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ABSTRACT

The distance matrix D(G) of a connected graph G is the matrix whose entries are the pairwise

distances between vertices. The distance matrix was defined by Graham and Pollak in 1971 in

order to study the problem of loop switching in routing messages through a network. Since then,

variants such as the distance Laplacian and distance signless Laplacian have been introduced and

studied. This dissertation will study various properties of the distance matrix and its Laplacians.

First, a new distance matrix variant, the normalized distance Laplacian, denoted DL(G), is

introduced and is defined analogously to the normalized Laplacian matrix, L(G). Bounds on the

DL(G) spectral radius and connections with the normalized Laplacian matrix are presented. The

number of graphs with DL-cospectral mates is determined for all graphs on 10 and fewer vertices,

providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other

matrices.

Various graph parameters have been shown to be preserved or not preserved by cospectrality for

the distance matrix and its variants. We summarize known results and show several parameters are

not preserved by cospectrality for the distance matrix, the signless distance Laplacian, the distance

Laplacian, and the normalized distance Laplacian. Furthermore, we prove that two transmission

regular graphs which are distance cospectral must have the same transmission and thus the same

Wiener index.

The distance matrix of a digraph is the matrix whose ijth entry is the distance from vertex vi to

vertex vj . In order for this matrix to be defined, we consider only strongly connected digraphs, i.e.,

digraphs for which there is a dipath from vi to vj for every pair of vertices. The number of digraphs

with a distance cospectral mate is found for 6 and fewer vertices. A cospectral construction is

described that produces pairs of distance cospectral digraphs from a digraph with certain structural

properties.
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CHAPTER 1. GENERAL INTRODUCTION

Spectral graph theory is the study of matrices defined in terms of a graph and how the eigenval-

ues of the matrices relate to various properties of the graphs. Originally, the adjacency matrix was

studied, along with its variants, including the combinatorial Laplacian, the signless Laplacian, and

the normalized Laplacian. In 1971, Graham and Pollak introduced the distance matrix in order to

study the problem of loop switching in routing messages through a network [8]. Much work has

been done to study the spectra of distance matrices of graphs; for a survey see [3]. Recently, several

variants of the distance matrix have been introduced. In [2], Aouchiche and Hansen defined the

distance Laplacian and the signless distance Laplacian. Another variant, the normalized distance

Laplacian, was introduced in [13].

A topic that has received much attention in the study of spectral graph theory is bounding the

spectral radius of each matrix and characterizing which graphs achieve the minimum and maximum

values. It has been shown that the complete graph Kn uniquely achieves the minimum value of the

spectral radius for the distance matrix ([12]), the distance Laplacian ([2]), and the signless distance

Laplacian ([4]). It is also known that the path graph Pn uniquely achieves the maximum value of

the spectral radius for the distance matrix ([12]), and for the distance Laplacian and the signless

distance Laplacian ([7]). In Chapter 2, the spectral radius of the normalized distance Laplacian

is bounded and the complete graph Kn is shown to achieve the minimum value. Furthermore, it

shown that any other graph achieving this minimum spectral radius value would share a spectrum

with Kn. Unlike the other distance matrices, the normalized distance Laplacian spectral radius is

shown not to be maximized by the path graph. Instead, a barbell type graph is conjectured to

achieve the maximum.

Another one of the biggest questions in spectral graph theory is: When can the spectrum of a

matrix be used to determine if two graphs are isomorphic? No matrix has yet been found whose
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spectrum uniquely determines all graphs. Thus, it is natural to examine the instances where the

spectra of a given matrix fails to differentiate. Two non-isomorphic graphs G and H are M -

cospectral if spec(M(G)) = spec(M(H)); if G and H are M -cospectral we call them M-cospectral

mates. A M -cospectral construction is a process by which M -cospectral graphs can be produced.

A graph parameter is said to be preserved by M -cospectrality if two graphs that are M -cospectral

must share the same value for that parameter.

Cospectrality and the preservation of parameters have been studied to varying degrees for the

distance matrices and its Laplacians. The number of connected graphs with a cospectral mate on

ten or fewer was computed for the distance, distance Laplacian, and the signless distance Laplacian

matrices in [2]. Cospectral constructions have been found for the distance matrix such as those in

[11], [1], [9], and [10] and for the distance Laplacian in [6]. Preservation of graph parameters by

cospectrality has been studied for the distance matrix ([9], [1]), the distance Laplacian ([5], [6]),

and the signless distance Laplacian ([5]).

In Chapter 2, we examine cospectrality for the normalized distance Laplacian matrix. We

compute the number of cospectral mates on 10 or fewer vertices, providing evidence that it has

fewer instances of cospectrality than other well studied matrices. We also show several parameters

are not preserved by cospectrality for the normalized distance Laplacian.

In Chapter 3, we examine parameters that are preserved and not-preserved by cospectrality

for the distance and its Laplacians. Specifically, we show that girth is not preserved by distance

cospectrality and that planarity, degree sequence, and transmission sequence are not preserved by

distance or signless distance Laplacian cospectrality. We also show that the number of connected

components of the graph complement is not preserved by cospectrality for the distance, signless

distance Laplacian, or normalized distance Laplacian matrix. Finally, we prove that transmission

regular graphs that are distance cospectral must have the same transmission and Wiener index.

In Chapter 4, we study distance cospectrality for digraphs. We compute the number of digraphs

with cospectral mates on six or fewer vertices. We observe cospectral pairs are easily produced by
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reversing all the arcs of the digraphs. Furthermore, a cospectral construction for the distance

matrix is described that produces cospectral digraphs that differ by more than arc reversal.

1.1 Definitions for graphs

A graph is a pair G = (V,E) where V = {v1, . . . , vn} is the set of vertices and E is the set of

edges. Each edge is an unordered set of two distinct vertices {vi, vj}, usually denoted as just vivj ,

for 1 ≤ i 6= j ≤ n. A graph G is connected if for all u, v ∈ V (G), there exists a path from u to v.

Since the study of distance matrices requires it, all graphs in this dissertation are assumed to be

connected unless otherwise stated.

The adjacency matrix of a graph G, denoted A(G) is the real symmetric matrix whose ijth

entry is 1 if and only if ij is an edge, and 0 otherwise. The degree matrix is the diagonal matrix

D(G) = diag(deg(v1), . . . ,deg(vn)). The combinatorial Laplacian matrix of a graph G is defined

such that L(G) = D(G)−A(G) and the signless Laplacian is defined such thatQ(G) = D(G)+A(G).

The normalized Laplacian matrix of a graph G without isolated vertices, has entries

(L(G))ij =



− 1√
deg(vi) deg(vj)

ij ∈ E(G)

1 i = j

0 otherwise

.

Observe that L(G) = D(G)−1/2L(G)D(G)−1/2 = I −D(G)−1/2A(G)D(G)−1/2.

The eigenvalues of A are called the adjacency eigenvalues and are denoted λ1 ≤ · · · ≤ λn, the

eigenvalues of L are called the combinatorial Laplacian eigenvalues and are denoted φ1 ≤ · · · ≤ φn,

the eigenvalues of Q are called the signless Laplacian eigenvalues and are denoted q1 ≤ · · · ≤ qn, and

the eigenvalues of L are called the normalized Laplacian eigenvalues and are denoted µ1 ≤ · · · ≤ µn.

The matrices A(G) and Q(G) are non-negative so ρA(G) = λn and ρQ(G) = qn. The matrices L(G)

and L(G) are positive semidefinite, so ρL(G) = φn, and ρL(G) = µn.

In a graph G, the distance between vertices vi and vj , denoted, d(vi, vj), is the number of edges

in a shortest path between vi and vj . The transmission of a vertex v ∈ V (G), denoted tG(v), is
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the sum of the distances from v to all other vertices, i.e. tG(v) =
∑

ui∈V (G) d(v, ui). A graph is

k-transmission regular if t(v) = k for all v ∈ V .

In [8], the distance matrix, denoted D(G), was defined and has entries (D(G))ij = d(vi, vj). In

order to ensure d(vi, vj) is finite for every pair of vertices vi, vj ∈ V (G), we require the graph G

be connected. The transmission matrix is the diagonal matrix T (G) = diag(t(v1), . . . , t(vn)). For

a connected graph G, Aouchiche and Hansen ([2]) defined the distance Laplacian matrix, denoted

DL(G), such that DL(G) = T (G)−D(G) and the signless distance Laplacian, denoted DQ(G), such

that DQ(G) = T (G) + D(G). The normalized distance Laplacian matrix of a connected graph G,

was defined in [13] and has entries

(DL(G))ij =


− 1√

t(vi) t(vj)
i 6= j

1 i = j

.

Observe that DL(G) = T (G)−1/2DL(G)T (G)−1/2 = I − T (G)−1/2D(G)T (G)−1/2.

The eigenvalues of D(G) are called distance eigenvalues and are denoted ∂1 ≤ · · · ≤ ∂n, the

eigenvalues of DL(G) are called distance Laplacian eigenvalues and are denoted ∂L1 ≤ · · · ≤ ∂Ln , the

eigenvalues of DQ(G) are called the signless distance Laplacian eigenvalues and are denoted ∂Q1 ≤

· · · ≤ ∂Qn , and the eigenvalues of DL(G) are called the normalized distance Laplacian eigenvalues

and are denoted ∂L1 ≤ · · · ≤ ∂Ln . The matrices D(G) and DQ(G) are non-negative and irreducible

so ρD(G) = ∂n and ρDQ(G) = ∂Qn . The matrices DL(G) and DL(G) are positive semidefinite, so

ρDL(G) = ∂Ln , and ρDL(G) = ∂Ln .

1.2 Digraphs

A digraph is a pair Γ = (V,E) where V = {v1, . . . , vn} is the set of vertices and E is the set of

arcs. Each arc is an ordered pair of two distinct vertices (vi, vj), usually denoted as just vivj , for

1 ≤ i 6= j ≤ n. A digraph Γ is strongly connected if for all u, v ∈ V (G), there exists a path from u

to v. Since the study of distance matrices requires it, all digraphs in this dissertation are assumed

to be strongly connected unless otherwise stated.
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In a digraph Γ, the distance between vertices vi and vj , denoted, d(vi, vj), is the number of

arcs in a shortest path from vi to vj . The transmission of a vertex v ∈ V (Γ), denoted tΓ(v), is the

sum of the distances from v to all other vertices, i.e. tΓ(v) =
∑

ui∈V (Γ) d(v, ui). This value is also

sometimes called the out-transmission; the in-transmission of a vertex v is
∑

ui∈V (Γ) d(ui, v). A

digraph is k-transmission regular or k-out-transmission-regular if t(v) = k for all v ∈ V . It is not

necessary for a digraph Γ to be k-in-transmission-regular to be considered k-transmission regular.

The adjacency matrix of a digraph Γ, denoted A(Γ) is the real matrix whose ijth entry is 1 if and

only if ij is an arc, and 0 otherwise. The distance matrix of a strongly connected digraph Γ, denoted

D(Γ), is the real matrix whose ijth entry is d(vi, vj). The adjacency and distance Laplacians are

all defined analogously as they are for graphs. However, we note that unlike for graphs, these

matrices need not be symmetric. This presents a particular challenge, as many techniques for

graphs rely heavily on the basis of eigenvectors that is guaranteed by symmetry. In Chapter 4, we

study distance matrices for digraphs and use the distance characteristic polynomial to show two

digraphs are cospectral.
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CHAPTER 2. THE NORMALIZED DISTANCE LAPLACIAN

Modified from a manuscript published in Special Matrices, Volume 9, Issue 1

Carolyn Reinhart

Department of Mathematics, Iowa State University

Abstract

The distance matrix D(G) of a connected graph G is the matrix containing the pairwise dis-

tances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi

to all other vertices and T (G) is the diagonal matrix of transmissions of the vertices of the graph.

The normalized distance Laplacian, DL(G) = I − T (G)−1/2D(G)T (G)−1/2, is introduced. This

is analogous to the normalized Laplacian matrix, L(G) = I −D(G)−1/2A(G)D(G)−1/2, where

D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency

matrix. Bounds on the spectral radius of DL and connections with the normalized Laplacian

matrix are presented. Twin vertices are used to determine eigenvalues of the normalized dis-

tance Laplacian. The distance generalized characteristic polynomial is defined and its properties

established. Finally, DL-cospectrality and lack thereof are determined for all graphs on 10 and

fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral

pairs than other matrices.

Keywords: Normalized Laplacian, distance matrices, cospectrality, generalized characteristic

polynomial

2.1 Introduction

Spectral graph theory is the study of matrices defined in terms of a graph, specifically relating

the eigenvalues of the matrix to properties of the graph. Many such matrices are studied and they

can often be used in applications. The normalized Laplacian, a matrix popularized by Fan Chung

in her book Spectral Graph Theory, has applications in random walks [10]. The distance matrix
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was defined by Graham and Pollak in [14] in order to study the problem of loop switching in routing

telephone calls through a network. In this paper, we introduce the normalized distance Laplacian,

which is defined analogously to the normalized Laplacian but incorporates distances between each

pair of vertices in the graph.

A weighted graph is a graph with vertices V and a weight function w that assigns a nonnegative

real number to each pair of vertices in the graph. If vivj is an edge in the graph, w(vi, vj) is positive

and if it is not an edge, w(vi, vj) = 0. The degree of a vertex in a weighted graph is the sum of the

weights of the edges incident to it. Any unweighted graph G may be seen as a weighted graph with

edge weights equal to 1.

The adjacency matrix of a weighted graph G is the real symmetric matrix defined by (A(G))ij =

w(vi, vj). The eigenvalues of A(G) are called the adjacency eigenvalues and are denoted λ1 ≤ · · · ≤

λn. The degree matrix is the diagonal matrixD(G) = diag(deg(v1), . . . ,deg(vn)). The combinatorial

Laplacian matrix of a weighted graph G, denoted L(G), has entries

(L(G))ij =


−w(vi, vj) i 6= j

deg(vi) i = j

,

and it is easy to observe that L(G) = D(G) − A(G). The eigenvalues of L(G) are called the

combinatorial Laplacian eigenvalues and are denoted φ1 ≤ · · · ≤ φn. Since L(G) is a positive

semidefinite matrix, ρL(G) = φn. The matrix Q(G) = D(G)+A(G) is called the signless Laplacian.

The eigenvalues of Q(G) are called the signless Laplacian eigenvalues and are denoted q1 ≤ · · · ≤ qn.

The normalized Laplacian matrix of a weighted graph G without isolated vertices, denoted L(G),

has entries

(L(G))ij =


− w(vi,vj)√

deg(vi) deg(vj)
i 6= j

1 i = j

.

Observe that L(G) = D(G)−1/2L(G)D(G)−1/2 = I −D(G)−1/2A(G)D(G)−1/2. The eigenvalues of

L(G) are called the normalized Laplacian eigenvalues and are denoted µ1 ≤ · · · ≤ µn. Since L(G)

is a positive semidefinite matrix, ρL(G) = µn.
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The four matrices are also denoted A,L,Q, and L when the intended graph is clear. Note

that while all these matrices are defined for graphs in general, in this paper we consider them for

connected graphs only, unless otherwise stated.

The distance matrix, denoted D(G), has entries (D(G))ij = d(vi, vj) where d(vi, vj) is the

distance (number of edges in a shortest path) between vi and vj . Much work has been done to study

the spectra of distance matrices; for a survey see [2]. Requiring that every graph G be connected

ensures that d(vi, vj) is finite for every pair of vertices vi, vj ∈ V (G). The eigenvalues of D(G)

are called distance eigenvalues and are denoted ∂1 ≤ · · · ≤ ∂n. In a graph G, the transmission

of a vertex v ∈ V (G), denoted tG(v) or t(v) when the intended graph is clear, is defined as

tG(v) =
∑

ui∈V (G) d(v, ui). A graph is k-transmission regular if t(v) = k for all v ∈ V . The

transmission matrix is the diagonal matrix T (G) = diag(t(v1), . . . , t(vn)).

In [1], Aouchiche and Hansen defined the distance Laplacian and the signless distance Laplacian.

The distance Laplacian matrix, denoted DL(G), has entries

(DL(G))ij =


−d(vi, vj) i 6= j

t(vi) i = j

,

and DL(G) = T (G) − D(G). The eigenvalues of DL(G) are called distance Laplacian eigenvalues

and are denoted ∂L1 ≤ · · · ≤ ∂Ln . Since DL(G) is a positive semidefinite matrix, ρDL(G) = ∂Ln . The

matrix DQ(G) = T (G) +D(G) is called the signless distance Laplacian. The eigenvalues of DQ(G)

are called the signless distance Laplacian eigenvalues and are denoted ∂Q1 ≤ · · · ≤ ∂
Q
n . The matrices

are also denoted as just D,DL, and DQ when the intended graph is clear.

In Section 2.2, we define the normalized distance Laplacian and show that its spectral radius is

strictly less than 2, in contrast with the normalized Laplacian whose spectral radius is equal to 2

when the graph is bipartite. We also find bounds on the normalized distance Laplacian eigenvalues

and provide data that leads to conjectures about the graphs achieving the maximum and minimum

spectral radius. Methods using twin vertices to determine eigenvalues for the normalized distance

Laplacian are described in Section 2.3 and applied to determine the spectrum of several families

of graphs. In Section 2.4, we define the distance generalized characteristic polynomial. We show
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that if the polynomial is equal for two non-isomorphic graphs, they have the same D, DL, DQ,

and DL spectra and the same multiset of transmissions, extending concepts from the generalized

characteristic polynomial.

Two non-isomorphic graphs G and H are M -cospectral if spec(M(G)) = spec(M(H)); if G and

H are M -cospectral we call them M-cospectral mates (or just cospectral mates if the choice of M

is clear). A graph parameter is said to be preserved by M -cospectrality if two graphs that are M -

cospectral must share the same value for that parameter (can be numeric or true/false). Cospectral

graphs and the preservation of parameters has been studied for many different matrices. Godsil

and McKay were the first to produce an adjacency cospectrality construction [12] but many other

papers study cospectrality of the normalized Laplacian (see, for example, [6],[8],[9],[18]). Several

of these papers also discuss preservation by M -cospectrality; for a table summarizing preservation

by A,L,Q and L cospectrality of some well known graph parameters, see [7].

Cospectrality of D,DL, and DQ was studied by Aouchiche and Hansen in [3] and cospectral

constructions have been found for the distance matrix in [16]. Cospectral constructions for the

distance Laplacian matrix were exhibited in [4] and several graph parameters were shown to not be

preserved by DL-cospectrality. In Section 2.5, we find all cospectral graphs on 10 or fewer vertices

for the normalized distance Laplacian and show how some of the graph pairs could be constructed

using DL-cospectrality constructions. We also use examples of graphs on 9 and 10 vertices to show

several parameters are not preserved by normalized distance Laplacian cospectrality and provide

evidence that cospectral mates are rare for this matrix. Since graphs with different spectra cannot

possibly be isomorphic, the spectrum of graphs with respect to matrices can be thought of as a

tool to differentiate between graphs. Because of this, the rarity of cospectrality is beneficial.

Throughout the paper, we use the following standard definitions and notation. A graph G is a

pair G = (V,E), where V = {v1, . . . , vn} is the set of vertices and E is the set of edges. An edge is

a two element subset of vertices {vi, vj}, also denoted as just vivj . We use n = |V | to denote the

order of G and assume all graphs G are connected and simple (i.e. no loops or multiedges). Two

vertices vi and vj are neighbors if vivj ∈ E(G) and the neighborhood N(v) of a vertex v is the set of
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its neighbors. The degree of a vertex v is deg(v) = |N(v)|. A graph is k-regular if deg(vi) = k for all

1 ≤ i ≤ n. Let spec(M) denote the spectrum of a matrix M and let pM (x) denote the characteristic

polynomial of matrix M . The spectral radius of a matrix M with eigenvalues ν1 ≤ · · · ≤ νn is

ρM = max1≤i≤n |νi|. An n × n real symmetric matrix M is positive semidefinite if xTMx ≥ 0

for all x ∈ Rn. Equivalently, a real symmetric matrix M is positive semidefinite if and only if all

its eigenvalues are non-negative. If all eigenvalues are non-negative, observe ρM = νn. Note all

matrices we will consider are real and symmetric.

2.2 The normalized distance Laplacian

As with the combinatorial Laplacian matrix, it is natural to define a normalized version of

the distance Laplacian matrix. In this section, we introduce this new matrix and derive many

proprieties of its eigenvalues.

Definition 2.2.1. The normalized distance Laplacian matrix, denoted DL(G), or just DL, is the

matrix with entries

(DL(G))ij =


−d(vi,vj)√
t(vi) t(vj)

i 6= j

1 i = j

.

Observe that DL(G) = T (G)−1/2DL(G)T (G)−1/2 = I − T (G)−1/2D(G)T (G)−1/2. We call the

eigenvalues of DL(G) the normalized distance Laplacian eigenvalues and denote them ∂L1 ≤ · · · ≤

∂Ln .

It is easy to draw parallels between the properties of A,L,Q, and L and the properties of D,

DL,DQ, and DL. In the remainder of this section, we present results that are known to hold for

the adjacency matrix and its Laplacians, followed by their generalizations to the distance matrices.

Both the normalized Laplacian and the normalized distance Laplacian include square roots

(unless the graph is regular or transmission regular, respectively). This can make computation of

eigenvalues difficult with these matrices. Because of this, we can turn to similar matrices that make

computation slightly easier. In [10], Chung introduces the matrix D−1L, which one can easily see

is similar to L by the similarity matrix D−1/2. The eigenvectors vi of D−1L(G) are called the
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harmonic eigenvectors of L(G) and vi = D−1/2ui where ui is an eigenvector of L. We now show

an analogous similar matrix for DL.

Proposition 2.2.2. For all eigenvalues ∂Li of DL and associated eigenvectors xi, ∂
L
i is also an

eigenvalue of T−1DL with associated eigenvector yi = T−1/2xi.

Proof. Note

T−1DLyi = T−1DLT−1/2xi

= T−1/2DLxi

= T−1/2∂Li xi

= ∂Li yi.

So ∂Li is an eigenvalue of T−1DL with associated eigenvector yi, as desired.

Call the eigenvectors yi of T−1DL(G) the harmonic eigenvectors of DL(G).

The following relationship between the eigenvalues of A(G) and L(G) can be observed using

Sylvester’s law of inertia.

Proposition 2.2.3. [5, p. 14] The multiplicity of 0 as an eigenvalue of A(G) is the multiplicity

of 1 as an eigenvalue of L(G), the number of negative eigenvalues for A(G) is the number of

eigenvalues greater than 1 for L(G), and the number of positive eigenvalues for A(G) is the number

of eigenvalues less than 1 for L(G).

The analogous result for D and DL can be shown using the proof technique suggested by

Butler in [5]. Two matrices A and B are congruent if there exists an invertible matrix P such

that P TAP = B. Sylvester’s law of inertia states that any two real symmetric matrices that are

congruent have the same number of positive, negative, and zero eigenvalues.

Proposition 2.2.4. The multiplicity of 0 as an eigenvalue of D(G) is the multiplicity of 1 as an

eigenvalue of DL(G), the number of negative eigenvalues for D(G) is the number of eigenvalues

greater than 1 for DL(G), the number of positive eigenvalues for D(G) is the number of eigenvalues

greater than 1 for DL(G).



13

Proof. Since (T (G)−1/2)T = T (G)−1/2, D(G) is congruent to T (G)−1/2D(G)T (G)−1/2, and there-

fore they have the same number of positive, negative, and zero eigenvalues. It is easy to see 0 is

an eigenvalue of T (G)−1/2D(G)T (G)−1/2 if and only if 1 is an eigenvalue of DL(G). If ν < 0 is an

eigenvalue of T (G)−1/2D(G)T (G)−1/2, then 1−ν > 1 is an eigenvalue of DL(G). Similarly, if ν > 0

is an eigenvalue of T (G)−1/2D(G)T (G)−1/2, then 1− ν < 1 is an eigenvalue of DL(G).

In special cases, we may deduce an exact relationship between the eigenvalues of various matri-

ces. The following facts are easy to observe and well-known in the literature.

Observation 2.2.5. For a r-regular weighted graph, D(G) = rI so for every adjacency eigenvalue

λi, φn−i+1 = r − λi, qi = r + λi, and µn−i+1 = 1 − 1
rλi. Similarly, for a k-transmission regular

graph, T (G) = kI so for every distance eigenvalue ∂i, ∂
L
n−i+1 = k − ∂i and ∂Qi = k + ∂i.

For k-transmission regular graphs, the relationships between the eigenvalues ofDL andD,DL,DQ

are also easily observed.

Observation 2.2.6. For a k-transmission regular graph G, the normalized distance Laplacian

eigenvalues are ∂Li = 1
k∂

L
i = 1− 1

k∂n−i+1 = 2− 1
k∂

Q
n−i+1.

This observation can be applied to compute the DL-spectrum for some transmission regular

graph families. The spectrum of DL(Kn) is
{

0, n(n−1)
}

[1] and the complete graph is n − 1-

transmission regular, so it is easy to observe spec(DL(Kn)) =
{

0, n
n−1

(n−1)
}

.

In [1], the distance Laplacian eigenvalues are given for a cycle. For even length cycles where

n = 2p,

spec(DL(Cn)) =

{
0,

(
n2

4

)(p−1)

,
n2

4
+ csc2

(
π(2j − 1)

n

)}
for j = 1, . . . , p,

and for odd length cycles where n = 2p+ 1,

spec(DL(Cn)) =

{
0,
n2 − 1

4
+

1

4
sec2

(
πj

n

)
,
n2 − 1

4
− 1

4
sec2

(
π(2j − 1)

2n

)}
for j = 1, . . . , p.

The cycle is a transmission regular graph with transmission n2

4 when n is even and transmission

n2−1
4 when n is odd. So we can apply Observation 2.2.6 to these known spectra to obtain the

eigenvalues of DL(Cn).
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Proposition 2.2.7. Let Cn be the cycle on n vertices. Then if n = 2p is even,

spec(DL(Cn)) =

{
0, 1(p−1), 1 +

4

n2
csc2

(
π(2j − 1)

n

)}
for j = 1, . . . , p,

and if n = 2p+ 1 is odd,

spec(DL(Cn)) =

{
0, 1 +

1

n2 − 1
sec2

(
πj

n

)
, 1− 1

n2 − 1
sec2

(
π(2j − 1)

2n

)}
for j = 1, . . . , p.

In her book that describes the normalized Laplacian matrix [10], Chung finds many bounds

on the eigenvalues of L. We now show similar results hold for the eigenvalues of the normalized

distance Laplacian. The first result provides a range in which all eigenvalues of L lie and notes

that both bounds are achieved. The result appears with proof in [10] and is stated without proof

for weighted graphs in [7]; one can verify the proof from [10] remains valid for weighted graphs.

Theorem 2.2.8. [10] For all weighted connected graphs G,

0 = µ1 < µ2 ≤ · · · ≤ µn ≤ 2,

with µn = 2 if and only if G is non-trivial and bipartite.

This result generalizes with one notable difference: The normalized distance Laplacian never

achieves 2 as an eigenvalue for n ≥ 3. Observe the normalized distance Laplacian of a graph G is

the normalized Laplacian of the weighted complete graph W (G) with edges weights wW (G)(vi, vj) =

dG(vi, vj). Then the degree of a vertex vi in W (G) is the transmission of vi in G. The next result

is an application of Theorem 2.2.8 to W (G) along with the observation that complete graphs on

n ≥ 3 vertices are not bipartite.

Corollary 2.2.9. For all graphs G,

0 = ∂L1 < ∂L2 ≤ · · · ≤ ∂Ln = ρDL ≤ 2,

and for n ≥ 3, ∂Ln < 2.

Since this bound is not tight, a natural next question is: Which graphs have the largest spectral

radius? Using a Sage search [19], the maximum spectral radius of any graph on a given numbers of
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vertices was determined for n ≤ 10. The results are listed in Table 2.1 below. Define KPKn1,n2,n3

for n1, n3 ≥ 1, n2 ≥ 2 to be the graph formed by taking the vertex sum of a vertex in Kn1 with

one end of the path Pn2 and the vertex sum of a vertex in Kn3 with the other end of Pn2 . Note the

number of vertices is n = n1 + n2 + n3 − 2 and KPK1,n,1 = KPK2,n−1,1 = KPK2,n−2,2 = Pn.

Figure 2.1 KPK4,4,3

Table 2.1 The maximum ρDL and graph that achieves it for all graphs on 10 or fewer
vertices

n ρDL Graph

2 2 KPK1,2,1

3 1.666 KPK2,2,1

4 1.614 KPK2,2,2

5 1.589 KPK2,3,2

6 1.578 KPK3,3,2

7 1.586 KPK3,3,3

8 1.590 KPK3,4,3

9 1.594 KPK4,4,3

10 1.603 KPK4,4,4

It is natural to conjecture a pattern from the graphs given in Table 2.1. For example, for n = 3`,

one might conjecture that the graph achieving the maximum value of ρDL is KPK`+1,`+1,`. How-

ever, as n grows larger, this pattern does not hold. For example, when n = 15, ρDL(KPK6,5,6) >

ρDL(KPK6,6,5). In Table 2.2 we provide evidence that ρDL(KPKn1,n2,n3) tends towards 2 as n

becomes large for some n1, n2, n3. Note that these graphs were the graphs with largest ρDL found

by checking several graphs in the KPKn1,n2,n3 family on Sage, and are not guaranteed to have the
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largest ρDL of all graphs on n vertices or even within the family KPKn1,n2,n3 . This data leads to

the next conjecture.

Table 2.2 Evidence that maximum ρDL approaches 2 as n becomes large, data from Sage
[19]

n ρDL Graph

15 1.634 KPK6,5,6

20 1.661 KPK8,6,8

25 1.682 KPK10,7,10

50 1.748 KPK21,10,21

100 1.808 KPK43,16,43

200 1.857 KPK90,22,90

400 1.895 KPK184,34,184

600 1.913 KPK280,42,280

800 1.924 KPK377,48,377

Conjecture 2.2.10. The maximum DL spectral radius achieved by a graph on n vertices tends to

2 as n→∞ and is achieved by KPKn1,n2,n3 for some n1 + n2 + n3 = n+ 2.

This family also shows that while ρDL is subgraph monotonically increasing (see [1, Theorem

3.5]), ρDL is not. Specifically, we can see that Pn is a subgraph of KPKn1,n2,n3 for all n1 +n2 +n3 =

n+ 2. However, it has been verified using Sage [19] for n ≤ 20 that ρDL(Pn) < ρDL(KPKn1,n2,n3)

for some n1 + n2 + n3 = n+ 2.

The following result provides a bound for the smallest non-zero eigenvalue and the largest

eigenvalue with respect to L.

Theorem 2.2.11. [10, Lemma 1.7(ii)] For all graphs G on n ≥ 2 vertices,

µ2 ≤
n

n− 1
,

with equality holding if and only if G is Kn. Also,

ρ = µn ≥
n

n− 1
.
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The proof of this result can be used to prove nearly the same result for DL. Note the proof of

equality of the first inequality if and only if G is Kn could not be generalized, since the proof relies

on L having 0 entries corresponding to non-adjacencies.

Theorem 2.2.12. For a graph G on n ≥ 2 vertices,

∂L2 ≤
n

n− 1
and ρDL = ∂Ln ≥

n

n− 1
.

Proof. Observe
n∑
i=1

∂Li =
n∑
i=2

∂Li = trace(DL) = n. Then since ∂L2 is the smallest non-zero eigenvalue,

∂L2 (n − 1) ≤
n∑
i=2

∂Li = n so ∂L2 ≤ n
n−1 . Similarly, since ∂Ln is the largest eigenvalue ∂Ln (n − 1) ≥

n∑
i=2

∂Li = n so ∂Ln ≥ n
n−1 .

We can see that Theorem 2.2.12 provides a lower bound on the spectral radius of DL. As

previously computed, this is the spectral radius of the complete graph, so this minimum is achieved

by Kn. In fact, we can prove the following stronger statement.

Theorem 2.2.13. If any graph G has DL spectral radius n
n−1 , specDL(G) =

{
0, n

n−1
(n−1)

}
.

Proof. For a graph G, let ρDL = ∂Ln = n
n−1 . Recall ∂L1 = 0 for all graphs and obviously ∂L2 ≤ · · · ≤

∂Ln−1 ≤ n
n−1 by definition. As in the proof of the previous theorem, we have

n∑
i=2

∂Li = trace(DL) = n

so
n−1∑
i=2

∂Li = n− n
n−1 = n(n−2)

n−1 . If ∂Li <
n
n−1 for some 2 ≤ i ≤ n− 1,

n−1∑
i=2

∂Li <
n(n−2)
n−1 . So ∂Li = n

n−1

for all 2 ≤ i ≤ n.

Theorem 2.2.13 shows that any other graph achieving minimal spectral radius would be DL-

cospectral to the complete graph Kn. The next conjecture would follow if it was shown that Kn

has no DL-cospectral mates. Using Sage [19], we can verify that Kn is the only graph achieving

minimum ρDL for n ≤ 10.

Conjecture 2.2.14. For a graph on n vertices,

ρDL = ∂Ln =
n

n− 1
,
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if and only if G is the complete graph Kn, and so Kn is the only graph achieving minimum spectral

radius with respect to DL.

We may also bound the eigenvalues of one matrix in terms of the other. Butler described a

relationship between the eigenvalues of L and L. The next result appears with proof in [5] and is

stated without proof for weighted graphs in [7]; one can verify the proof from [5] remains valid for

weighted graphs.

Theorem 2.2.15. [5, Theorem 4] Let G be a weighted graph with ∆ the maximum degree of a

vertex in G and δ the minimum degree of a vertex in G. Then for 1 ≤ i ≤ n,

1

∆
φi ≤ µi ≤

1

δ
φi.

Since the above result holds for weighted graphs, we can again apply the result to the weighted

complete graph W (G) to obtain a similar result for DL. Note the distance Laplacian of G is the

combinatorial Laplacian of the weighted complete graph W (G), so φi(W (G)) = ∂Li (G).

Corollary 2.2.16. Let G be a graph with tmax the maximum transmission of a vertex in G and

tmin the minimum transmission of a vertex in G. Then for 1 ≤ i ≤ n,

1

tmax
∂Li ≤ ∂Li ≤

1

tmin
∂Li .

2.3 Using twin vertices to determine eigenvalues

A pair of vertices u and v in G are called twins if they have the same neighborhood, and the

same edge weights in the case of a weighted graph. If uv is an edge in G, they are called adjacent

twins and if uv is not an edge in G, they are called non-adjacent twins. Twins have proved very

useful in the study of spectra. In this section, we show how twin vertices can be used to compute

eigenvalues of DL and apply these results to compute the spectra for several families of matrices.

Theorem 2.3.1. [7] If a weighted graph G has a set of two or more nonadjacent twins, then 1

is an eigenvalue of L(G) and 0 is an eigenvalue of A(G). If a weighted graph G has a set of two
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or more adjacent twins of degree d, then d+1
d is an eigenvalue of L(G) and −1 is an eigenvalue of

A(G).

Applying part of this result to W (G) gives the analogous result for adjacent twins. In the

weighted complete graph W (G), v1 and v2 are adjacent twins with degree k. Then by Theorem

2.3.1, k+1
k is an eigenvalue of L(W (G)) and thus of DL(G).

Corollary 2.3.2. Let G be a graph with v1, v2 ∈ V (G) such that v1 and v2 are adjacent twins and

t(v1) = t(v2) = k. Then k+1
k is an eigenvalue of DL(G).

Theorem 2.3.1 cannot be used to prove anything for non-adjacent twins, since all vertices are

adjacent in the weighted complete graph. However, the proof of the following result adapts the

method used to prove Theorem 2.3.1 to the normalized distance Laplacian.

Theorem 2.3.3. Let G be a graph with v1, v2 ∈ V (G) such that v1 and v2 are non-adjacent twins

and t(v1) = t(v2) = k. Then k+2
k is an eigenvalue of DL(G) with eigenvector x = [1,−1, 0, . . . , 0]T .

Proof. Observe for i = 3, . . . , n, DL1,i = DLi,1 = DL2,i = DLi,2 = − d(v1,vi)√
kt(vi)

= − d(v2,vi)√
kt(vi)

so the first

and second rows and the first and second columns are the same except for in the 2× 2 submatrix

indexed by v1, v2. This submatrix is

 1 − 2
k

− 2
k 1

 . Multiplying DL by x gives

DL(G)x =



1 + 2
k

− 2
k − 1

DL3,1 −DL3,2
...

DLn,1 −DLn,2


=



k+2
k

−k+2
k

0

...

0


=
k + 2

k
x.

So we see k+2
k is an eigenvalue of DL(G) with eigenvector x, as desired.

We can now apply Corollary 2.3.2 and Theorem 2.3.3 to compute the DL-spectrum of some well

known families.
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Theorem 2.3.4. The complete bipartite graph on n+m vertices Kn,m has

spec
(
DL(Kn,m)

)
=

{
0,

(
2n+m

2n+m− 2

)(n−1)

,

(
n+ 2m

n+ 2m− 2

)(m−1)

,
2(n2 +m2 +mn− n−m)

(2n+m− 2)(n+ 2m− 2)

}
.

Proof. Let A = {a1, . . . , an} and B = {b1, . . . , bm} be the partite sets of Kn,m. Observe every pair

of vertices in A are non-adjacent twins with transmission 2(n− 1) +m = 2n+m− 2. By Theorem

2.3.3, every pair a1, aj yields the eigenvalue 2n+m
2n+m−2 and there are n − 1 such pairs. Similarly,

every pair of vertices in B are non-adjacent twins with transmission n + 2(m − 1) = n + 2m − 2.

By Theorem 2.3.3, every pair b1, bj yields the eigenvalue n+2m
n+2m−2 and there are m − 1 such pairs.

We also have that 0 is an eigenvalue. We have accounted for n + m − 1 eigenvalues so only one

eigenvalue remains, denote this eigenvalue ν. Observe
n+m∑
i=1

∂Li = trace(DL) = n+m so

n+m = 0 +
2n+m

2n+m− 2
(n− 1) +

n+ 2m

n+ 2m− 2
(m− 1) + ν.

By computation,

ν =
2(n2 +m2 +mn− n−m)

(2n+m− 2)(n+ 2m− 2)
.

Corollary 2.3.5. The star graph on n vertices Sn has spec
(
DL(Sn)

)
=

{
0, 2n−2

2n−3 ,
(

2n−1
2n−3

)(n−2)
}

.

Theorem 2.3.6. The complete graph on n vertices with one edge removed, Kn − e, has

spec
(
DL(Kn − e)

)
=

{
0,
n2 − n+ 2

n(n− 1)
,

(
n

n− 1

)(n−3)

,
n+ 2

n

}
.

Proof. Let V (Kn) = V (Kn − e) = {v1, . . . , vn}. By vertex transitivity of the complete graph, let

e = v1v2. Then it is easy to observe v1 and v2 are non-adjacent twins while v3, . . . , vn are adjacent

twins. Since t(v1) = t(v2) = n and t(vi) = n − 1 for i = 3, . . . , n, Theorem 2.3.3 shows n+2
n is an

eigenvalue with multiplicity 1 while Corollary 2.3.2 shows n
n−1 is an eigenvalue with multiplicity

n − 3. Since 0 is always an eigenvalue, we have accounted for n − 3 + 1 + 1 = n − 1 eigenvalues.

Calculation shows the remaining eigenvalue is

ν =
n2 − n+ 2

n(n− 1)
.
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2.4 Characteristic polynomials

An alternative to direct computation for determining eigenvalues of a matrix is to compute

the characteristic polynomial of the matrix. In this section we define the distance generalized

characteristic polynomial and show if the polynomial is equal for two non-isomorphic graphs then

the graphs must have the same transmission sequence. Then we generalize a method of computing

the L characteristic polynomial to the DL characteristic polynomial.

Let N(λ, r,G) = λIn−A(G) + rD(G). The generalized characteristic polynomial is φ(λ, r,G) =

det(N(λ, r,G)). When the parameters are clear, we also use the notation N(G) and φ(G) or N

and φ if the graph is also clear. It is known that if φ(G) = φ(H) then G and H are A,L,Q, and L

cospectral. We now define an analogous polynomial for the distance matrices D,DL,DQ, and DL.

Definition 2.4.1. Let ND(λ, r,G) = λIn−D(G) + rT (G). The distance generalized characteristic

polynomial is φD(λ, r,G) = det(ND(λ, r,G)).

When the parameters intended are clear, we also use the notation ND(G) and φD(G) or ND

and φD if graph is also clear.

Theorem 2.4.2. From φD(λ, r,G) we can recover the characteristic polynomials for D and DQ,

characteristic polynomial of DL up to sign and the characteristic polynomial of DL up to a constant.

Proof. We show that through proper choices of λ and r, we can obtain the desired polynomials.

First, for D, choose λ = x and r = 0 and observe

φD(x, 0, G) = det(xIn −D(G)) = pD(G)(x).

For DL, choose λ = −x and r = 1, which gives

φD(−x, 1, G) = det(−xIn −D(G) + T (G)) = (−1)npDL(G)(x).

For DQ, choose λ = x and r = −1, resulting in

φD(x,−1, G) = det(xIn −D(G)− T (G)) = pDQ(G)(x).
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Finally, for DL we choose λ = 0 and r = −x+ 1, so

φD(0,−x+ 1, G) = det(−D(G) + (−x+ 1)T (G))

= det(T (G)) det(T (G)−1/2(DL(G)− xT (G))T (G)−1/2)

= det(T (G)) det(DL(G)− xIn))

= (−1)n det(T (G))pDL(G)(x).

Corollary 2.4.3. If φD(G) = φD(H) for two graphs G and H, then G and H are D, DL, DQ, and

DL cospectral.

Proof. In Theorem 2.4.2, we showed the characteristic polynomials of D and DQ can be recovered

exactly, so it is clear that G and H are D and DQ cospectral. Let G have order n and H have order

n′, then if φD(G) = φD(H), necessarily n = n′ since otherwise the polynomials would not have

the same degree. Therefore (−1)npDL(G)(x) = (−1)n
′
pDL(H)(x) implies pDL(G)(x) = pDL(H)(x) so

G and H are DL cospectral. The leading term for all graphs G of pDL(G)(x) is xn, so for some

constants c1, c2, c1pDL(G)(x) = c2pDL(H)(x) implies c1 = c2 and pDL(G)(x) = pDL(H)(x). Therefore

G and H are DL cospectral.

In [17], the authors explore properties of non-isomorphic graphs G and H for which φ(G) =

φ(H). The next theorem is one of their main results.

Theorem 2.4.4. [17, Theorem 2.1] If φ(G) = φ(H), then graphs G and H have the same degree

sequence.

The proof of the above theorem uses [17, Lemma 2.3], which holds for any diagonal matrix but

is applied to the degree matrix. It also uses [17, Lemma 2.4], which is stated specifically for the

adjacency matrix. However, this lemma holds for all real symmetric matrices; we state the lemma

in its full generality next from its original source.

Lemma 2.4.5. [13, p. 186] Let {yi} be a set of orthonormal eigenvectors of the real symmetric

matrix M with associated eigenvalues λi (i = 1, 2, ..., n). Then (λIn −M)−1 =
∑n

i=1
yiyi

T

λ−λi .
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We now observe the proof given for [17, Theorem 2.1] can be used to show the following more

general result.

Theorem 2.4.6. Let M1 and M2 be n × n real symmetric matrices and let D1 and D2 be n × n

diagonal matrices. If det (λIn −M1 + rD1) = det (λIn −M2 + rD2), then spec(M1) = spec(M2)

and spec(D1) = spec(D2).

Proof. That spec(M1) = spec(M2) is immediate by letting r = 0. The proof that the degree

sequences are the same (Theorem 2.4.4) is by showing D(G) and D(H) are similar matrices, which

here shows spec(D1) = spec(D2).

Applying Theorem 2.4.6 to the real symmetric matrices D(G) and D(H) and the diagonal

matrices T (G) and T (H), we obtain a result for φD as a corollary.

Corollary 2.4.7. If φD(G) = φD(H), then graphs G and H have the same transmission sequence.

Characteristic polynomials are often difficult to calculate. Because of this, many reduction

formulas exist. In [18], Osborne provides one such reduction algorithm for the generalized charac-

teristic polynomial φ(G). For a matrix M(G) and a subset of vertices α ⊂ V , let Mα(G) be the

submatrix obtained by deleting the rows and columns corresponding to the vertices in α from M .

Theorem 2.4.8. [18] Let u be a vertex in G, let C(u) be the collection of cycles in G containing

u. Then

φ(λ, r,G) = (λ+ deg(u)r) det(Nu(G))−
∑
w∼u

det(N{u,w}(G))− 2
∑

Z∈C(u)

det(NZ(G)).

We now prove a reduction result for φD(G) using similar proof techniques.

Theorem 2.4.9. Let u be a vertex in G, let CP(u) denote the cyclic permutations of Sn that do

not fix u, and let V (σ) denote vertices not fixed by a permutation σ. Then,

φD(λ, r,G) = (λ+t(u)r) det(NDu (G))−
∑

σ∈CP(u)
|σ|=k

d(u, σ(u))d(σ(u), σ2(u)) . . . d(σk−1(u), u) det(NV (σ)(G)).
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Proof. Let the vertices of G be 1 = u, 2, . . . , n and let (N(G))ij = nij . It is clear

nij =


λ+ t(i)r i = j

−d(i, j) else

,

and φD(G) =
∑

σ∈Sn sgn(σ)
∏n
i=1 niσ(i). Partition Sn into P1 and P2 such that σ ∈ P1 if σ(1) = 1

and otherwise σ ∈ P2. Write σ as a product of cycles σ = σ1σ2 . . . σ` such that 1 ∈ σ1. Clearly,

φD(G) =
∑
σ∈P1

sgn(σ)
n∏
i=1

niσ(i) +
∑
σ∈P2

sgn(σ)
n∏
i=1

niσ(i).

If σ ∈ P1, then sgn(σ) = sgn(σ2 . . . σ`) and∑
σ∈P1

sgn(σ)

n∏
i=1

niσ(i) =
∑
σ∈P1

(λ+ t(1)r) sgn(σ2 . . . σ`)

n∏
i=2

niσ(i)

= (λ+ t(1)r)
∑

σ∈Sn−1

sgn(σ)
n∏
i=2

niσ(i)

= (λ+ t(1)r) det(ND1 (G)).

If σ ∈ P2, let σ1 = (1, σ(1), . . . , σk−1(1)). Then∑
σ∈P2

sgn(σ)

n∏
i=1

niσ(i)

=
∑
σ∈P2

sgn(σ1)(−1)kd(1, σ(1))d(σ(1), σ2(1)) . . . d(σk−1(1), 1) sgn(σ2 . . . σk)
∏

i∈V (σ2...σk)

niσ(i)

=
∑
σ∈P2

(−1)k−1(−1)kd(1, σ(1))d(σ(1), σ2(1)) . . . d(σk−1(1), 1) sgn(σ2 . . . σk)
∏

i∈V (σ2...σk)

niσ(i).

Fixing σ1, consider all other permutations of the remaining vertices. This gives

−
∑

σ∈CP(1)
|σ|=k

d(1, σ(1))d(σ(1), σ2(1)) . . . d(σk−1(1), 1)
∑

τ∈Sn−|V (σ)|

sgn(τ)
∏

i∈V (τ)

niτ(i)

= −
∑

σ∈CP(1)
|σ|=k

d(1, σ(1))d(σ(1), σ2(1)) . . . d(σk−1(1), 1) det(NV (σ)(G)).

We now shift our focus back to the standard characteristic polynomial. Methods of computing

characteristic polynomials have been found for various matrices associated with graphs. Such a
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method was found for the weighted normalized Laplacian in [9] and is given below. A decomposition

D of an undirected weighted graph G is a subgraph consisting of disjoint edges and cycles. Let

s(D) denote the number of cycles of length at least three in D, let e(D) denote the number of

cycles in D that have an even number of vertices (here, consider an edge to be a cycle of length

two), and let F (D) be the set of isolated edges in the decomposition. Note a decomposition need

not be spanning, and in fact the empty decomposition is included.

Theorem 2.4.10. [9] Let G be a weighted graph on n vertices. Then the characteristic polynomial

of the normalized Laplacian matrix is

p(x) =
∑
D

(−1)e(D)2s(D)

∏
vivj∈E(D)w(vi, vj)

∏
vivj∈F (D)w(vi, vj)∏

vi∈V (D) deg(vi)
(x− 1)n−|V (D)|,

where the sum runs over all decompositions D of the graph G.

Applying this result to the normalized distance Laplacian viewed as a weighted normalized

Laplacian, we obtain the following formula for computing its characteristic polynomial. Note

wW (G)(vi, vj) = dG(vi, vj) and degW (G)(vi) = tG(vi).

Corollary 2.4.11. Let G be a graph on n vertices. Then the characteristic polynomial of the

normalized distance Laplacian matrix is

p(x) =
∑
D

(−1)e(D)2s(D)

∏
vivj∈E(D) dG(vi, vj)

∏
vivj∈F (D) dG(vi, vj)∏

vi∈V (D) tG(vi)
(x− 1)n−|V (D)|,

where the sum runs over all decompositions D of the complete graph Kn.

2.5 Cospectral graphs

In this section, we show cospectral graphs with respect to the normalized distance Laplacian

are rare. In Section 2.5.1 we exhibit and discuss the 5 cospectral pairs on 8 and 9 vertices as

well as interesting examples of cospectral pairs on 10 vertices. We show the number of edges in

a graph, degree sequence, transmission sequence, girth, Weiner index, planarity, k-regularity, and

k-transmission regularity are not preserved by DL-cospectrality. We compare DL-cospectralitity
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with DL-cospectrality and provide examples of pairs of graphs that are both DL-cospectral and

DL-cospectral, as well as pairs only cospectral with respect to one of the matrices. We also

exhibit graphs that are cospectral only for DL and graphs that are cospectral for all matrices

A,L,Q,L,D,DL,DQ,DL. In Section 2.5.2, the number of graphs on 10 or fewer vertices with a

DL-cospectral pair is computed and compared with the number of graphs with a M -cospectral

pair, where M = A,L,Q,L,D,DL,DQ. That section also includes a discussion of computational

methods.

2.5.1 Cospectral pairs on 10 or fewer vertices

The first instance of cospectral graphs with respect to the normalized distance Laplacian occurs

on 8 vertices and there is only one such pair, shown in Figure 2.2. Using Sage [20] we can compute

theirDL characteristic polynomial: pDL(x) = x8−8x7+ 317947
11616 x

6− 5428399
104544 x

5+ 24668087
418176 x4− 4196075

104544 x
3+

575771
38016 x

2− 85211
34848x. The only difference between the graphs is the light colored edge, and we refer to

the maximal shared subgraph (i.e. the graph that results in removing the light colored edge from

either graph) as the base graph.

Figure 2.2 The only DL-cospectral pair on 8 vertices

If a graph G has vertices v1, v2, v3, and v4 such that v1 and v2 are non-adjacent twins, v3 and v4

are non-adjacent twins, and t(v1) = t(v3) then we say {{v1, v2}, {v3, v4}} is a set of co-transmission

twins. In [4], a cospectral construction is described for the distance Laplacian using co-transmission

twins. If a graph G has co-transmission twins {{v1, v2}, {v3, v4}}, then G+ v1v2 and G+ v3v4 are

DL-cospectral. Note that the graphs in Figure 2.2 can be constructed this way from their base

graph with co-transmission twins {{1, 2}, {3, 4}}, so they are DL-cospectral as well. Their DL
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characteristic polynomial is pDL(x) = x8 − 94x7 + 3756x6 − 82728x5 + 1084992x4 − 8473984x3 +

36492288x2 − 66834432x. However, this construction does not always find DL-cospectral graphs.

The graphs in Figure 2.3 can be constructed from their base graph using co-transmission twins

{{1, 2}, {3, 4}}, so they are cospectral with respect to DL, but they are not cospectral with respect

to DL.

Figure 2.3 Graphs that are DL but not DL-cospectral using the co-transmission twins
construction

There are only four pairs of DL-cospectral graphs on 9 vertices. Three of the pairs that are

DL-cospectral differ by only one edge and have related base graphs. In Figure 2.4, the three pairs

can be seen by including 0, 1, or 2 of the dashed edges {1, 4} and {2, 3} (note including just the

edge {1, 4} or just the edge {2, 3} creates isomorphic graphs, so we only need consider one of

these cases). When 0 dashed edges are included, their DL characteristic polynomial is pDL(x) =

x9−9x8+ 1926013
54450 x7− 259072321

3267000 x6+ 2717888893
24502500 x5− 233194363

2352240 x4+ 243851297233
4410450000 x3− 587831111

33412500 x
2+ 674126228

275653125x.

When 1 dashed edge is included, their DL characteristic polynomial is pDL(x) = x9 − 9x8 +

1926211
54450 x7 − 9598153

121000 x
6 + 1812984073

16335000 x5 − 24314025553
245025000 x4 + 67829453381

1225125000 x
3 − 10796929657

612562500 x2 + 758404
309375x. When

both dashed edges are included, theirDL characteristic polynomial is pDL(x) = x9−9x8+ 3852769
108900 x

7−
21601501
272250 x6 + 27208546

245025 x5 − 6083465273
61256250 x4 + 11318237801

204187500 x3 − 1228870232
69609375 x2 + 15544256

6328125 x.

Again, we see these cospectral pairs may be constructed using a DL-cospectrality construc-

tion from [4]. Let G be a graph of order at least five with v1, v2, v3, v4 ∈ V (G). Let C =

{{v1, v2}, {v3, v4}} and U(C) = V (G)\{v1, v2, v3, v4}. Then C is a set of cousins in G if for all u ∈

U(G), dG(u, v1) = dG(u, v2), dG(u, v3) = dG(u, v4), and
∑

u∈U(C) dG(u, v1) =
∑

u∈U(C) dG(u, v3).

Theorem 2.5.1. [4, Theorem 3.10] Let G be a graph with a set of cousins C = {{v1, v2}, {v3, v4}}

satisfying the following conditions:
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Figure 2.4 Three DL-cospectral pairs on 9 vertices

• v1v2, v3v4 6∈ E(G),

• and the subgraph of G+v1v2 induced by {v1, v2, v3, v4} is isomorphic to the subgraph of G+v3v4

induced by {v1, v2, v3, v4}.

If G+ v1v2 and G+ v3v4 are not isomorphic, then they are DL-cospectral.

One can easily verify that in each of the three base graphs in Figure 2.4, C = {{1, 2}, {3, 4}}

is a set of cousins and the subgraph of G + {1, 2} induced by {1, 2, 3, 4} is isomorphic to the

subgraph of G + {3, 4} induced by {1, 2, 3, 4}. Therefore all three pairs of cospectral graphs can

be constructed by Theorem 2.5.1 and so are DL-cospectral. When 0 dashed edges are included,

their DL characteristic polynomial is pDL(x) = x9 − 116x8 + 5853x7 − 167806x6 + 2990335x5 −

33920980x4+239222875x3−959072786x2+1673692704x. When 1 dashed edge is included, their DL

characteristic polynomial is pDL(x) = x9−114x8 + 5648x7−158862x6 + 2774997x5−30830726x4 +

212786586x3 − 834230170x2 + 1422606240x. When both dashed edges are included, their DL

characteristic polynomial is pDL(x) = x9−112x8 + 5447x7−150274x6 + 2572751x5−27995116x4 +

189113161x3 − 725242914x2 + 1209121056x.

Again, we can see this does not always work. The pair of graphs in Figure 2.5 can be constructed

in the way described in Theorem 2.5.1 using their base graph and the set of cousins {{1, 2}, {3, 4}},

so they are DL-cospectral. However, they are not DL-cospectral.

The last DL-cospectral pair on 9 vertices is shown in Figure 2.6. While the other three DL-

cospectral pairs involve edge switching, in this pair two additional edges (light colored) are added

to the first graph to obtain the second. The DL characteristic polynomial of the graphs is pDL(x) =
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Figure 2.5 Graphs that are DL but not DL-cospectral using the cousins construction

x9−9x8 + 23884
675 x7− 7232482

91125 x6 + 30369859
273375 x5− 27161183

273375 x4 + 15156922
273375 x3− 1608332

91125 x2 + 74536
30375x. The graphs

in Figure 2.6 show that the number of edges, the degree sequence, and the transmission sequence

are not preserved by DL-cospectrality. The degree sequence of a graph G is the list of degrees of the

vertices in G and the transmission sequence of a graph G is the list of transmissions of the vertices

in G. The transmission sequence of G1 is [9, 9, 9, 9, 10, 10, 10, 10, 12] and the transmission sequence

of G2 is [9, 9, 9, 9, 9, 9, 10, 10, 10]. The degree sequence of G1 is [4, 6, 6, 6, 6, 7, 7, 7, 7] and the degree

sequence of G2 is [6, 6, 6, 7, 7, 7, 7, 7, 7]. This pair also provides an example of a cospectral pair that

is DL-cospectral but not DL-cospectral.

Figure 2.6 G1 and G2, DL-cospectral pair on 9 vertices with a different number of edges,
different degree sequences, and different transmission sequences

On 10 vertices, there are 3763 pairs of DL-cospectral graphs and 4 triples. A graph is planar if it

can be drawn in the plane without any edges crossing. In Figure 2.7, H1 is planar and H2 is not, and

the graphs share the DL characteristic polynomial pDL(x) = x10−10x9+ 11760575
264992 x8− 14698252437

128107070 x7+
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1561159495967
8198852480 x6 − 5605798973451

26646270560 x5 + 7068694654043
45679320960 x4 − 11682868723247

159877623360 x3 + 535639931153
26646270560 x

2 − 65401424433
26646270560x.

Therefore planarity is not preserved by DL-cospectrality.

Figure 2.7 H1 and H2, DL cospectral graphs where one is planar and one is not

The Weiner index of a graph G with vertices V (G) = {v1, . . . , vn} is

W (G) = 1
2

∑n
i=1

∑n
j=1 d(vi, vj) and the girth of a graph is the length of the shortest cycle in the

graph. The pair of graphs in Figure 2.8 show girth, Wiener index, k-regularity, and k-transmission

regularity are not preserved by DL-cospectrality. This is in contrast to DL-cospectrality, which

preserves the Weiner index (observe W (G) = 1
2 traceDL(G) [3]). While F1 has girth 5, Weiner index

75, is 3-regular and is 10-transmission regular, F2 has girth 3, Weiner index 50, is 8-regular, and

is 15-transmission regular. Note that while this shows k-regularity and k-transmission regularity

are not preserved by DL-cospectrality, both graphs are still regular and transmission regular so it

does not show regularity or transmission regularity are not preserved. These graphs share the DL

characteristic polynomial pDL(x) = x10 − 10x9 + 222
5 x8 − 2872

25 x7 + 23861
125 x6 − 660126

3125 x5 + 486504
3125 x4 −

230256
3125 x3 + 63504

3125 x
2 − 7776

3125x.

The diameter of a graph G is the maximum distance between any pair of vertices in the graph.

In [11], the authors show that for r-regular graphs with diameter at most 2, if λ1 ≤ · · · ≤ λn−1 ≤

λn = r, then ∂i = −λi − 2 for 1 ≤ i ≤ n − 1 and ∂n = 2n − 2 − r. So in the case of graphs with

diameter at most two that are regular and transmission regular, the eigenvalues of A,L,Q,L,D,DL,

and DQ can all be obtained from each other using the above result and Observations 2.2.5 and 2.2.6.

Since both of the graphs in Figure 2.8 are regular, transmission regular, and have diameter 2, we
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Figure 2.8 F1 and F2 (the Petersen graph and cocktail party graph, respectively),
DL cospectral graphs with different girth, Weiner indexes, k-regularity, and
k-transmission regularity and are only M -cospectral for M = DL

can easily calculate their spectra for A,L,Q,L,D,DL, and DQ from their DL-spectrum. However,

since the two graphs have different regularity and different transmission regularity, it is clear that

their spectra will be different for every other matrix. Therefore F1 and F2 serve as an example of

graphs that are only cospectral with respect to DL.

We can also find a pair of graphs that are M -cospectral for all M = A,L,Q,L,D,DL,DQ and

DL. In Figure 2.9, the two graphs are both diameter 2, 5-regular, and 13-transmission regular and

they are DL-cospectral, so they will be M -cospectral for all M = A,L,Q,L,D,DL, and DQ as well.

We can also see this by noting that φ(λ, r, L1) = φ(λ, r, L2) and φD(λ, r, L1) = φD(λ, r, L2).

Figure 2.9 L1 and L2, Graphs that are M cospectral for M = A,L,Q,L,D,DL,DQ and
DL
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2.5.2 The number of graphs with a cospectral mate

The number of graphs that have cospectral mates has been computed for all graphs on 10 and

fewer vertices for all matrices discussed in this paper (except for L, for which the number of graphs

with a L-cospectral mate has only been computed for 9 and fewer vertices). These values are given

in Tables 2.3 and 2.4. In Table 2.5, the percentage of graphs that have a cospectral mate is given

for each matrix. It is obvious that DL has significantly fewer graphs with a cospectral mate than

any previously studied matrix on 10 or fewer vertices and we conjecture this pattern continues

into larger number of vertices. This makes the normalized distance Laplacian a useful tool for

determining if two connected graphs are isomorphic.

Table 2.3 Number of graphs with a cospectral mate with respect to each matrix. Counts
for A,L,Q from [15], counts for L from [8].

n # graphs A L Q L
3 4 0 0 0 0

4 11 0 0 2 2

5 34 2 0 4 4

6 156 10 4 16 14

7 1,044 110 130 102 52

8 12,346 1,722 1,767 1,201 201

9 274,668 51,038 42,595 19,001 1,092

10 12,005,168 2,560,516 1,412,438 636,607

Table 2.4 Number of connected graphs with a cospectral pair with respect to each matrix.
Counts for D,DL,DQ from [3].

# connected

n graphs D DL DQ DL

3 2 0 0 0 0

4 6 0 0 0 0

5 21 0 0 2 0

6 112 0 0 6 0

7 853 22 43 38 0

8 11,117 658 745 453 2

9 261,080 25,058 19,778 8,168 8

10 11,716,571 1,389,984 787,851 319,324 7538
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Table 2.5 Percent of total graphs (for A,L,Q,L) / connected graphs (for D,DL,DQ,DL)
that have a cospectral mate with respect to each matrix.

n A L Q L D DL DQ DL

3 0 0 0 0 0 0 0 0

4 0 0 18.1818% 18.1818% 0 0 0 0

5 5.8824% 0 11.7647% 11.7647% 0 0 9.5238% 0

6 6.4103% 2.5641% 10.2564% 8.9744% 0 0 5.3571% 0

7 10.5354% 12.4521% 9.7701% 4.9808% 2.5791% 5.0410% 4.4549% 0

8 13.9478% 14.3123% 9.7278% 1.6281% 5.91886% 6.7014% 4.0748% 0.0180%

9 18.5817% 15.5078% 6.9178% 0.3976% 9.5978% 7.5755% 3.1285% 0.0031%

10 21.3284% 11.7653% 5.3028% 11.8634% 6.7242% 2.7254% 0.0643%

The similar matrix T−1DL was used for all computations rather than DL since it does not

include square roots and runs more quickly on Sage. To find DL-cospectral graphs graphs on 8 and

fewer vertices, it was sufficient to use the Sage command cospectral.graphs(), which takes as its

input any matrix defined with respect to a graph. However, this method was too computationally

slow for 9 and 10 vertices.

The method used for 9 and 10 vertices is a multi-step process that sorts the graphs into groups

of potentially cospectral graphs with an approximation of their characteristic polynomials using

double precision decimal arithmetic. Each characteristic polynomial is evaluated at a large number,

and then the floor and ceiling of the result is taken modulo a large prime number. The graphs

are then sorted into groups by this value. Using both the floor and ceiling is to ensure cospectral

graphs end up in the same group at least once, despite any numerical approximation error. Within

these groups, potential cospectral graphs are found by evaluating each approximated characteristic

polynomial at a prime number, and searching for pairs of graphs for which this value is within

an ε = 0.00005 tolerance. Then each of these pairs is checked for cospectrality using their exact

characteristic polynomial.

2.6 Concluding remarks

In this paper we introduced the normalized distance Laplacian. In Section 2.2, we derive bounds

on its eigenvalues. Most notably, we show ∂L < 2 for all graphs G on n ≥ 3 vertices, in contrast
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to the normalized Laplacian, which has the property µ = 2 if and only if the graph is bipartite.

It is natural to ask the following further questions: What is the maximum DL spectral radius

achieved by a graph on n vertices and which graphs achieve it? Based on the behavior of the family

KPKn1,n2,n3 for large n1, n2, n3, we conjecture that the maximum DL spectral radius tends to 2

as n becomes large and that this value is achieved by some graph in the family KPKn1,n2,n3 . We

also found that the complete graph Kn achieves the minimal spectral radius and conjecture that is

the only such graph.

It would be interesting to find methods for constructing DL-cospectral graphs. Since in Section

2.5 we show examples of DL-cospectral constructions producing DL-cospectral graphs, it seems

likely that a suitable additional restriction placed on a DL-cospectral construction may provide a

DL-cospectral construction method.
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CHAPTER 3. A NOTE ON THE PRESERVATION OF GRAPH

PARAMETERS BY COSPECTRALITY FOR THE DISTANCE MATRIX

AND ITS VARIANTS

Modified from a manuscript which has been submitted for publication

Carolyn Reinhart

Department of Mathematics, Iowa State University

Abstract

Cospectrality for the distance matrix and its Laplacians has been shown to preserve or not

preserve various graph parameters. We summarize known results and show several parameters

are not preserved by cospectrality for the distance matrix, the signless distance Laplacian, the

distance Laplacian, and the normalized distance Laplacian. Furthermore, we prove that two

transmission regular graphs which are distance cospectral must have the same transmission and

thus the same Wiener index.

Keywords: Distance matrices, cospectrality, parameter preservation, graph complement

3.1 Introduction

Graph cospectrality and the preservation of parameters by cospectrality has been the focus

of much study in recent years. For a matrix M , two graphs G and H are M -cospectral if they

have the same M spectrum. A graph parameter is preserved by M -cospectrality if two graphs that

are M -cospectral must share the same value for that parameter (can be numeric or true/false).

In this chapter, we summarize some known results about parameter preservation for the distance

matrix and its variants. Furthermore, we provide additional examples that show parameters are

not preserved for various matrices.
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In a graph G, the distance between vertices vi and vj , denoted, d(vi, vj), is the number of edges

in a shortest path between vi and vj . The diameter of a graph is the maximum distance between

two vertices in the graph. The transmission of a vertex v ∈ V (G), denoted tG(v), is the sum of

the distances from v to all other vertices, i.e. tG(v) =
∑

ui∈V (G) d(v, ui). A graph is k-transmission

regular if t(v) = k for all v ∈ V .

In [5], the distance matrix, denoted D(G), was defined and has entries (D(G))ij = d(vi, vj). In

order to ensure d(vi, vj) is finite for every pair of vertices vi, vj ∈ V (G), we require the graph G

be connected. The transmission matrix is the diagonal matrix T (G) = diag(t(v1), . . . , t(vn)). For

a connected graph G, Aouchiche and Hansen [2] defined the distance Laplacian matrix, denoted

DL(G), such that DL(G) = T (G)−D(G) and the signless distance Laplacian, denoted DQ(G), such

that DQ(G) = T (G) + D(G). The normalized distance Laplacian matrix of a connected graph G,

is defined in [13] and has entries

(DL(G))ij =


− 1√

t(vi) t(vj)
i 6= j

1 i = j

.

Observe that DL(G) = T (G)−1/2DL(G)T (G)−1/2 = I − T (G)−1/2D(G)T (G)−1/2.

The following definitions are standard in graph theory and will be used throughout. A graph

is a pair G = (V,E) where V = {v1, . . . , vn} is the set of vertices and E is the set of edges.

Each edge is an unordered set of two distinct vertices {vi, vj}, usually denoted as just vivj , for

1 ≤ i 6= j ≤ n. The complement of a graph G, denoted G, is the graph with vivj ∈ E(G) if and

only if vivj 6∈ E(G). A graph G is connected if for all u, v ∈ V (G), there exists a path from u to

v. A connected component of a graph G is a maximal subgraph that is connected; a connected

graph is considered to have one connected component. Since the study of distance matrices requires

it, all graphs G considered for cospectrality will be connected. However, we note that the graph

complement G is frequently disconnected.

For an n×n real symmetric matrix M and a n-vector x, the quotient xTMx
xTx

is a Rayleigh quotient

of M . The Rayleigh quotients of a matrix can be used to determine the determine eigenvalues of

the matrix. It particular, if λn is the largest eigenvalue of M , λn = maxx 6=0
xTMx
xTx

.



39

3.2 Preservation of parameters

A great many parameters have been shown to be preserved or not preserved by M -cospectrality

for M = D,DL,DQ,DL. It is obvious that two graphs G and H must have the same order to be

M cospectral for any matrix M , therefore graph order is preserved by M -cospectrality for M =

D,DL,DQ,DL. Similarly, the trace of a matrix M , tr(M), must be preserved by M -cospectrality

since it is equal to the sum of the eigenvalues. Some known results are summarized in Table 3.1; in

this table, a question mark indicates that it has been verified that no example of non-preservation

exists on ten or fewer vertices. This verification was performed using Sage [8]. Next, we will list

sources or examples for each non-trivial answer.

Table 3.1 Some parameters that are known to preserved or not preserved by
M -cospectrality for M = D,DL,DQ,DL.

D DL DQ DL

# Edges No No ? No

Diameter No No ? ?

Girth No No ? No

Planarity No No No No

Wiener index No Yes Yes No

Degree sequence No No No No

Transmission sequence No No No No

Transmission regularity ? ? Yes ?

# connected components in G No Yes No No

The number of edges in a graph is not preserved by cospectrality for D ([6]), DL ([4]), or DL

([7]) and the diameter of a graph has been shown not to be preserved by cospectrality for D ([1])

and DL ([4]). The girth of a graph is the length of the shortest cycle in the graph. Girth was shown

not to be preserved by cospectrality for DL ([4]) and DL ([7]); we show now in Example 3.2.1 that

girth is not preserved by D-cospectrality.

Example 3.2.1. The graphs G1 and G2 in Figure 3.1 are D-cospectral with distance characteristic

polynomial pD(x) = x9 − 112x7 − 758x6 − 1994x5 − 2010x4 + 184x3 + 1262x2 + 193x − 222. The

girth of G1 is 4 and the girth of G2 is 3.
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Figure 3.1 Pair of D-cospectral graphs that show the girth of G is not preserved by
D-cospectrality.

A graph is planar if it can be drawn in a way such that no edges intersect each other. Planarity

was shown not to be preserved by DL-cospectrality in [4] and DL-cospectrality in [7]. We show it

is not preserved by D-cospectrality in Example 3.2.3 and by DQ-cospectrality in Example 3.2.2.

Example 3.2.2. The graphs G1 and G2 in Figure 3.2 are DQ-cospectral with signless distance

Laplacian characteristic polynomial pDQ(x) = x8−88x7+3296x6−69002x5+886299x4−7169822x3+

35735188x2 − 100453184x+ 122045040. G1 is planar and G2 is not planar.

Figure 3.2 Pair of DQ-cospectral graphs that show planarity is not preserved by
DQ-cospectrality.

The Wiener index of a graph is the sum of all pairs of distances inG, i.e., W(G) = 1
2

∑
u,v∈V (G) d(u, v).

One can observe that W(G) = 1
2

∑
v∈V (G) t(v) = 1

2 tr(DL(G)) = 1
2 tr(DQ(G)), and so Wiener index

is preserved by DL and DQ cospectrality. However, it was shown in [1] that the Wiener index is not

preserved by D-cospectrality and it was shown in [7] that it is not preserved by DL-cospectrality.

The degree sequence of a graph is the list of degrees of vertices in the graph in increasing order

and the transmission sequence of a graph is the list of transmissions of vertices in the graph in
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increasing order. The degree sequence and transmission sequence were shown not to be preserved

by M -cospectrality for DL in [4] and DL in [7]. In Examples 3.2.3 and 3.2.4, respectively, we

show the degree sequence and transmission sequence of a graph are not preserved by D and DQ

cospectrality.

In [3], it is shown that the property of being transmission regular is preserved byDQ-cospectrality

and the number of connected components of the graph complement G is shown to be preserved

by DL-cospectrality in [3]. In Examples 3.2.3, 3.2.4, and 3.2.5, we show the number of connected

components of G is not preserved by cospectrality for D, DQ, or DL.

Example 3.2.3. The graphs G1 and G2 in Figure 3.3 are D-cospectral with distance characteristic

polynomial pD(x) = x7 − 39x5 − 142x4 − 180x3 − 72x2. The complement of G1 has one connected

component and the complement of G2 has two connected components. G1 is planar and G2 is

not planar. Finally, the degree sequences of G1 and G2, respectively, are [3, 4, 4, 4, 5, 5, 5] and

[4, 4, 4, 4, 4, 4, 6] and the transmission sequences are [7, 7, 7, 8, 8, 8, 9] and [6, 8, 8, 8, 8, 8, 8].





























































































































































































































































































































































































































Figure 3.3 Pair of D-cospectral graphs (above) and their complements (below) that show
the number of connected components of G, planarity, the degree sequence, and
the transmission sequence are not preserved by D-cospectrality.
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Example 3.2.4. The graphs G1 and G2 in Figure 3.4 are DQ-cospectral with signless distance

Laplacian characteristic polynomial pDQ(x) = x5 − 26x4 + 249x3 − 1132x2 + 2480x − 2112. The

complement of G1 has two connected components and the complement of G2 has three connected

components. The degree sequences of G1 and G2, respectively, are [1, 3, 3, 3, 4] and [2, 2, 2, 4, 4] and

the transmission sequences are [4, 5, 5, 5, 7] and [4, 4, 6, 6, 6].

Figure 3.4 Pair of DQ-cospectral graphs (above) and their complements (below) that show
the number of connected components of G, the degree sequence, and the trans-
mission sequence are not preserved by DQ-cospectrality.

Example 3.2.5. The graphs G1 and G2 in Figure 3.5 are DL-cospectral with normalized distance

Laplacian characteristic polynomial pDL(x) = x10 − 10x9 + 222/5x8 − 2872/25x7 + 23861/125x6 −

660126/3125x5 + 486504/3125x4− 230256/3125x3 + 63504/3125x2− 7776/3125x. The complement

of G1 has one connected components and the complement of G2 has five connected components.

In [3], it is shown that the property of being transmission regular is preserved byDQ-cospectrality.

This same proof can not be applied to the distance matrix; however, a weaker result holds. In [1],

it was shown that if two k-transmission regular graphs are D-cospectral, then they have the same

Wiener index. We improve this result in Proposition 3.2.7. But first, we prove a corollary.
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Figure 3.5 A pair of DL-cospectral graphs G1 and G2 (above), the Petersen graph and
cocktail party graph, respectively, and their complements G1 and G2 (below),
which show that the number of connected components of G is not preserved by
DL-cospectrality.

Corollary 3.2.6. For a connected graph G, let tmin be the minimum transmission, tmax be the

maximum transmission, and t be the average transmission. Then

tmin ≤ t ≤ ρ (D(G)) ≤ tmax

and equality holds if and only if G is transmission regular.

Proof. Applying the Rayleigh quotient and considering the vector 1 of all 1s, we have

ρ (D(G)) = max
x 6=0

xTD(G)x

xTx
≥ 1TD(G)1

1T1
=

1

n

n∑
i=1

t(vi).

Observe 1
n

∑n
i=1 t(vi) = t ≥ tmin. To obtain the upper bound, observe tmax is the maximum row

sum of D(G). It is clear t = tmax only if G is transmission regular and if G is transmission regular,

1 is an eigenvector for the eigenvalue t(v) = ρ (D(G)).

Now we apply Corollary 3.2.6 to prove the result.

Proposition 3.2.7. Let G1 and G2 be transmission regular with transmissions t1 and t2 re-

spectively. If G1 and G2 are D-cospectral, then t1 = t2 = ρ (D(G1)) = ρ (D(G2)) and thus

W(G1) = W(G2).
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Proof. Applying Corollary 3.2.6, we see ρ (D(G1)) = t1 and ρ (D(G2)) = t2. By D-cospectrality,

ρ (D(G1)) = ρ (D(G2)). Finally, W(G1) = n
2 t1 = n

2 t2 = W(G2).

3.3 Concluding remarks

This chapter showed that girth is not preserved by distance cospectrality and that planarity,

degree sequence, and transmission sequence are not preserved by distance or signless distance Lapla-

cian cospectrality. We also showed that the number of connected components of the graph comple-

ment is not preserved by cospectrality for the distance, signless distance Laplacian, or normalized

distance Laplacian matrix. Thus, the distance Laplacian is unique in preserving this parameter

among the distance matrix and its Laplacians. Finally, we proved that transmission regular graphs

that are distance cospectral must have the same transmission and Wiener index.

As denoted by question marks in Table 3.1, many open questions remain. In particular, it

would be interesting to determine if transmission regularity is preserved for D, DQ, and DL. Since

no example exhibiting non-preservation exists on 10 or fewer vertices, it would be useful to find a

cospectral construction which produces a transmission regular and non-transmission regular graph.
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CHAPTER 4. DISTANCE COSPECTRALITY IN DIGRAPHS

Modified from a manuscript in preparation for submission

Carolyn Reinhart

Department of Mathematics, Iowa State University

Abstract

The distance matrix of a digraph Γ, D(Γ), is the matrix whose i, jth entry is the distance

from vertex vi to vertex vj . In order for this matrix to be defined, we consider only strongly

connected digraphs, i.e., digraphs for which there is a dipath from vi to vj for every pair of

vertices. In this paper, the number of digraphs with a distance cospectral mate is found for 6

and fewer vertices. It is observed that many instances of cospectrality can be accounted for by

arc reversal. Using generalized cycle decompositions, cospectral constructions are found that

do not rely on arc reversal and produce pairs of distance cospectral digraphs from a digraph

containing twin vertices with certain structural properties.

Keywords: Distance matrix, digraphs, cospectrality, twins

4.1 Introduction

The distance matrix of a connected graph was defined in 1971 by Graham and Pollak [5] in order

to study the problem of loop switching in routing messages through a network. Since then, the

distance matrix has been studied extensively for graphs. A 2014 survey by Aouchiche and Hansen

cites over 150 papers and includes results on the distance characteristic polynomial, spectral radius,

and general eigenvalue bounds [2]. Cospectral constructions have been found for the distance matrix

such as those in [12], [1], [6], and [11]. Less work has been done thus far regarding the distance

matrix of digraphs. Bounds on the the distance spectral radius of digraphs and extremal digraphs

achieving these bounds have been found for various classes of graphs, such as in [9], [8], and [10].

The distance spectra of digraph products was studied in [4].
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In a digraph Γ, the distance between vertices vi and vj , denoted, dΓ(vi, vj), is the number

of arcs in a shortest path from vi to vj . The distance matrix of a strongly connected digraph Γ,

denoted D(Γ), is the real matrix whose ijth entry is d(vi, vj). Note that unlike for graphs, the

distance matrix of a digraph need not be symmetric. This presents a particular challenge, as many

techniques for graphs rely heavily on the basis of eigenvectors that is guaranteed by symmetry.

Two non-isomorphic digraphs Γ1 and Γ2 are D-cospectral if they have the same D-spectrum.

In this case, Γ1 and Γ2 are called D-cospectral mates. In Section 4.2, the number of digraphs with

a cospectral mate is determined for digraphs on 6 and fewer vertices. It is observed that most

digraphs have a D-cospectral mate through arc reversal and the number of digraphs that have a

D-cospectral mate not accounted for by arc reversal is also determined for 6 and fewer vertices.

Twin vertices are a useful tool in the study of spectra of graphs. They can be used to determine

the eigenvalues of the graph, for more information see [7]. Cospectral constructions have also been

found using twin vertices, such as in [4], which describes a distance Laplacian cospectral construction

using twins. However, all of these proofs utilize symmetry and the basis of eigenvectors it guarantees

and can not be applied directly to digraphs. In a digraph Γ, vertices u and w are called out-twins

if uv ∈ E(Γ) if and only if wv ∈ E(Γ) for all v ∈ V (Γ) such that v 6= u,w. If vu ∈ E(Γ) if

and only if vw ∈ E(Γ) for all v ∈ V (Γ) such that v 6= u,w, then u and w are called in-twins.

Vertices u and w are called twins if they are out-twins and in-twins. If uw,wu ∈ E(Γ), u and w

are doubly adjacent (in/out)-twins and uw,wu 6∈ E(Γ), u and w are non-adjacent (in/out)-twins.

In Section 4.3, (in/out)-twins are used to produce D-cospectral digraphs using generalized cycle

decompositions to compute the distance characteristic polynomial.

The following definitions and notations are standard and will be used throughout. A digraph is

a pair Γ = (V,E) where V = {v1, . . . , vn} is the set of vertices and E is the set of arcs. Each arc

is an ordered pair of two distinct vertices (vi, vj), usually denoted as just vivj , for 1 ≤ i, j ≤ n. A

loop is an arc from a vertex to itself, vivi. Unless otherwise stated, the digraphs we consider will

not have loops. A digraph Γ is strongly connected if for all u, v ∈ V (G), there exists a path from u
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to v. Since the study of distance matrices requires it, all digraphs in this paper are assumed to be

strongly connected unless otherwise stated.

4.2 The number of digraphs with distance cospectral mates

In this section, we will discuss the number of digraphs with a D-cospectral mate. We begin

with the following observation, which explains a large number of instances of D-cospectrality. An

example of such D-cospectral mates is shown in Figure 4.1.

Observation 4.2.1. Let Γ be a strongly regular digraph and let ΓT be the digraph that results from

arc reversal of Γ; i.e. uv ∈ E(ΓT ) if and only if vu ∈ E(Γ). Observe D(ΓT) = D(Γ)T. Therefore,

if Γ and ΓT are non-isomorphic, then they are D-cospectral.

Figure 4.1 Two non-isomorphic digraphs that are D-cospectral by Observation 4.2.1.

Using Sage, the number of digraphs with a D-cospectral mate was computed for digraphs on 6

and fewer vertices [13]. Since many instances of cospectrality can be explained by Observation 4.2.1,

the number of digraphs with a D-cospectral mate not obtained by arc reversal was also computed.

There are no D-cospectral digraphs on 3 or fewer vertices, the results for digraphs on n = 4, 5, 6

vertices are summarized in Table 4.1 and are given as percentages of the total number of strongly

connected digraphs in Table 4.2.

It is worth noting that the percentage of digraphs with D-cospectral mates not obtained by arc

reversal is still quite high. For comparison, the percentage of connected graphs D-cospectral mates

is listed in Table 4.3 for graphs on 10 or fewer vertices (there are no D-cospectral graphs on 6 or

fewer vertices).
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Table 4.1 Number of strongly connected digraphs with a D-cospectral pair
# strongly # with # with cospec mate

n connected digraphs cospec mate not by arc reversal

4 83 48 18

5 5,048 4,643 1,943

6 1,047,008 1,037,797 503,399

Table 4.2 Percentage of strongly connected digraphs with a D-cospectral pair
% with % with cospec mate

n cospec mate not by arc reversal

4 57.8313% 21.6867%

5 91.9770% 38.4905%

6 99.1203% 48.0798%

4.3 Constructions for distance cospectral digraphs using twins

In this section, we will describe a construction that produces sets of D-cospectral digraphs from

a digraph containing (in/out) twins with certain properties. To do this, we will first determine the

distance characteristic polynomial of a digraph in terms of generalized cycle decompositions (see

[3]). For an n× n matrix M = [mij ],

det(M) =
∑
σ∈Sn

(
sgn(σ)

n∏
k=1

mk,σ(k)

)
.

Let ΓM denoted the digraph such that ij is an arc if and only if mij 6= 0. For a permutation σ

that contributes a non-zero value to the above summand, each factor mk,σ(k) corresponds to an arc

in the digraph and exactly n arcs in the digraph will contribute to each product. This collection

of n arcs is a generalized cycle decomposition of ΓM . Each generalized cycle decomposition is a

collection of cycles of length 1 (loops), cycles of length 2 (the arcs ij and ji), and cycles of length

at least 3, such that each vertex in ΓM is in exactly one cycle.

We note that in order to determine the characteristic polynomial of D(Γ) for some digraph Γ,

we will use generalized cycle decompositions of ΓxIn−D(Γ). Since M = xIn − D(Γ) has no zero

entries, ΓxIn−D(Γ) =
←→
K`
n, the complete digraph with loops on every vertex. Furthermore, since

xIn−D(Γ) is not symmetric, there is no need to differentiate between cycles of length 2 and cycles
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Table 4.3 Percent of connected graphs that have a D-cospectral mate
# connected # graphs % of graphs

n graphs with cospec mate with cospec mate

7 853 22 2.5791%

8 11,117 658 5.91886%

9 261,080 25,058 9.5978%

10 11,716,571 1,389,984 11.8634%

of length at least 3. Thus, from here on, we will consider each generalized cycle decomposition of
←→
K`
n to be a collection of loops and cycles.

For a particular generalized cycle decomposition of
←→
K`
n, denoted D, let `(D) be the number of

loops in the decomposition. Let C(D) be the set of arcs contained in cycles in the decomposition

and let e(D) be the number of cycles in the decomposition of even length.

Proposition 4.3.1. For a digraph Γ, the characteristic polynomial of D(Γ) can be written

pD(Γ)(x) =
∑
D

(−1)e(D)+n−`(D)

 ∏
ij∈C(D)

d (vi, vj)

x`(D),

where the sum runs over all generalized cycle decompositions of the complete digraph with loops
←→
K`
n.

Proof. The distance characteristic polynomial is

pD(Γ)(x) =
∑
σ∈Sn

(
sgn(σ)

n∏
k=1

(xIn −D(Γ))k,σ(k)

)
.

Each σ corresponds to a generalized cycle decomposition of
←→
K`
n. For a generalized cycle de-

composition D, each loop contributes (xIn−D(Γ))k,σ(k) = x and each arc ij in a cycle contributes

(xIn − D(Γ))i,j = −d (vi, vj). Note the total number of arcs in cycles is n − `(D). Finally, since

cycles of an even length in D correspond to odd permutations, sgn(σ) = (−1)e(D). Thus,

pD(Γ)(x) =
∑
D

(−1)e(D)x`(D)

 ∏
ij∈C(D)

−d (vi, vj)


=

∑
D

(−1)e(D)+n−`(D)

 ∏
ij∈C(D)

d (vi, vj)

x`(D)

as desired.
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We now apply Proposition 4.3.1 to prove our main result; constructing cospectral digraphs from

a digraph containing twin vertices with certain properties. Theorem 4.3.2 considers digraphs with

doubly adjacent out-twins, an example of this construction is shown in Figure 4.2. Note that in

the following theorem, Γ1 need not be strongly connected because the distance matrix of Γ1 is not

considered.

Figure 4.2 From left to right, example of graphs Γ1, Γ2, and Γ3 as in Theorem 4.3.2.

Theorem 4.3.2. Let Γ1 be a digraph that has doubly adjacent out-twins u and w and a vertex v

such that vu, vw 6∈ E(Γ1). Let Γ2 = Γ1+vu and Γ3 = Γ1+vw. If dΓ1(vi, u) = dΓ2(vi, u) = dΓ3(vi, u)

and dΓ1(vi, w) = dΓ2(vi, w) = dΓ3(vi, w) for all vi ∈ V (Γ1) such that vi 6= v, u, w, and Γ2 and Γ3

are strongly connected and non-isomorphic, then Γ2 and Γ3 are distance cospectral. Furthermore,

if ΓT
2 is not isomorphic to Γ2 and Γ3, then it is D-cospectral to Γ2 and Γ3. If ΓT

3 is not isomorphic

to Γ2 and Γ3, then it is D-cospectral to Γ2 and Γ3.

Proof. Let |V (Γ1)| = n and label the vertices of Γ1 such that

V (Γ1) = {v = v1, u = v2, w = v3, v4, . . . , vn}.

We will show Γ2 and Γ3 are cospectral by showing their characteristic polynomials are the same.

But first, we examine distances in Γ2 and Γ3.

The only way for a vivj path to be shorter in Γ2 or Γ3 than in Γ1 is if the shorter path includes

the new arc, vu or vw. Since u and w are out-twins, a path from vi to vj for j 6= 2, 3 that contains

the arc vu in Γ2 and such a path that contains vw in Γ3 have the same length. Therefore

dΓ2(vi, vj) = dΓ3(vi, vj) for all i 6= 2, 3 and all j 6= 2, 3.
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By assumption,

dΓ2(vi, vj) = dΓ3(vi, vj) for 4 ≤ i ≤ n and j = 2, 3.

Since u and w are doubly adjacent,

dΓ2(vi, vj) = dΓ3(vi, vj) = 1 for i = 2, 3 and j = 2, 3.

Because Γ2 = Γ1 + vu and Γ3 = Γ1 + vw and u and w are doubly adjacent,

dΓ2(v1, v2) = dΓ3(v1, v3) = 1 and dΓ2(v1, v3) = dΓ3(v1, v2) = 2.

Finally, note that because u and w are out-twins,

dΓ2(v2, vi) = dΓ2(v3, vi) = dΓ3(v2, vi) = dΓ3(v3, vi) for all i 6= 2, 3.

Thus, we see the distance matrices of Γ2 and Γ3 can be written as the following block matrices

with vertex partition {{1}, {2, 3}, {4, . . . , n}}.

D(Γ2) =


0 A1 B

C1 E F

G H K

 and D(Γ3) =


0 A2 B

C2 E F

G H K

 ,
where

A1 =

[
1 2

]
, A2 =

[
2 1

]
, C1 =

1

0

 , C2 =

0

1

 , E =

0 1

1 0

 ,
B has dimension 1×n−3, F has dimension 2×n−3, G has dimension n−3×1, H has dimension

n− 3× 2, and K has dimension n− 3× n− 3.

We now turn our attention to the characteristic polynomials ofD(Γ2) andD(Γ3). By Proposition

4.3.1, we can show the polynomials are equivalent by showing

∑
D

(−1)e(D)+n−`(D)

 ∏
ij∈C(D)

dΓ2 (vi, vj)

x`(D) =
∑
D

(−1)e(D)+n−`(D)

 ∏
ij∈C(D)

dΓ3 (vi, vj)

x`(D)

where the sum runs over all generalized cycle decompositions D of the complete digraph with loops
←→
K`
n. First, observe for all D such that v1v2 and v1v3 are not in C(D), dΓ2 (vi, vj) = dΓ3 (vi, vj) for
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all 1 ≤ i, j ≤ n and so

(−1)e(D)+n−`(D)

 ∏
ij∈C(D)

dΓ2 (vi, vj)

x`(D) = (−1)e(D)+n−`(D)

 ∏
ij∈C(D)

dΓ3 (vi, vj)

x`(D).

So we only need consider D such that v1v2 or v1v3 are in C(D). We break such decompositions into

four cases. For all cases, let D′ be any generalized cycle decompositions of the complete digraph

with loops on the remaining vertices. We will use (vi1 vi2 . . . vik) to denote a cycle with arc set

{vi1vi2 , vi2vi3 , . . . , vik−1
vik , vikvi1} for some 2 ≤ k ≤ n and 1 ≤ i1, . . . , ik ≤ n and we will use (vi) to

denote a loop for some 1 ≤ i ≤ n.

Case 1: Consider the generalized cycle decompositions D1 = {(v1 v2 v3 vi1 vi2 . . . vir) ∪ D′} or

D2 = {(v1 v3 v2 vi1 vi2 . . . vir) ∪ D′} for some 0 ≤ r ≤ n − 3 and for 4 ≤ i1, i2, . . . , ir ≤ n. For

this case, since dΓ2 (v1, v2) = dΓ3 (v1, v3), dΓ2 (v2, v3) = dΓ3 (v2, v3) = dΓ3 (v3, v2), dΓ2 (v3, vi) =

dΓ3 (v3, vi) = dΓ3 (v2, vi) for i 6= 2, 3, and dΓ2 (vi, vj) = dΓ3 (vi, vj) for i 6= 1 and j 6= 2, 3, we have

∏
ij∈C(D1)

dΓ2 (vi, vj)

= dΓ2 (v1, v2) dΓ2 (v2, v3) dΓ2 (v3, vi1) dΓ2 (vi1 , vi2) · · · dΓ2

(
vir−1 , vir

)
dΓ2 (vir , v1)

∏
jk∈C(D′)

dΓ2 (vj , vk)

= dΓ2 (v1, v2) dΓ3 (v2, v3) dΓ3 (v3, vi1) dΓ3 (vi1 , vi2) · · · dΓ3

(
vir−1 , vir

)
dΓ3 (vir , v1)

∏
jk∈C(D′)

dΓ3 (vj , vk)

= dΓ3 (v1, v3) dΓ3 (v3, v2) dΓ3 (v2, vi1) dΓ3 (vi1 , vi2) · · · dΓ3

(
vir−1 , vir

)
dΓ3 (vir , v1)

∏
jk∈C(D′)

dΓ3 (vj , vk)

=
∏

ij∈C(D2)

dΓ3 (vi, vj) .

By a similar argument, ∏
ij∈C(D2)

dΓ2 (vi, vj) =
∏

ij∈C(D1)

dΓ3 (vi, vj) .

Furthermore, D1 and D2 have the same number of loops and cycles of even length. Thus, D1 and

D2 together contribute the same quantity to the summand for each digraph Γ2 and Γ3.

Case 2: Consider the generalized cycle decompositions D1 = {(v1 v2 vi1 vi2 . . . vir v3) ∪ D′},

D2 = {(v1 v3 vi1 vi2 . . . vir v2) ∪ D′}, D3 = {(v1 v2) ∪ (vi1 vi2 . . . vir v3) ∪ D′}, or D4 = {(v1 v3) ∪

(vi1 vi2 . . . vir v2) ∪ D′} for some 0 ≤ r ≤ n − 3 and for 4 ≤ i1, . . . , ir ≤ n. For this case, since
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dΓp (v2, vi) = dΓp (v3, vi) for i 6= 2, 3 and p = 2, 3 we have,

∏
ij∈C(D1)

dΓp (vi, vj)

= dΓp (v1, v2) dΓp (v2, vi1) dΓp (vi1 , vi2) · · · dΓp

(
vir−1 , vir

)
dΓp (vir , v3) dΓp (v3, v1)

∏
jk∈C(D′)

dΓp (vj , vk)

= dΓp (v1, v2) dΓp (v3, vi1) dΓp (vi1 , vi2) · · · dΓp

(
vir−1 , vir

)
dΓp (vir , v3) dΓp (v2, v1)

∏
jk∈C(D′)

dΓp (vj , vk)

= dΓp (v1, v2) dΓp (v2, v1) dΓp (vi1 , vi2) · · · dΓp

(
vir−1 , vir

)
dΓp (vir , v3) dΓp (v3, vi1)

∏
jk∈C(D′)

dΓp (vj , vk)

=
∏

ij∈C(D3)

dΓp (vi, vj) .

Note D1 is the union of a cycle of length r + 3 with D′ and D3 is the union of cycles of length

2 and r + 1 with D′. Thus, D3 has one more even cycle than D1 and so (−1)e(D3)+n−`(D) =

−(−1)e(D1)+n−`(D). Therefore,

(−1)e(D1)+n−`(D)
∏

ij∈C(D1)

dΓp (vi, vj) + (−1)e(D3)+n−`(D)
∏

ij∈C(D3)

dΓp (vi, vj) = 0.

By a similar argument,

(−1)e(D2)+n−`(D)
∏

ij∈C(D2)

dΓp (vi, vj) + (−1)e(D4)+n−`(D)
∏

ij∈C(D4)

dΓp (vi, vj) = 0.

Thus, D1, D2, D3, and D4 together contribute nothing to the summand for each digraph Γ2 and

Γ3.

Case 3: Consider the generalized cycle decompositions D1 = {(v1 v2 vi1 vi2 . . . vir) ∪ (v3) ∪D′}

and D2 = {(v1 v3 vi1 vi2 . . . vir)∪ (v2)∪D′} for some 0 ≤ r ≤ n−2 and for 4 ≤ i1, i2, . . . , ir ≤ n. For

this case, since dΓ2 (v1, v2) = 1 = dΓ3 (v1, v3), dΓ2 (v2, vi) = dΓ3 (v2, vi) = dΓ3 (v3, vi) for i 6= 2, 3,

and dΓ2 (vi, vj) = dΓ3 (vi, vj) for i 6= 1 and j 6= 2, 3, we have,
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∏
ij∈C(D1)

dΓ2 (vi, vj)

= dΓ2 (v1, v2) dΓ2 (v2, vi1) dΓ2 (vi1 , vi2) · · · dΓ2

(
vir−1 , vir

)
dΓ2 (vir , v1)

∏
jk∈C(D′)

dΓ2 (vj , vk)

= dΓ2 (v1, v2) dΓ3 (v2, vi1) dΓ3 (vi1 , vi2) · · · dΓ3

(
vir−1 , vir

)
dΓ3 (vir , v1)

∏
jk∈C(D′)

dΓ3 (vj , vk)

= dΓ3 (v1, v3) dΓ3 (v3, vi1) dΓ3 (vi1 , vi2) · · · dΓ3

(
vir−1 , vir

)
dΓ3 (vir , v1)

∏
jk∈C(D′)

dΓ3 (vj , vk)

=
∏

ij∈C(D2)

dΓ3 (vi, vj) .

By a similar argument, ∏
ij∈C(D2)

dΓ2 (vi, vj) =
∏

ij∈C(D1)

dΓ3 (vi, vj) .

Furthermore, D1 and D2 have the same number of loops and cycles of even length. Thus, D1 and

D2 together contribute the same quantity to the summand for each digraph Γ2 and Γ3.

Case 4: Consider the generalized cycle decompositionsD1 = {(v1 v2 vi1 vi2 . . . vir v3 vj1 vj2 . . . vjs)∪

D′}, D2 = {(v1 v3 vi1 vi2 . . . vir v2 vj1 vj2 . . . vjs)∪D′}, D3 = {(v1 v2 vj1 vj2 . . . vjs)∪(vi1 vi2 . . . vir v3)∪

D′}, D4 = {(v1 v3 vj1 vj2 . . . vjs)∪(vi1 vi2 . . . vir v2)∪D′} for some 1 ≤ r ≤ n−3 and 1 ≤ s ≤ n−3 such

that r+ s+ 3 ≤ n and for 4 ≤ i1, . . . , ir, j1, . . . , js ≤ n. For this case, since dΓp (v2, vi) = dΓp (v3, vi)

for i 6= 2, 3 and p = 2, 3 we have,

∏
ij∈C(D1)

dΓp (vi, vj)

= dΓp (v1, v2) dΓp (v2, vi1) dΓp (vi1 , vi2) · · · dΓp

(
vir−1 , vir

)
dΓp (vir , v3)

dΓp (v3, vj1) dΓp (vj1 , vj2) · · · dΓp

(
vjs−1 , vjs

)
dΓp (vjs , v1)

∏
jk∈C(D′)

dΓp (vj , vk)

= dΓp (v1, v2) dΓp (v3, vi1) dΓp (vi1 , vi2) · · · dΓp

(
vir−1 , vir

)
dΓp (vir , v3)

dΓp (v2, vj1) dΓp (vj1 , vj2) · · · dΓp

(
vjs−1 , vjs

)
dΓp (vjs , v1)

∏
jk∈C(D′)

dΓp (vj , vk)

= dΓp (v1, v2) dΓp (v2, vj1) dΓp (vj1 , vj2) · · · dΓp

(
vjs−1 , vjs

)
dΓp (vjs , v1)

dΓp (vi1 , vi2) · · · dΓp

(
vir−1 , vir

)
dΓp (vir , v3) dΓp (v3, vi1)

∏
jk∈C(D′)

dΓp (vj , vk)

=
∏

ij∈C(D3)

dΓp (vi, vj) .
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Note D1 is the union of a cycle of length r + s + 3 with D′ and D3 is the union of cycles of

length s + 2 and r + 1 with D′. If r and s are both even or both odd, then r + s + 3 is odd and

exactly one of s+ 2 or r + 1 is even and the other is odd. If one of r and s are even and the other

is odd, then r + s+ 3 is even and either s+ 2 and r + 1 are both even or both odd. Thus, D3 has

one more or one less even cycle than D1 and so (−1)e(D3)+n−`(D) = −(−1)e(D1)+n−`(D). Therefore,

(−1)e(D1)+n−`(D)
∏

ij∈C(D1)

dΓp (vi, vj) + (−1)e(D3)+n−`(D)
∏

ij∈C(D3)

dΓp (vi, vj) = 0.

By a similar argument,

(−1)e(D2)+n−`(D)
∏

ij∈C(D2)

dΓp (vi, vj) + (−1)e(D4)+n−`(D)
∏

ij∈C(D4)

dΓp (vi, vj) = 0.

Thus, D1, D2, D3, and D4 together contribute nothing to the summand for each digraph Γ2 and

Γ3.

Since all D such that v1v2 and v1v3 are not in C(D) fall into one of these four cases, we have

show that pD(Γ2) = pD(Γ3). Therefore, Γ2 and Γ3 are distance cospectral. The cospectrality of ΓT
2

and ΓT
3 is see by applying Observation 4.2.1.

The analogous result holds for digraphs containing doubly adjacent in-twins with certain prop-

erties.

Theorem 4.3.3. Let Γ be a digraph that has doubly adjacent in-twins u and w and a vertex v

such that uv,wv 6∈ E(Γ). Let Γ2 = Γ + uv and Γ3 = Γ + wv. If dΓ(u, vi) = dΓ2(u, vi) = dΓ3(u, vi)

and dΓ(w, vi) = dΓ2(w, vi) = dΓ3(w, vi) for all vi ∈ V (Γ) such that vi 6= v, u, w, and Γ2 and Γ3 are

strongly connected and non-isomorphic, then Γ2 and Γ3 are distance cospectral. Furthermore, if ΓT
2

is not isomorphic to Γ2 and Γ3, then it is D-cospectral to Γ2 and Γ3. If ΓT
3 is not isomorphic to Γ2

and Γ3, then it is D-cospectral to Γ2 and Γ3.

Proof. Proof is analogous to that of Theorem 4.3.2.
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4.4 Concluding remarks

In this paper, we studied distance cospectrality for digraphs. In Section 4.2, we computed the

number of digraphs with a D-cospectral mate on 6 and fewer vertices and the number of such

digraphs who have a mate not produced by arc reversal. Generalized cycle decompositions were

applied in Section 4.3 to produce distance cospectral constructions for digraphs with (in/out)-twin

vertices. In the future, it would be interesting to apply the same method of determining the distance

characteristic polynomial of a digraph to digraphs with other structural properties.
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CHAPTER 5. GENERAL CONCLUSION

The distance matrix and its variants have been of increasing interest in recent years. Much

work has been focused on bounding the spectral radius of the matrices and finding graphs that

achieve extremal values. Various aspects of cospectrality, including enumerating the number of

graphs with cospectral mates, determining graph parameters that are preserved or not preserved

by cospectrality, and producing cospectral constructions, have been of particular interest.

In Chapter 2, we introduced a new variant of the distance matrix, the normalized distance

Laplacian and derived bounds on its eigenvalues. In contrast to the normalized Laplacian, we

showed that ∂L < 2 for all graphs G on n ≥ 3 vertices. We conjecture that the maximum DL

spectral radius tends towards 2 as n becomes large and that this value is achieved by a family of

graphs, KPKn1,n2,n3 . We also found that the complete graph Kn achieves the minimal spectral

radius and conjecture that is the only such graph.

The preservation of parameters by cospectrality was considered in Chapter 3. Several param-

eters were shown not to be preserved by cospectrality for various matrices. Also, we proved that

transmission regular graphs that are distance cospectral must have the same transmission and

Wiener index. The preservation or non-preservation by cospectrality has not yet been determined

for several parameters and matrices. In particular, it would be interesting to determine if trans-

mission regularity is preserved for D, DQ, and DL. Since no example exhibiting non-preservation

exists on 10 or fewer vertices, it would be useful to find a cospectral construction which produces

a transmission regular and non-transmission regular graph.

Finally, in Chapter 4, distance cospectrality was studied for digraphs. The number of digraphs

with a distance cospectral mate was found for strongly connected digraphs on 6 and fewer vertices.

It was observed that arc reversal produces cospectral digraphs and a cospectral construction was

described that uses twin vertices and is not produced by arc reversal. In the future, it would be
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interesting to apply the method used, computing the distance characteristic polynomial through

generalized cycle decompositions, to digraphs with other structures to produce more cospectral

constructions.
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