed by Proposition

3.2.4 for the set of vertices {3, 4} * B is {(1, 2), (2, 2)}. For {6, 7} * B, the sequence of edge

labels is {(1, 1), (2, 1)} and for {1, 3} * B, the sequence of edge labels is {(1, 2)}. The extension

E+(G; B;F) is shown on the right of Figure 3.3.

54

2

5
6

3

1

7

4

(1,1)

(2,1)

(2,2)

(2,1)

(2,2)

(1,2)

2

5

6

3

5

3

3

(1,1)

(2,1)

(2,2)

(2,1)

(2,2)

(1,2)

1

7

4

1
1

7

7

Figure 3.3 A graph G (left) is shown before and after its extension E+(G; B;F) (right).

Note that for any graph G, PSD zero forcing set B ⊆ V(G), and set of PSD forces of F of B

with pt+(G;F) = pt+(G; B), E+(G; B;F) is a spanning subgraph of the Cartesian product of K|B|

and T(|C1(F)|, |C2(F)|, . . . , |Cpt+(G;F)(F)|). This observation is useful for proving Theorem 3.2.9.

Remark 3.2.7. In the case where |Ci(F)| = 1 for each 1 ≤ i ≤ pt+(G;F), F is a set of standard

forces. In this case, E+(G, B,F) is equal to the extension E(G, B,F) that is defined for standard

zero forcing in [6, Definition 3.12]. Thus, Definition 3.2.5 generalizes the extension given in [6] to

PSD zero forcing.

Lemma 3.2.8. If G is a graph, B ⊆ V(G) is as PSD zero forcing set of G, and F is a set of PSD forces of

B with pt+(G;F) = pt+(G; B), then contracting an edge in a forcing tree of F does not increase the PSD

propagation time of F .

Proof. Consider induction on pt+(G;F). If pt+(G;F) = 0, then there are no edges in any forcing

tree of F and Lemma 3.2.8 is vacuously true. Assume Lemma 3.2.8 holds for any G′ and F ′ with

55

0 ≤ pt+(G
′;F ′) ≤ t− 1 and suppose that G and F satisfy pt+(G;F) = t. It is shown in the proof

of [6, Lemma 3.15] that in standard zero forcing, a vertex v that is forced in the last time step can

only be adjacent to the vertex that forced v and vertices that do not perform a force. Therefore, if

1 ≤ j ≤ |Ct(F)| and v ∈ Gt,j(F) is forced during time step t in the component Wt,j, then N(v)

consists entirely of vertices in Wt,j that are leaves of a forcing tree of F . So if e is an edge that is

used to perform a PSD force in F during time step t, then contracting e does not increase the PSD

propagation time of F .

Now suppose e = uv is an edge such that u → v in time step i of F for some i < t. Label

the vertics of G as v1, v2, . . . , v|G| and let G/e be the graph obtained from G by contracting e and

labeling as v the new vertex that is formed as a result of the contraction. Let S be the set of vertices

in G that are forced last in F . Obtain the graph G/e as follows. First, delete the vertices in S

from G. Next, contract the edge e. Finally, add the vertices in S back to the graph preserving the

original neighborhood of each vertex in S. Note that pt+(G− S;F) ≤ t− 1. So by the induction

hypothesis, the PSD propagation time of F after contracting e is also at most t− 1. The vertices

in S are added back to the graph at the end of the forcing trees and each vertex in S will be come

blue simultaneously in the final time step. Therefore, pt+(G/e;F) ≤ t− 1 + 1 = t.

Recall that the depth of a vertex v in a rooted tree T is the distance from v to the root and the

height of T is the maximum depth of the vertices in T. For integers k > 0 and b ≥ 0, let Tk,b

denote the rooted tree of height b such that every vertex of depth less than b has k children. If G

is a graph of the form Ka�Tk,b, define the tree edges of G to be the edges in each copy of Tk,b in the

Cartesian product. Likewise, define the complete edges of G to be the edges in each copy of Ka in

the Cartesian product. Similar to standard throttling, the extension in Definition 3.2.5 can be used

to give a structural characterization of graphs with a given PSD throttling number.

Theorem 3.2.9. Suppose G is a graph and t is a fixed positive integer. Then th+(G) ≤ t if and only if there

exists integers a, k > 0 and b ≥ 0 such that a + b = t and G can be obtained from Ka�Tk,b by contracting

tree edges and/or deleting complete edges.

56

Proof. Suppose th+(G) = t′ ≤ t. Let F be a set of PSD forces of a PSD zero forcing set B ⊆

V(G) with pt+(G;F) = pt+(G; B) = b′. Choose k = max{|Ci(F)| | 1 ≤ i ≤ b′} and a =

|B|. Then E+(G; B;F) can be obtained from Ka�Tk,b′ by contracting tree edges and/or deleting

complete edges. Note that G can be obtained from E+(G; B;F) by contracting the tree edges

whose endpoints have the same label. Finally, if b = t − a, then Ka�Tk,b′ can be obtained from

Ka�Tk,b by contracting tree edges and a + b = t.

Now suppose G can be obtained from Ka�Tk,b by contracting tree edges and/or deleting com-

plete edges. Let B be the vertices in the copy of Ka that corresponds to the root of Tk,b. Choose F to

be the set of PSD forces of B obtained by having each vertex in every copy of Tk,b force each of its

children in that copy. Note that pt+(G;F) = b because no vertex is required to wait for multiple

time steps in order to perform a force. This means that th+(Ka�Tk,b) ≤ a + b. The tree edges of

Ka�Tk,b are exactly the edges used in the forcing trees of F . By Lemma 3.2.8, contracting these

edges does not increase the PSD propagation time of F . Since the complete edges of Ka�Tk,b are

not in any forcing tree of F , deleting these edges does not increase the PSD propagation time of

F . Thus, if G is obtained from Ka�Tk,b by contracting tree edges and/or deleting complete edges,

then th+(G) ≤ a + b.

It is shown in [7] that if T′ and T are trees with T′ ≤ T, then th+(T′) ≤ th+(T) (i.e., the

PSD throttling number is subtree monotone). This result can be extended to minors of trees as an

immediate consequence of Theorem 3.2.9.

Corollary 3.2.10. If T′ and T are trees with T′ � T, then th+(T′) ≤ th+(T).

In Section 3.3, Theorem 3.2.9 is used to quickly obtain a similar characterization for a variant

of PSD throttling.

3.3 Throttling the minor monotone floor of PSD zero forcing

This section considers throttling for a variant of PSD zero forcing that allows hopping in each

component. Let G be a graph with B ⊆ V(G) colored blue and V(G) \ B colored white. Let

57

W1, W2, . . . , Wk be the sets of white vertices in each connected component of G − B. For each

1 ≤ i ≤ k, let Ai ⊆ B be the set of vertices that are considered “active” with respect to Wi. The

bZ+c color change rule is that if u ∈ Ai, w ∈ Wi, and every neighbor of u in G[Wi ∪ B]− w is blue,

then u can force w to become blue. (Note that if w is the only white neighbor of u in G[B∪Wi], then

u → w is a Z+ force. Otherwise, u has no white neighbors in G[B ∪Wi] and u → w by hopping.)

After u→ w, u is removed from Ai and w becomes active with respect to Wi.

It is shown in [2] that the minor monotone floor of Z+ of a graph G (denoted bZ+c(G)) can

be defined as the R forcing parameter, R(G), where R is the bZ+c color change rule. This al-

lows for the study of bZ+c propagation time and bZ+c throttling. Since every PSD zero forcing

set B of a graph G is also a bZ+c forcing set of G with ptbZ+c(G; B) ≤ pt+(G; B), thbZ+c(G) ≤

th+(G). In [6, Corollary 3.6], it is shown that for a graph G and subset B ⊆ V(G), thbZ+c(G; B) =

min{th+(H; B)} where H ranges over all spanning supergraphs of G. This leads to an analogous

fact for the bZ+c throttling number of a graph.

Corollary 3.3.1. If G is a graph, then thbZ+c(G) = min{th+(H) | G ≤ H and |G| = |H|}.

Proof. Choose a subset B ⊆ V(G) and a set F of bZ+c forces of B such that ptbZ+c(G;F) =

ptbZ+c(G; B) and thbZ+c(G) = thbZ+c(G; B). Then

min{th+(H) | G ≤ H and |G| = |H|} ≤ min{th+(H; B) | G ≤ H and |G| = |H|}

= thbZ+c(G; B) = thbZ+c(G).

Let H′ be a spanning supergraph of G such that th+(H′) ≤ th+(H) for any spanning supergraph

H of G. Suppose B′ ⊆ V(H′) with th+(H′) = th+(H′; B′). Now suppose F ′ is a set of PSD forces

of B′ such that pt+(H′; B′) = pt+(H′;F ′). The next step is to show that F ′ is a set of bZ+c forces

of B′ in G with ptbZ+c(G;F ′) ≤ pt+(H′;F ′). Choose an edge uw ∈ E(H′) \ E(G) and suppose

(u → w) ∈ F ′. In the component where u → w, w is the only white neighbor of u. So if the edge

uw is removed from E(G), u is allowed to force w by a hop. If (u → w) /∈ F ′, then removing uw

does not slow down the propagation time of F ′. Note that removing edges from H′ may increase

the number of components at each time step when the blue vertices are removed. However, due to

58

hopping, every force in F ′ is still a valid bZ+c force in G and ptbZ+c(G;F ′) ≤ pt+(H′;F ′). Thus,

thbZ+c(G) ≤ thbZ+c(G; B′) ≤ thbZ+c(G;F ′) ≤ th+(H′;F ′)

= th+(H′) = min{th+(H) | G ≤ H and |G| = |H|}.

Theorem 3.2.9 and Corollary 3.3.1 can be used to characterize graphs G with thbZ+c(G) ≤ t for

any positive integer t. This characterization is also in terms of specified minors of the Cartesian

product of a tree and a complete graph.

Theorem 3.3.2. Suppose G is a graph and t is a fixed positive integer. Then thbZ+c(G) ≤ t if and only

if there exists integers a, k > 0 and b ≥ 0 such that a + b = t and G can be obtained from Ka�Tk,b by

contracting tree edges and/or deleting edges.

Proof. Suppose thbZ+c(G) ≤ t. By Corollary 3.3.1, there exists a spanning supergraph H of G such

that th+(H) = thbZ+c(G) ≤ t. Clearly G can be obtained from H by removing edges. By Theorem

3.2.9, there exists integers a, k > 0 and b ≥ 0 such that a + b = t and H can be obtained from

Ka�Tk,b by contracting tree edges and/or deleting complete edges. Thus, G can be obtained from

Ka�Tk,b by contracting tree edges and/or deleting edges.

Let T = Ka�Tk,b for some integers a, k > 0 and b ≥ 0. Suppose D ⊆ E(T) and C is a set of tree

edges of T such that C ∩ D = ∅ and G can be obtained from T by contracting the edges in C and

deleting the edges in D. Let T′ be the graph obtained from T by contracting the tree edges in C.

By Theorem 3.2.9, th+(T′) ≤ a + b. Note that G can be obtained from T′ by deleting the edges in

D. By Corollary 3.3.1, thbZ+c(G) ≤ th+(T′) ≤ a + b.

The next section introduces a new perspective of the PSD zero forcing process that is more

natural from a graph theoretical context.

3.4 A reduction perspective on PSD zero forcing

Suppose G is a graph, F is a set of PSD forces of a PSD zero forcing set B ⊆ V(G), and

pt+(G; B) = pt+(G;F). The color change rule for PSD zero forcing requires breaking G into

59

components and performing forces in each component individually. Throughout the literature on

PSD zero forcing (see [7, 9]), each time step t in the PSD propagation process of B is visualized

as follows. Start by removing the current set B[t−1] of blue vertices in G. Then for each 1 ≤ j ≤

|Ct(F)|, force new vertices to become blue in Gt,j(F). Finally, update the set of blue vertices in G

to B[t]. Removing all blue vertices in G at each time step can be misleading because it seems like

the vertices that became blue in the previous time step could potentially perform a force in any of

the white components. Example 3.4.1 shows that this is not the case.

Example 3.4.1. Let G = P5 be the path with vertices labeled in order as v1, v2, v3, v4, and v5.

Consider the set of PSD forces F = {v3 → v4, v3 → v2, v4 → v5, v2 → v1}. The forces v3 → v2 and

v3 → v4 occur in the first time step. In the second time step, the two components are W2,1 = {v1}

and W2,2 = {v5}. Note that in G2,1(F), v4 has no white neighbors. Also v2 has no white neighbors

in G2,2(F). So v4 cannot force in W2,1 and v2 cannot force in W2,2.

In general, if a blue vertex v is forced in the component Wi,j, then v cannot perform a force in

any future component that is not contained in Wi,j. This means that it is more natural to think of

the PSD propagation process in the following way. In the first time step, the set B of blue vertices

is removed from the graph G, a copy of G[B] is re-attached to each component of G − B, and

one time step of standard zero forcing is applied to each of the resulting graphs. Then, in each

subsequent time step, this process is repeated on each of the smaller graphs. Note that each time

step can be thought of as applying the first time step to a reduced version (i.e., induced subgraphs)

of the graphs obtained in the previous step.

Figure 3.4 illustrates this process when it is applied to the graph G and set of PSD forces F

from Example 3.2.1. In the first time step, G breaks into two components. However, each of those

components only break into one component in time step 2.

60

1 2

34

5

6

7 1 2

5

6

7

1 2

34

1 2

5

6

7

1 2

34

t = 0 t = 1 t = 2

Figure 3.4 The PSD zero forcing process as seen from the reduction perspective.

This reduction perspective of PSD zero forcing leads to a better way to extend a graph using

a set of PSD forces (see Definition 3.4.2 and Example 3.4.3). Suppose G is a graph, B ⊆ V(G) is a

PSD zero forcing set of G, and F is a set of PSD forces of B with pt+(G;F) = pt+(G; B). Define

T∗(G; B;F) to be the rooted tree that represents the breakdown of components throughout the

PSD reduction process where the edges of the tree are labeled by the components. Note that if

two vertices u and v have the same depth in T∗(G; B;F), then u can have a different number of

children than v. For example, suppose G breaks into two components W1 and W2 in the first time

step. In the second time step, suppose W1 breaks into one component W3 and suppose W2 breaks

into two components W4 and W5. In this case, T∗(G; B;F) is the tree illustrated in Figure 3.5.

Figure 3.5 The component W2 breaks into two components, but W1 only breaks into one.

61

For each b ∈ B, define E∗b (F) to be the copy of T∗(G; B;F) whose vertices are labeled as

follows.

1. Label the root of T∗(G; B;F) as b.

2. Suppose u is a vertex in the forcing tree Tb(F) and u becomes blue at time t in component

W. Label as u the vertex in T∗(G; B;F) that is distance t from b and is incident to the edge

labeled W.

3. Give each remaining unlabeled vertex the label of its parent recursively.

Let uv be an edge in G that is not in any forcing tree of F . Choose u′, v′ ∈ B such that u ∈

Tu′(F) and v ∈ Tv′(F). Suppose u becomes blue at time i and v becomes blue at time j with i ≤ j.

Let W1, W2, . . . , Wj be the sequence of components that contain v during the first j time steps of F .

Therefore, the path in E∗v′(F) obtained by starting at the root v′ and following the edges labeled

W1, W2, . . . , Wj leads to a vertex labeled v. Since uv ∈ E(G), u is in components W1, W2, . . . Wi and

u cannot force in a future component contained in Wi until v becomes blue in time step j. Once

u becomes blue in component Wi, u remains in the set of blue vertices that are attached to every

future component that is contained in Wi. So u is a blue vertex in the graph in which v is forced

in time step j. Thus, the path in E∗u′(F) obtained by starting at the root u′ and following the edges

labeled W1, W2, . . . Wj leads to a copy of u. This fact is used in the next definition.

Definition 3.4.2. Suppose G is a graph, B ⊆ V(G) is a PSD zero forcing set of G, and F is a set

of PSD forces of B with pt+(G; B) = pt+(G;F). Let t : E(G) → N and r : V(G) → V(G) be

the functions defined in Definition 3.2.5. The extension E∗+(G; B;F) is the graph obtained by the

following procedure.

1. Construct the graph G1 =
⋃̇{E∗b (F) | b ∈ B}.

2. For each edge v1v2 ∈ E(G) with v1, v2 ∈ B, add to G1 the edge that connects the root of

E∗r(v1)
(F) to the root of E∗r(v2)

(F). Call the resulting graph G2.

62

3. Let E∗(G) be the set of edges v1v2 ∈ E(G) such that {v1, v2} * B and v1v2 is not contained

in any forcing tree of F . For each e = v1v2 ∈ E∗(G), add to G2 the edge that connects the

copy of v1 in E∗r(v1)
(F) to the copy of v2 in E∗r(v2)

(F) obtained in the following way. Suppose

v2 is the last endpoint of e to become blue (at time t(e)). Start at the root r(v1) (respectively

r(v2)) and follow the sequence of t(e) edges that correspond to the components that contain

v2 until v2 becomes blue.

Example 3.4.3. Let G, B, andF be the graph, PSD zero forcing set, and set of PSD forces illustrated

in Figure 3.4. In the first time step, let W1 and W2 be the components of G−{1, 2} that that contain

the vertices {5, 6, 7} and {3, 4}, respectively. In the second time step, let W3 = {6} be the compo-

nent contained in W1 and let W4 = {4} be the component contained in W2. Note that T∗(G; B;F)

is a path on 5 vertices with the center vertex as the root. The graph G is shown alongside the ex-

tension E∗+(G; B;F) in Figure 3.6. The edge {3, 4} is in E∗(G), vertex 4 becomes blue after vertex 3,

and vertex 4 is contained consecutively in the components W2 and W4. Therefore, there is an edge

in E∗+(G; B;F) that connects the vertices obtained by starting at the roots of E∗1 (F) and E∗2 (F) and

following the edges labeled W2 and W4.

2

5

6

3

1

7

4

1

7

4

W1

W2

W3

W4

1

7

2

6

3

W1

W2

W3

W4

3

5

Figure 3.6 A graph G (left) is shown before and after its extension E∗+(G; B;F) (right).

63

One of the advantages of the extension E∗+ in Definition 3.4.2 is that it has fewer vertices than

E+. The extension definitions are motivated by their use to prove Theorems 3.2.9 and 3.3.2. Sup-

pose a′, k′ > 0 and b′ ≥ 0 are integers such that G is a subgraph of Ka′�Tk′,b′ obtained by deleting

complete edges. In this case, an extension is not necessary to see that G can be obtained from a

graph of the form Ka�Tk,b by contracting tree edges and/or deleting complete edges. However,

the extension E+ can be much larger than Ka′�Tk′,b′ . For example, let B be the vertices of the

copy of Ka′ in G that corresponds to the root of Tk′,b′ and suppose F is the set of PSD forces of

B that occur along the tree edges of G (directed away from the roots). Since G − B has at least

a′k′ components, the trees in {Eb(F) | b ∈ B} are supergraphs of a (a′k′)-ary tree. In contrast,

E∗+(G; B;F) = G which reflects that no extension is needed.

3.5 Concluding remarks

For a graph G on n vertices, th+(G; V(G)) = n + 0 = n. Thus, the PSD throttling number of a

graph G is trivially bounded above by n. In [7], all graphs G with th+(G) ≥ n− 1 are characterized

using a connection between th+ and the independence number α. One direction for future work

is to attempt to use Theorem 3.2.9 to help characterize graphs with th+(G) = n − 2. It may be

useful to study how certain graph properties change (such as independence number) as a graph

G is replaced with a PSD extension of G. Such information could be used to specify the graphs of

the form Ka�Tk,b that contain G as a minor if it is known that th+(G) ≤ a + b and G has a given

property.

Another direction for future work is to further study the bZ+c throttling number of a graph.

Since thbZ+c(G) ≤ th+(G) for any graph G, a better understanding of bZ+c throttling would be

useful in obtaining lower bounds for the PSD throttling number of a graph. The largeur d’arborescence

of a graph G (denoted la(G)) is defined in [8] as the minimum k such that G is a minor of the Carte-

sian product of a complete graph on k vertices and a tree. In [2], it is shown that for any graph

G, la(G) = bZ+c(G). Further research on the types of trees that can show up in the definition of

largeur d’arborescence could be useful for studying bZ+c propagation and throttling.

64

Bibliography

[1] AIM Minimum Rank – Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler,

S.M. Cioabă, D. Cvetković, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson,

S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K. Vander

Meulen, A. Wangsness). Zero forcing sets and the minimum rank of graphs. Linear Algebra

Appl., 428 (2008), 1628–1648.

[2] F. Barioli, W. Barrett, S. Fallat, H.T. Hall, L. Hogben, B. Shader, P. van den Driessche, H. van

der Holst. Parameters related to tree-width, zero forcing, and maximum nullity of a graph.

J. Graph Theory, 72 (2013), 146–177.

[3] J. Breen, B. Brimkov, J. Carlson, L. Hogben, K.E. Perry, C. Reinhart. Throttling for the game

of Cops and Robbers on graphs. Discrete Math., 341 (2018), 2418–2430.

[4] B. Brimkov, J. Carlson, I.V. Hicks, R. Patel, L. Smith. Power domination throttling. Available

at https://arxiv.org/abs/1810.01009.

[5] S. Butler, M. Young. Throttling zero forcing propagation speed on graphs. Australas. J. Com-

bin., 57 (2013), 65–71.

[6] J. Carlson. Throttling for Zero Forcing and Variants. Available at https://arxiv.org/abs/

1807.07030.

[7] J. Carlson, L. Hogben, J. Kritschgau, K. Lorenzen, M.S. Ross, S. Selken, V. Valle Martinez.

Throttling positive semidefinite zero forcing propagation time on graphs. Discrete Appl.

Math., 254 (2019), 33–46.

[8] Y. Colin de Verdière. Multiplicities of eigenvalues and tree-width of graphs. J. Combin. Theory

Ser. B, 74 (1998), 121–146.

[9] N. Warnberg. Positive semidefinite propagation time. Discrete Appl. Math., 198 (2016), 274–

290.

https://arxiv.org/abs/1810.01009
https://arxiv.org/abs/1807.07030
https://arxiv.org/abs/1807.07030

65

CHAPTER 4. GENERAL CONCLUSION

Section 1.2 provided the basic graph theory tools and notations that were used in this thesis.

In Section 1.3, a survey was given of previous literature on zero forcing parameters, propagation,

and throttling. General definitions of propagation and throttling were given in Chapter 2 and

throttling was explored for the CCR-bZc color change rule that was introduced in [2]. Chapter

2 also introduced a method of extending graphs using zero forcing chains which was used to

characterize all graphs with specified standard and bZc throttling numbers. In Chapter 3, the

extension technique from Chapter 2 was generalized to positive semidefinite zero forcing and

forcing trees. In addition, PSD extensions were used to characterize all graphs with specified PSD

and bZ+c throttling numbers.

Some of the work in this thesis has had an impact on other areas of study. Perhaps most no-

table is the topic of power domination. Power domination is a variant of zero forcing in which all

white vertices that are adjacent to a blue vertex in the initial set are forced to become blue in the

first time step. Each subsequent time step is identical to standard zero forcing. The power dom-

ination analog to the zero forcing number is called the power domination number and is studied

in [6]. Power domination models the supervision of an electrical power system and the power

domination number is tied to the phasor measurement unit placement problem (see [5]). Throt-

tling for power domination is studied in [4] and the extension technique in Chapter 2 is used to

characterize all graphs with specified power domination throttling numbers.

Another topic that has been influenced by throttling is the game of cops and robbers. Cops and

robbers (introduced independently in [1, 7, 8]) is a game played on graphs in which a cop team and

a robber choose initial placements on the vertices and then take turns moving along the edges. Of

course, the cops try to capture the robber and the robber tries to evade the cops. Throttling for

this game balances the number of cops used with the length of the game and is studied in [3]. In

66

particular, the cop-throttling number is introduced and shown to have strong connections to the

PSD throttling number.

For future research, there are many questions related to throttling that remain unanswered.

Throttling for the minor monotone floor of positive semidefinite zero forcing is still largely un-

explored. There are still many extreme values of standard and PSD throttling that are uncharac-

terized. Can the extension techniques in this thesis be used to aid the characterization of extreme

throttling numbers? Is there a structural characterization of cop-throttling numbers? A variation

of cops and robbers is shown in [2] to be connected to the tree-width of a graph. Can throttling be

applied to this variation in order to bound tree-width?

Bibliography

[1] M. Aigner, M. Fromme. A game of cops and robbers. Discrete. Appl. Math., 8 (1984), 1–11.

[2] F. Barioli, W. Barrett, S. Fallat, H.T. Hall, L. Hogben, B. Shader, P. van den Driessche, H. van

der Holst. Parameters related to tree-width, zero forcing, and maximum nullity of a graph.

J. Graph Theory, 72 (2013), 146–177.

[3] J. Breen, B. Brimkov, J. Carlson, L. Hogben, K.E. Perry, C. Reinhart. Throttling for the game

of cops and robbers on graphs. Discrete. Math., 341 (2018), 2418–2430.

[4] B. Brimkov, J. Carlson, I.V. Hicks, R. Patel, L. Smith. Power domination throttling. Available

at https://arxiv.org/abs/1810.01009.

[5] D.J. Brueni, L.S. Heath. The PMU placement problem. SIAM J. Discrete Math., 19 (2005), 744–

761.

[6] T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, M.A. Henning. Domination in graphs ap-

plied to electric power networks. SIAM J. Discrete Math., 15 (2002), 519–529.

[7] R.J. Nowakowski, P. Winkler. Vertex-to-vertex pursuit in a graph. Discrete Math., 43 (1983),

235–239.

https://arxiv.org/abs/1810.01009

67

[8] A. Quilliot. Jeux et pointes fixes sur les graphes. Thèse de 3ème cycle, Université de Paris VI

(1978) [in French], 131–145.

68

ACKNOWLEDGMENTS

I would like to take this opportunity to thank everyone who supported me and made this

journey better along the way. First, I want to thank my wife Janelle for putting up with me for the

last five years. Such a remarkable feat should not go unrecognized. I would like to thank Jürgen

Kritschgau for always being willing to put things down and decompress for a moment. I also

want to thank Joe Alameda for being a great office-mate and an even better skate club adversary.

Many thanks go to my academic siblings for maintaining an excellent dose of camaraderie. Of

course, I want to thank my parents for their unbounded confidence in me and my sister Jami for

lifting my spirits and keeping me young.

Finally, I owe a large thank you to my advisor Leslie Hogben. Your dedication to your students

is unrivaled. Through your guidance and inspiring determination, I have been able to push myself

to become a better mathematician than I ever thought possible.

	TABLE OF CONTENTS
	LIST OF FIGURES
	ABSTRACT
	1. INTRODUCTION
	1.1 Organization
	1.2 Basic graph theory
	1.3 Literature review
	1.3.1 Zero forcing parameters
	1.3.2 Propagation time
	1.3.3 Throttling

	Bibliography

	2. THROTTLING FOR ZERO FORCING AND VARIANTS
	2.1 Introduction
	2.2 General propagation time and throttling
	2.3 Throttling for the minor monotone floor of Z
	2.4 A characterization for standard throttling
	2.5 Extreme throttling
	2.6 Concluding remarks

	3. CHARACTERIZATIONS OF THROTTLING FOR POSITIVE SEMIDEFINITE ZERO FORCING AND ITS MINOR MONOTONE FLOOR
	3.1 Introduction
	3.2 Throttling positive semidefinite zero forcing
	3.3 Throttling the minor monotone floor of PSD zero forcing
	3.4 A reduction perspective on PSD zero forcing
	3.5 Concluding remarks

	4. GENERAL CONCLUSION
	ACKNOWLEDGMENTS

