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ABSTRACT

Let G be a simple, undirected graph. Positive semidefinite (PSD) zero forcing on G is

based on the following color-change rule: Let W1,W2, . . . ,Wk be the sets of vertices of the k

connected components in G − B (where B is a set of blue vertices). If w ∈ Wi is the only

white neighbor of some b ∈ B in the graph G[B ∪Wi], then we change w to blue. A positive

semidefinite zero forcing set (PSDZFS) is a set of blue vertices that colors the entire graph blue.

The positive semidefinite zero forcing number, denoted Z+(G), is the minimum cardinality of

a positive semidefinite zero forcing set. The PSD propagation time of a PSDZFS B of graph

G is the minimum number of iterations that it takes to color the entire graph blue, starting

with B blue, such that at each iteration as many vertices are colored blue as allowed by the

color-change rule. The minimum and maximum PSD propagation times are taken over all

minimum PSD zero forcing sets of the graph. The PSD propagation time interval of a graph

G is the set of integers [pt+(G), pt+(G) + 1, . . . ,PT+(G)]. It is believed that every integer in

the interval is achievable by some minimum PSDZFS. This thesis develops tools to analyze the

minimum and maximum PSD propagation time, tools for analyzing the PSD propagation time

interval and applies these tools to study the PSD propagation time of many graph families.
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CHAPTER 1. INTRODUCTION

1.1 Overview

In this thesis all graphs will be simple and undirected (precise definitions appear at the

beginning of the Literature Review). Imagine that in a graph G some of the vertices are blue

and the rest of the vertices are white. We say that a blue vertex b can force (or color) a

white vertex w if w is the only white neighbor of b. We can think of this as the blue vertices

having a virus or knowing a rumor and then spreading the virus or rumor to the white vertices.

By iteratively applying this color change rule sometimes we are able to force the entire graph

blue. If this happens we say that our initial set of blue vertices was a zero forcing set. An

interesting question soon arises: what is smallest number of blue vertices that is needed to force

the entire graph blue? This smallest number is called the zero forcing number and we denote

it by Z(G) [2]. A related graph parameter is propagation time. To compute propagation time

we: assume an initial set B forces the entire graph G blue; examine the vertices of V (G)− B

and determine which of them are the only neighbor of some blue vertex, i.e. they can be

forced; perform this initial set of forces simultaneously and say that they occurred at the first

time step; now we repeat on the larger set of blue vertices and continue in this fashion until

the entire graph has been forced blue while keeping track of how many time steps occurred.

This number is called the propagation time (or iteration index) of vertex set B on graph G

and is denoted pt(G,B) (I(G))[18] ([9]). On the surface computing these parameters seems

like an interesting combinatorial optimization problem, which it is. However, they also have

connections to linear algebra and physics. In linear algebra the zero forcing number gives us

a tool to work on a minimum rank problem [23]. See [2], [4], and [15] for an overview of the

minimum rank problem and its connection to the zero forcing number. In physics both the zero
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forcing number and propagation time are used to study controllability of quantum systems [6],

[7], [8], [28]. This thesis focuses on similar graph parameters called the positive semidefinite

zero forcing number [3] and the positive semidefinite propagation time. As was the case with

the zero forcing number, the positive semidefinite zero forcing number is related to a minimum

rank problem and is discussed in much detail in [3], [4], [14], [15] and [25].

1.2 Literature review

Basic graph theory

Graphs arise in many natural settings and can be used to model a range of situations.

Some examples of a graphs that everyone is familiar with are the world wide web or any

social network. Graphs also have a strong bond with linear algebra, which will be exploited

throughout this thesis. We start with some basic definitions, examples and graph families.

A graph is a pair G = (V,E) such that V is nonempty and finite and elements of E are

unordered pairs of distinct elements of V . The elements of V form the vertices of G and the

elements of E form the edges of G. The order of a graph is the number of vertices, written |G|.

The vertex set and edge set of G are denoted V (G) and E(G). An edge can be represented as

the set {u, v} with u, v ∈ V (G) but oftentimes we just write uv. If there is an edge between

vertex v and vertex u then vertex u is a neighbor of vertex v and vice versa, these vertices are

also said to be adjacent to one another. The set of all neighbors of vertex v in graph G is called

the neighborhood of v and is denoted NG(v); when the context is clear we will use N(v). The

number of neighbors that a vertex v has is called the degree of v, denoted deg(v). A degree one

vertex is called a leaf. The smallest degree of any vertex in a graph G is called the minimum

degree, denoted δ(G). The closed neighborhood of vertex v is N [v] = N(v)∪ {v}. A vertex u is

universal if N [v] = V (G). Two vertices u and v are duplicates if N [u] = N [v]. A subgraph H

of G is a graph with V (H) ⊆ V (G) and E(H) ⊆ E(G). The idea of an induced subgraph is also

important. Given a subset S of V (G) the subgraph induced by S, denoted G[S], has vertex set

S and if, for any u, v ∈ S we have uv ∈ E(G), then uv ∈ E(G[S]).
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Example 1.2.1. In Figure 1.1 we have an example of graphG with vertex set {a, b, c, d, e, f, g, h}.

This graph has order 7. Notice that ab ∈ E(G) but ac /∈ E(G). The neighborhood of vertex c is

NG(c) = {d, e, h} (thus deg(c) = 3) and the closed neighborhood is NG[c] = {c, d, e, h}. Vertex

b is an example of a leaf, and δ(G) = 1. G has no universal vertex or duplicate vertex but H,

in Figure 1.4, does have duplicate vertices b and d. In Figure 1.2 we have a subgraph of G that

is not an induced subgraph because edge ch is missing; as another example, G is a subgraph

of H that is not induced. In Figure 1.3 we have the subgraph in G that is induced by vertex

set {c, e, f, g, h}. The graph in Figure 1.3 is also the graph G− {a, b, d} (defined shortly).

a

b

c

d

f

e g

h

Figure 1.1: Graph G.

c

f

e g

h

Figure 1.2

c

f

e g

h

Figure 1.3

a

b

c

d

f

e g

h

Figure 1.4: Graph H.

Sometimes we like to remove vertices from a graph. When this happens we also remove

any edges that were adjacent to the removed vertices. More formally, if S ⊆ V (G) then

G−S := G[V (G)\S]. If S = {v} then we denote the resulting graph as G− v. Similarly, if e is

an edge of graph G then the result of removing edge e is denoted G− e. A path is a sequence

of vertices v1, v2, . . . , vn such that edge vivi+1 exists if 1 ≤ i ≤ n− 1 and no vertex is repeated.

If v1, v2, . . . , vn is a path and vnv1 is also an edge, then we say that the graph has a cycle. A

graph G is connected if there is a path between any u, v ∈ V and is disconnected otherwise. A

connected component W in a graph G is a maximal connected subgraph. A vertex v ∈ V (G) is

a cut vertex if G− v has more connected components that G.

Example 1.2.2. In Figure 1.6 we have removed vertex c and its corresponding edges from

graph G. In Figure 1.7 we have removed edge cd from G. Note that vertex c is a cut vertex

because G− c has two connected components, namely G[{a, b, d}] and G[{e, f, g, h}]. In Figure

1.5 we also see that vertices c, e, f, g, h form a cycle in G and that a path exists between any

two vertices so G is connected. Note that graph H in Figure 1.4 has several cycles.

Many common graph families will be discussed. If G has order n and consists only of a
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a

b

c

d

f

e g

h

Figure 1.5: G.

a

b d

f

e g

h

Figure 1.6: G− c.

a

b

c

d

f

e g

h

Figure 1.7: G− cd

path it is denoted as Pn (Figure 1.8) and if G consists only of a cycle then it is denoted as Cn

(Figure 1.8). A graph with exactly one cycle is unicyclic. If a graph G has no cycles then it

is called a forest and if in addition it is connected it is called a tree (Figure 1.8). A graph G

of order n is complete if every vertex is adjacent to every other vertex; we denote this by Kn

(Figure 1.8).

Figure 1.8: Path P4, cycle C6, tree and complete graph K6, respectively.

Figure 1.9: Wheel W7, complement of K6, complete multipartite K3,2,2 and C3�P2,
respectively.

The union of two graphs G and H is denoted G ∪ H and is the graph with vertex set

V (G) ∪ V (H) and edge set E(G) ∪ E(H). The join of two graphs G and H with disjoint

vertex sets, denoted G + H, is G ∪ H and all edges between vertices of G and H. If u is

a vertex that is not in V (Cn) then we obtain the wheel graph by Cn + u and denote it by

Wn+1 (Figure 1.9); note that u is an example of a universal vertex. The complement of a

graph G, denoted G, has vertex set V (G) = V (G) and edges e ∈ E(G) only if e /∈ E(G)

(Figure 1.9). A complete bipartite graph Km,n is Km + Kn. A complete multipartite graph

is Kp1,p2,...,pn = Kp1 + Kp2 + · · · + Kpn (Figure 1.9). The Cartesian product of graphs G and

H, denoted G�H, has vertex set V (G) × V (H) and has an edge between two vertices if they

are identical in one coordinate and adjacent in the other (Figure 1.9). A hypercube is defined
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iteratively where Q1 = K2 and Qn = Qn−1�K2.

1.2.1 Zero forcing

Now that we have established some basic terminology, we can discuss a graph parameter

called the zero forcing number. Let G be a graph and B ⊆ V (G) be a set of blue vertices and

let the rest of the vertices be white. Then the color change rule is: if a blue vertex b has exactly

one white neighbor w then vertex b forces vertex w to be colored blue, written b→ w. Given an

initial set of blue vertices B we iteratively apply the color change rule until no more vertices can

be forced blue and the set of blue vertices we end up with is called the final coloring (or derived

set. Note that for a given graph G and an initial set of blue vertices B, the final coloring is

unique. If the derived set of B is the entire vertex set of G then we say that B is a zero forcing

set. The fewest number of initial blue vertices needed to force the entire graph blue is called

the zero forcing number and is denoted Z(G). The zero forcing number was introduced in [2]

along with one of its most important relationships (Theorem 1.2.4). Physicists introduced the

same parameter around the same time and referred to it as the infection number of a graph [7],

[8], [28]. It was also shown in [6] that a zero forcing set of a graph also corresponds to control

of a quantum system.

Next we exhibit a relationship between graph theory and linear algebra. Let Sn(R) denote

the real symmetric n × n matrices. For A = [aij ] ∈ Sn(R), the graph of A, denoted G(A), is

the graph with vertices {1, 2, . . . , n} and edges {ij : aij 6= 0 and i 6= j}. The maximum nullity

of a graph G of order n is

M(G) = max{null(A) : A ∈ Sn(R) and G(A) = G}.

The minimum rank of G is

mr(G) = min{rank(A) : A ∈ Sn(R) and G(A) = G}.

Example 1.2.3. To clarify the problem, consider the graph immediately below. The minimum

rank question asks us to find the smallest rank over all matrices associated with the graph (the

zero-nonzero pattern of the matrix immediately below) that are real and symmetric. Of course
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1

2

3

4



? ∗ ∗ ∗
∗ ? 0 0

∗ 0 ? 0

∗ 0 0 ?



checking the rank of all of the possible matrices would take forever, so over the years many

techniques have been developed to help bound the minimum rank.

Notice that finding mr(G) is equivalent to finding M(G) as mr(G) + M(G) = |G|. We

can also observe that upper or lower bounds on M(G) yield lower or upper bounds on mr(G)

and vice versa. For a more thorough discussion of mr(G) and M(G) see [14] and [15]. These

references also include much information on the relationship between the zero forcing number

of a graph and minimum rank/maximum nullity. For an up to date list of graph parameters

related to minimum rank see the American Institute of Mathematics Minimum Rank graph

catalogue [1].

The following theorem was the driving force for the development of the zero forcing number.

Theorem 1.2.4. [2] Let G be a graph. Then M(G) ≤ Z(G).

Some lower bounds on the zero forcing number relate to other graph parameters, namely

minimum degree, path cover number and clique cover number. The path cover number of a

graph G, P (G), is the fewest number of induced paths in G that cover all of the vertices of G.

A clique in a graph G is a subgraph of G that is complete and the fewest number of cliques

required to cover all of the edges of a graph G is called the clique cover number, denoted cc(G).

Theorem 1.2.5. [5] If G is a graph then δ(G) ≤ Z(G).

Theorem 1.2.6. [16] If G is a graph then P(G) ≤ Z(G).

Theorem 1.2.7. [14] |G| − cc(G) ≤ M(G) ≤ Z(G).

A Colin de Verdiére-type parameter is more restrictive than the aforementioned maximum

nullity parameter; in particular it requires that the matrix corresponding to the graph must
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be real, symmetric and satisfy the Strong Arnold Hypothesis. For more about these types of

parameters see [4], [10] and [14]. By using the zero forcing number as an upper bound many

graph families were found to have M(G) = Z(G) thus solving the minimum rank problem

for those graph families. Techniques to find lower bounds on M(G) included constructing a

matrix that corresponded to the graph (sometimes using an orthogonal representation), using

the Colin de Verdiére-type parameter or using the clique cover number. The following is a

non-exhaustive list of the graphs and graph families with M(G) = Z(G) as established in [2]:

• If T is a tree then M(T ) = Z(T ).

• M(Pn) = Z(Pn) = 1.

• M(Cn) = Z(Cn) = 2.

• M(Kn) = Z(Kn) = n− 1.

• The nth hypercube has M(Qn) = Z(Qn) = 2n−1.

• The nth super triangle has M(Tn) = Z(Tn) = n.

• M(Ks�Pt) = Z(Ks�Pt) = s.

• M(Ps�Pt) = Z(Ps�Pt) = min{s, t}.

• M(Cs�Pt) = Z(Cs�Pt) = min{s, 2t}.

• M(Ks�Kt) = Z(Ks�Kt) = st− s− t+ 1.

• M(Cs�Kt) = Z(Cs�Kt) = 2t for s ≥ 4.

• Any graph G with |G| ≤ 6 has M(G) = Z(G) (extended to |G| ≤ 7 in [11]).

Note that there are graphs for which M(G) < Z(G). For example, C5 ◦K1 (the pentasun),

which is a 5-cycle with a leaf appended to each cycle vertex (see Figure immediately below).

In this case we have M(C5 ◦K1) = 2 < 3 = Z(C5 ◦K1) [4].

A block of a graph is a maximal connected subgraph that does not have a cut vertex. A

block-clique graph is a graph whose blocks are all complete graphs. An interval graph is a
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graph G for which we can associate with each vertex v an interval I(v) in the real line such

that two distinct vertices u and v are adjacent if and only if I(u)∩I(v) 6= ∅. The set of intervals

{I(v)}v∈V (G) is called the interval representation for G. A graph is a unit interval graph if it is

an interval graph that has an interval representation in which all intervals have equal length.

Theorem 1.2.8. [20] If G is a block-clique graph, then Z(G) = M(G).

Theorem 1.2.9. [20] If G is a connected unit interval graph then Z(G) = M(G).

Pm�Pn is called a grid graph for obvious reasons. A graph is chordal if the largest induced

cycle has length 3. A triangular grid graph, Pm�rPn, is a grid graph that has been made chordal

by adding a diagonal (in the same direction) of every square of the grid graph.

Theorem 1.2.10. [12] If m ≤ n then Z(Pm�rPn) = M(Pm�r Pn) = m.

A characterization for Z(G) = 1 follows quickly from the fact that the minimum rank of a

graph G of order n is n − 1 if and only if G = Pn and that either leaf of the path is a zero

forcing set [14]. Characterizations for Z(G) = 2 and Z(G) = |G| − 1 were discovered by Row.

Observation 1.2.11. Z(G) = 1 if and only if G = Pn.

A graph G is a graph on two parallel paths if there exist two independent induced paths of

G that cover all the vertices of G and such that the graph can be drawn in the plane in such

a way that the paths are parallel and edges (drawn as segments, not curves) between the two

paths do not cross [21].

Theorem 1.2.12. [26] Z(G) = 2 if and only if G is a graph on two parallel paths.

Theorem 1.2.13. [26] Z(G) = |G| − 1 if and only if G = Kn.
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Row also established the following results about cacti. A cactus is a graph such that every

block is either a cycle or an edge. Another way to think of this is in a cactus graph any two

cycles share at most one vertex.

Theorem 1.2.14. [27] Let G be a cactus. Then P(G) = Z(G).

Theorem 1.2.15. [27] Let G be a cactus in which each cycle has three vertices, an even number

of vertices, or a vertex with only two neighbors. Then Z(G) = M(G).

1.2.2 Standard propagation time

Recall that the propagation time is how long it takes an initial set of blue vertices to force

(or color) the entire graph blue. The propagation time of a zero forcing set was introduced in

[9] and [18]. The idea is that at each iteration of the zero forcing algorithm we look at the

current set of blue vertices and determine which forces can occur independently and we say

that they all occur at the same ‘time step.’ More precisely, let G = (V,E) be a graph and B a

zero forcing set of G. Define B(0) = B, and for t ≥ 0, B(t+1) is the set of vertices w for which

there exists a vertex b ∈
t⋃

s=0

B(s) such that w is the only neighbor of b not in

t⋃
s=0

B(s). The

propagation time of B in G, denoted pt(G,B) is the smallest integer t0 such that V =

t0⋃
t=0

B(t).

The minimum propagation time, pt(G), of a graph G is ‘fastest’ that G can be forced using

a minimum zero forcing set and the maximum propagation time, PT(G), is the ‘slowest’ that a

graph can be forced using a minimum zero forcing set. Formally,

pt(G) = min{pt(G,B) |B is a min ZFS of G} and

PT(G) = max{pt(G,B) |B is a min ZFS of G}.

The propagation time interval of a graphG is [pt(G),PT(G)] = [pt(G), pt(G)+1, . . . ,PT(G)−

1,PT(G)]. Based on a few examples, it was asked if this interval was always full, i.e. every inte-

ger in the interval could be realized as the propagation time of some minimum zero forcing set.

An example was soon discovered that this was not the case. A smaller example, Figures 1.10 -
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Figure 1.10: pt(G,B) = 6 Figure 1.11: pt(G,B) = 6

Figure 1.12: pt(G,B) = 4 Figure 1.13: pt(G,B) = 4

1.13, shows all of the minimum zero forcing sets for a graph and their associated propagation

times. Note that we cannot achieve a propagation time of 5.

Some initial observations are based on the fact that at least one force must occur at each

time step and that the maximum number of forces that can occur at any time step is based

on the number of initial blue vertices. The propagation time of a graph is referred to as the

iteration index, denoted I(G), in [9]. In that paper the propagation time (iteration index)

several graph families were analyzed.

Observation 1.2.16. [9],[18] Let G be a graph. Then

|G| − Z(G)

Z(G)
≤ pt(G) and PT(G) ≤ |G| − Z(G).

An efficient zero forcing set B of a graph G has the property that B is a minimum zero

forcing set and pt(G,B) = pt(G). If we define Eff(G) to be the set of all efficient zero forcing

sets we have the following result, which says that we can always find more than one minimum

zero forcing set that realizes the minimum propagation time.

Theorem 1.2.17. [18] If G is a connected graph of order greater than one then |Eff(G)| ≥ 2.

Results on extreme propagation time have also been explored. Proposition 1.2.18, Lemma

1.2.19 and Lemma 1.2.20 use the characterization for Z(G) = 1 and the fact that at least one

force must occur at each time step.

Proposition 1.2.18. [18] For a graph G the following are equivalent:

1. pt(G) = |G| − 1.

2. PT(G) = |G| − 1.
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3. Z(G) = 1.

4. G is a path.

Lemma 1.2.19. [18] Let G be a disconnected graph. Then the following are equivalent.

1. pt(G) = |G| − 2.

2. PT(G) = |G| − 2.

3. G = Pn−1∪̇P1.

Lemma 1.2.20. [18] For a tree G, PT(G) = |G| − 2 if and only if G has one degree 3 vertex

that has two leaves attached to it. The graph K1,3 is the only tree with pt(G) = |G| − 2.

The analysis of non-tree connected graphs with pt(G) = |G|−2 was much more complicated.

Any connected graph G that has a cycle and pt(G) = |G| − 2 must have Z+(G) = 2 thus G is

a graph on two parallel paths, but there are further restrictions.

Observation 1.2.21. [18] If G is one of the graphs in Figure 1.14 then pt(G) < |G|−2 because

the black vertices are a minimum zero forcing set B with pt(G,B) < |G| − 2.

Figure 1.14: Graphs on two parallel paths with minimum zero forcing set B and
pt(G,B) < |G| − 2 where dashed vertices and edges may be absent or repeated.

A graph on two parallel paths P1 and P2 is a zigzag graph if it satisfies the following

conditions:

1. There is a path Q = (z1, z2, . . . , z`) that alternates between the two paths P1 and P2 such

that:

(a) z2i−1 ∈ V (P1) and z2i ∈ V (P2) for i = 1, . . . ,

⌊
`+ 1

2

⌋
;
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(b) zj comes before zj+2 in their corresponding path

2. Every edge of G is from P1, P2, Q or is an edge of the form zjw where 1 < j <

`, w is in the opposite path as zj , and zj−1 comes before w comes before zj+1.

Theorem 1.2.22. [18] Let G be a graph. Then pt(G) = |G| − 2 if and only if G is one of the

following graphs.

1. Pn−1∪̇P1.

2. K1,3.

3. A zigzag graph of order ` such that the following conditions are satisfied.

(a) G is not isomorphic to the graphs shown in Figure 1.14.

(b) deg(first(P1)) > 1 or deg(first(P2)) > 1 (both paths cannot begin with degree one

vertices).

(c) deg(last(P1)) > 1 or deg(last(P2)) > 1 (both paths cannot end with degree one ver-

tices).

(d) z2 6= first(P2) or z2 ∼ next(z1).

(e) z`−1 6=last(path(z`−1)) or z`−1 ∼prev(z`).

After studying high propagation time, looking at low propagation time is a natural step.

Observation 1.2.23. [18] For a graph G the following are equivalent.

1. pt(G) = 0.

2. PT(G) = 0.

3. Z(G) = |G|.

4. G has no edges.

Suppose H1 = (V1, E1) and H2 = (V2, E2) are graphs of equal order and µ : V1 → V2 is a

bijection. Define the matching graph (H1, H2, µ) to be the graph constructed as the disjoint

union of H1, H2 and the perfect matching between V1 and V2 defined by µ.
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Theorem 1.2.24. [18] Any two of these conditions imply the third.

1. |G| = 2 Z(G).

2. pt(G) = 1.

3. G is a matching graph.

The predictable structure of Kn was exploited for the next result.

Theorem 1.2.25. [18] Let |H| = n and µ be a bijection of vertices of H and Kn with µ acting

on the vertices of H. Then pt((H,Kn, µ)) = 1 if and only if H is connected.

Next we see that a complete characterization of minimum zero forcing sets helps analyze

the iteration index.

Observation 1.2.26. [9]

1. pt(Kn) = 1 for n ≥ 2.

2. pt(Pn) = n− 1 for n ≥ 2.

3. pt(Cn) =

⌈
n− 2

2

⌉
for n ≥ 3.

4. pt(K1,q) = 2 for q ≥ 2, pt(Kp,q) = 1 for p, q ≥ 2.

The next result takes advantage of the extreme bounds on the iteration index and finding

an efficient minimum zero forcing set.

Theorem 1.2.27. [9]

1. For t ≥ s ≥ 2 pt(Ps�Pt) = t− 1.

2. For s, t ≥ 2 pt(Ks�Pt) = t− 1.

3. For s ≥ 3 and t ≥ 2 pt(Cs�Pt) =


⌈
s− 2

s

⌉
if s ≥ 2t

t− 1 else

.

4. For s ≥ 4 and t ≥ 2 pt(Cs�Kt) =

⌈
s− 2

2

⌉
.
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Theorem 1.2.28. [9] For s, t ≥ 3 pt(Ks�Kt) = 2.

The next set of bounds are obtained by exhibiting a zero forcing sets that realize the given

bound. The bounds are thought to be tight.

Theorem 1.2.29. [9] For t ≥ s ≥ 2 pt(Ps�rPt) ≤ 2t+ s− 4.

Theorem 1.2.30. [9] For s, t ≥ 2 pt(Ps � Pt) ≤ s+ t− 3.

Here is an example of why nicely structured graphs are some of the first to be analyzed,

namely their minimum zero forcing sets can be characterized and, usually, once you have a

zero forcing set the propagation time is easily computed. For 2 ≤ k1 ≤ k2 ≤ · · · ≤ kt, let

B = (k1, k2, . . . , kt) be a bouquet of t ≥ 2 circles C1, C2, . . . , Ct with a cut vertex v where ki is

the number of vertices in Ci − {v}, so the ith cycle is Cki+1.

Theorem 1.2.31. [9] For a bouquet of t circles B = (k1, k2, . . . , kt), Z(B) = t+ 1.

Here a clever choice of zero forcing set yields the lowest propagation time.

Theorem 1.2.32. [9] For a bouquet of t circles B = (k1, k2, . . . , kt), ki−1 ≤ ki, t ≥ 2 and

ki ≥ 2 for all i then pt(B) =

⌈
kt + kt−1

2

⌉
− 1.

1.2.3 Positive semidefinite zero forcing

Like the standard zero forcing number, the positive semidefinite zero forcing number is

a graph parameter that corresponds to a color change rule and was also developed to study

minimum rank problems. We start with the positive semidefinite color change rule. In a graph

G where some vertices are blue (call this set B) and the rest are white, the positive semidefinite

color change rule is: Let W1,W2, . . . ,Wk be the sets of vertices of the k connected components

in G−B (note we can have k = 1). If w ∈Wi is the only white neighbor of some b ∈ B in the

graph G[B ∪Wi], then we change w to blue, say b forces w and write b→ w. Given an initial

set of blue vertices B, we say the final coloring (or derived set) of B is the set of blue vertices

that result from applying the positive semidefinite color change rule until no more forces are

possible. Note that for a given graph G and an initial set of blue vertices B, the final coloring
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is unique. A positive semidefinite zero forcing set (PSDZFS) of a graph G is a set of vertices

B such that the final coloring of B is V (G). The positive semidefinite zero forcing number of a

graph G, denoted Z+(G), is the minimum of |B| over all positive semidefinite zero forcing sets

B ⊆ V (G).

M+(G) = max{null(A) : A ∈ Sn(R) is positive semidefinite and G(A) = G}.

The positive semidefinite minimum rank of G is

mr+(G) = min{rank(A) : A ∈ Sn(R) is positive semidefinite and G(A) = G}.

One of main applications of the positive semidefinite zero forcing number is that it is an

upper bound on the positive semidefinite maximum nullity of a graph [3]. Further, mr+(G) +

M+(G) = n so n−Z+(G) is a lower bound on positive semidefinite minimum rank. To establish

this relationship we must first discuss orthogonal representations and the OS-number of a graph.

An orthogonal representation of a graph G with vertex set {v1, v2, . . . , vn} is a set of vectors

{~v1, ~v2, . . . , ~vn} in R with the relationship: ~vi·~vj = 0 if vivj /∈E(G) and ~vi·~vj 6= 0 if vivj ∈E(G). It

is important to note that if we say matrixX = [~v1, ~v2, . . . , ~vn], thenX∗X is positive semidefinite,

has rank equal to dim(span{~v1, ~v2, . . . , ~vn}) and has G(X) = G.

The OS number of a graph was developed in [17], using orthogonal representations of graphs,

and it was shown to give a lower bound on the positive semidefinite minimum rank of a graph.

Let G be a graph and S = {v1, v2, . . . , vm} be an ordered set of vertices of G. Denote by

Gk the subgraph of G induced by v1, . . . , vk for each k, 1 ≤ k ≤ m. Let Hk be the connected

component of Gk containing vk. If for each k, 1 ≤ k ≤ m there exists wk ∈ V(G), wk 6= v` for

` ≤ k, wkvk ∈ E(G), wkvs /∈ E(G) for all vs ∈ V(Hk) with s 6= k, then S is called an ordered

subgraph OS-set of vertices, or an OS-set. The OS-number of a graph G, denoted OS(G), is

defined to be the maximum of |S| over all OS-sets S of G. The OS-number can be related to

several well known graph parameters.

Theorem 1.2.33. [17] Let G be a connected graph and let S be an OS-set in G. Then |S| ≤

mr+(G). In particular, OS(G) ≤ mr+(G).

Theorem 1.2.34. [17] If G is connected and chordal then OS(G) = mr+(G) = cc(G).
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Theorem 1.2.35. [22] Let G be a connected graph. Then OS(G) ≤ |G| − δ(G).

There is also a strong connection between the OS-number and the positive semidefinite zero

forcing number of a graph; in particular they complement one another.

Theorem 1.2.36. [3] For any graph G = (V,E) and any OS-set S, V \S is a positive semidef-

inite zero forcing set for G, and for any positive semidefinite zero forcing set X of G, there is

an order that makes V \X an OS-set for G. Thus Z+(G) +OS(G) = |G|.

When we combine Theorem 1.2.35 and 1.2.36 we get Corollary 1.2.37.

Corollary 1.2.37. [3] For every graph G, δ(G) ≤ Z+(G).

Theorem 1.2.33 and 1.2.36 can be used to establish 1.2.38 but an alternate technique using

the column inclusion principle is used. A matrix A = [aij ] has the column inclusion principle

if any vector column of the form



ai1j

ai2j
...

aikj


is in the column space of the principal submatrix

A[{i1, i2, . . . , ik}] (which is the matrix obtained by keeping only the intersection of rows and

columns {i1, i2, . . . , ik}).

Theorem 1.2.38. [3] For any graph G, M+(G) ≤ Z+(G).

The positive semidefinite zero forcing number has been used to establish the maximum

nullity of several graph families. One of the first applications of Theorem 1.2.38 was on graph

products. It can be observed that a set of vertices associated with the same positive semidefinite

zero forcing set in each copy of G or H is a positive semidefinite zero forcing set for G�H. This

result can be applied immediately and effectively to products with trees because it is readily

shown that if T is a tree then Z+(T ) = 1.

Proposition 1.2.39. [3] For all graphs G and H, Z+(G�H) ≤ min{Z+(G)|H|,Z+(H)|G|}.

Corollary 1.2.40. [3] If T is a tree and G is a graph then Z+(T�G) ≤ |G|.

In particular, this result is used to show that M+(T�Kr) = Z+(T�Kr) by constructing a

matrix that corresponds to T�Kr with nullity r.
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Theorem 1.2.41. [3] If T is a tree of order at least 2, then M+(T�Kr) = Z+(T�Kr) = r.

Results from [22] tell us that the Möbius ladder on 8 vertices, V8, has M+(V8) = 3 < 4 =

Z+(V8) (see Figure 1.15).

Figure 1.15: V8

For the analysis of many more graph families and the development of more PSD zero forcing

numbers see [25].

Some OS-number results from [22] can be combined with Theorem 1.2.36, to help establish

corresponding results for Z+.

Corollary 1.2.42. [22] Let G be a connected graph. For each v ∈ V (G) there exist OS-sets S

and S′ such that OS(G) = |S| = |S′| and v ∈ S but v /∈ S′.

Theorem 1.2.43. [13] If G is a graph and v ∈ V (G), then there exist minimum positive

semidefinite zero forcing sets B1 and B2 such that v ∈ B1 and v /∈ B2.

Theorem 1.2.44. [22] If G is a connected graph with cut vertex v and G1 and G2 are the

connected components of G− v then OS(G) = OS(G1 ∪ {v}) +OS(G2 ∪ {v}).

An induction proof shows that if G is connected with cut vertex v and G1, G2, . . . , Gk are

the connected components of G − v then OS(G) =

k∑
i=1

OS(Gi ∪ {v}). This leads to the cut-

vertex reduction formula for Z+. The cut vertex reduction formula is very useful for computing

Z+ since, like most graph parameters, Z+ is much easier to compute on smaller graphs.

Theorem 1.2.45. [13] If G is connected with cut vertex v and G1, G2, . . . , Gk are the connected

components of G− v then

Z+(G) =

k∑
i=1

Z+(Gi ∪ {v}) + k − 1.
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Corollary 1.2.46. [13] Suppose H is a graph, T is a tree and G is a graph in which H and T

intersect at a single vertex, then Z+(G) = Z+(H).

The graph complement conjecture for graph parameter β, denoted GCCβ, is β(G)+β(G) ≥

|G| − 2. By first showing that the GCC for tree-width was true and noticing that tree-width is

a lower bound on Z+ [4] we get GCCZ+ .

Corollary 1.2.47. [13] For any graph G Z+(G) + Z+(G) ≥ |G| − 2.

Graphs with very high and very low positive semidefinite zero forcing numbers were also

characterized in [13]. Using M+(G) = 1 if and only if G is a tree [19] if and only if Z+(G) = 1,

M+(G) ≤ Z+(G) and that any single vertex is a positive semidefinite zero forcing set for a tree

we get Theorem 1.2.48.

Theorem 1.2.48. [3],[19] Let G be a graph. The following are equivalent:

1. M+(G) = 1.

2. Z+(G) = 1.

3. G is a tree.

A contraction of edge e = {u, v} is obtained by identifying vertices u and v, replacing any

multiple edges by single edges, and deleting any loops that occur. The graph obtained by

contracting edge e in graph G is denoted G/e. A minor of G is obtained by a series of edge

deletions, vertex deletions and/or edge contractions.

Theorem 1.2.49. [13] Let G be a graph. The following are equivalent.

1. M+(G) = 2.

2. Z+(G) = 2.

3. Either

(a) G is a disjoint union of trees, or
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Figure 1.16: Supertriangle T3.

(b) G is connected, exactly one block of G has a cycle, and G does not have a K4 or T3

minor. T3 is shown in Figure 1.16.

Using the characterizations for Z+(G) = 1 and Z+(G) = 2 we readily have information for

Z+(G) = 3.

Corollary 1.2.50. [13] If Z+(G) ≤ 3 then Z+(G) = M+(G).

The highest positive semidefinite zero forcing numbers are quite easy to characterize.

Observation 1.2.51. Let G be a graph. The following are equivalent.

1. M+(G) = |G|.

2. Z+(G) = |G|.

3. G = Kn.

Observation 1.2.52. Let G be a graph. The following are equivalent.

1. M+(G) = |G| − 1.

2. Z+(G) = |G| − 1.

3. G = Kn ∪Ks.

The next result uses the fact that for an induced subgraph H of G we have |H| −Z+(H) ≤

|G| − Z+(G) and that |H| − Z+(H) = 3 for graphs P4, K1,3, P3 ∪K2, 3K2, and the previous

two results.

Theorem 1.2.53. [13] Let G be a graph. The following are equivalent.

1. M+(G) ≥ |G| − 2.
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2. Z+(G) ≥ |G| − 2.

3. G has no induced P4,K1,3, P3 ∪K2, 3K2.

The effects of graph operations have also been studied. In particular, we define z+v (G) =

Z+(G) − Z+(G − v) for vertex v ∈ V (G) and similarly z+e (G) = Z+(G) − Z+(G − e) for edge

e ∈ E(G).

Theorem 1.2.54. [13] Let G be a graph with vertex v. Then Z+(G − v) ≥ Z+(G) − 1 so

z+v (G) ≤ 1.

There is no lower bound on z+v (G) as seen by letting s get large in the star K1,s. There is a

useful result about duplicate vertices, in particular the removal of one duplicate vertex always

reduces the positive semidefinite zero forcing number by one.

Theorem 1.2.55. [13] If v and w are duplicate vertices in connected graph G with |G| ≥ 3,

then Z+(G− v) = Z+(G)− 1.

Theorem 1.2.56. [13] Let G be a graph with edge e. Then −1 ≤ z+e (G) ≤ 1.

Theorem 1.2.57. [13] Let G be a graph with edge e ∈ E(G). Then Z+(G)− 1 ≤ Z+(G/e).

The subdivision of edge e = uv of G is denoted Ge, is the graph formed by removing edge

e and adding a new vertex w that is adjacent to both u and v.

Theorem 1.2.58. [13] Let G be a graph and e ∈ E(G). Then Z+(Ge) = Z+(G) and any

positive semidefinite zero forcing set for G is a positive semidefinite zero forcing set for Ge.

1.3 Organization

This dissertation is organized in the format of a dissertation containing journal papers.

In the Introduction basic terminology is discussed and then a literature review discusses the

history of the problem and brings the reader up to date with the current state of knowledge.

Chapter 2 contains the paper “Positive semidefinite propagation time” [30] submitted to

Discrete Applied Mathematics. Recall that in [9] and [18] the propagation time is related to the
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standard zero forcing color change rule. In Chapter 2 we explore positive semidefinite propaga-

tion time, which is related to the PSD zero forcing number. Many tools are developed to find

both minimum PSD propagation time, pt+(G), and maximum PSD propagation time, PT+(G).

The paper first looks at the PSD propagation time interval [pt+(G), pt+(G) + 1, . . . ,PT+(G)],

which is of interest because it is believed that the interval is full, which is not true for standard

propagation time. Next the paper analyzes some well known graph families and determines

minimum and maximum propagation time for them. The last part of the paper starts to

characterize graphs with extreme propagation times 0, 1, |G| − 1 and |G| − 2.

Chapter 3 contains the paper “Computing positive semidefinite minimum rank for small

graphs” [24], which has been accepted to Involve, A Journal of Mathematics. In the paper a

survey of current graph parameters related to positive semidefinite minimum rank and positive

semidefinite zero forcing number are discussed. These parameters are then implemented in the

mathematical software SAGE [29] and the program is able to establish that M+(G) = Z+(G)

for all but 13 graphs of order 7 or less. Orthogonal representations were used on the remaining

13 graphs and it was established that all graphs of order 7 or less have M+(G) = Z+(G). At

the time of submission it was known that there was a graph on 8 vertices with M+(G) < Z+(G)

but it was not known if it was the smallest such graph. The paper was authored by Nathan

Warnberg and fellow graduate student Steven Osborne. It is included since it was the author’s

first independent research experience and helped introduce him to positive semidefinite zero

forcing.

Chapter 4 is for general conclusions and summary of the dissertation. It also includes

suggestions for areas of future research.
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CHAPTER 2. POSITIVE SEMIDEFINITE PROPAGATION TIME

A paper submitted to Discrete Applied Mathematics.

Nathan Warnberg

Abstract

Let G be a simple, undirected graph. Positive semidefinite (PSD) zero forcing on G is

based on the following color-change rule: Let W1,W2, . . . ,Wk be the sets of vertices of the k

connected components in G−B (where B is a set of blue vertices). If w ∈Wi is the only white

neighbor of some b ∈ B in the graph G[B∪Wi], then we change w to blue. A minimum positive

semidefinite zero forcing set (PSDZFS) is a set of blue vertices that colors the entire graph blue

and has minimum cardinality. The PSD propagation time of a PSDZFS B of graph G is the

minimum number of iterations that it takes to color the entire graph blue, starting with B

blue, such that at each iteration as many vertices are colored blue as allowed by the color-

change rule. The minimum and maximum PSD propagation times are taken over all minimum

PSD zero forcing sets of the graph. It is conjectured that every propagation time between the

minimum and maximum propagation time is attainable by some minimum PSDZFS (this is not

the case for the standard color-change rule). Tools are developed that aid in the computation

of PSD propagation time. Several graph families and graphs with extreme PSD propagation

times (|G| − 2, |G| − 1, 1, 0) are analyzed.

2.1 Positive semidefinite propagation time
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The standard zero forcing number was introduced in [1] to aid in the study of minimum

rank/maximum nullity problems. It was also studied independently by physicists, where it is

known as graph infection or graph propagation in [4] and [13] respectively. The propagation

time of a zero forcing set is defined as the number of iterations of the color change rule,

coloring as many vertices per iteration as possible, needed to force an entire graph to be blue.

Propagation time is implicit in [4] and explicit in [13] and is used to measure the time needed

to gain control of a quantum system. In [7] and [9] propagation time is explored for numerous

graph families as well as graphs that realize high and low propagation time. A natural extension

of zero forcing is positive semidefinite zero forcing. Similar to zero forcing, positive semidefinite

zero forcing was introduced to aid in the study of minimum rank/maximum nullity problems

[2]. This paper takes a natural step and explores positive semidefinite propagation time. The

current section introduces basic definitions and tools, which we will use throughout the paper.

Section 2.2 investigates the positive semidefinite propagation time interval, which we conjecture

is full for all graphs even though this is not the case for standard propagation time. Section

2.3 determines the positive semidefinite propagation time for some well known graph families.

Section 2.4 investigates high and low positive semidefinite propagation times.

In this paper a graph is simple (no loops or multiple edges), finite and undirected. In a

graph G where some vertices are blue (call this set B) and the rest are white, the positive

semidefinite color change rule is: Let W1,W2, . . . ,Wk be the sets of vertices of the k connected

components in G−B (note we can have k = 1). If w ∈Wi is the only white neighbor of some

b ∈ B in the graph G[B ∪Wi], then we change w to blue, say b forces w and write b → w.

Given an initial set of blue vertices B we say the final coloring (or derived set) of B is the set

of blue vertices that result from applying the positive semidefinite color change rule until no

more forces are possible. Note that for a given graph G and an initial set of blue vertices B,

the final coloring is unique. A positive semidefinite zero forcing set (PSDZFS) of a graph G

is a set of vertices B such that the final coloring of B is V (G). The positive semidefinite zero

forcing number of a graph G, denoted Z+(G), is the minimum |B| over all positive semidefinite

zero forcing sets B ⊆ V (G).

Let Sn(R) denote the real symmetric n × n matrices. For A = [aij ] ∈ Sn(R), the graph of
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A, denoted G(A), is the graph with vertices {1, 2, . . . , n} and edges {ij : aij 6= 0 and i 6= j}.

The maximum positive semidefinite nullity of a graph G of order n is

M+(G) = max{null(A) : A ∈ Sn(R) is positive semidefinite and G(A) = G}.

The positive semidefinite minimum rank of G is

mr+(G) = min{rank(A) : A ∈ Sn(R) is positive semidefinite and G(A) = G}.

One of the main applications of the positive semidefinite zero forcing number is that it

is an upper bound on the positive semidefinite maximum nullity of a graph [2]. Further,

mr+(G) +M+(G) = n so n− Z+(G) is a lower bound on positive semidefinite minimum rank.

Definition 2.1.1. Let G = (V,E) be a graph and B a PSDZFS for G. Define B
(0)
+ = B.

For t ≥ 0, let Wt = {Wt1 ,Wt2 , . . . ,Wtm} be the set of vertex sets of connected components of

G−
t⋃

s=0

B
(s)
+ . Then B

(t+1)
+ is the set of vertices w such that w ∈Wti , for some i ∈ {1, 2, . . . ,m},

and w is the only white neighbor of some b ∈
t⋃

s=0

B
(s)
+ in the graph G

[
Wti

⋃(
t⋃

s=0

B
(s)
+

)]
.

The positive semidefinite propagation time of B in G, denoted by pt+(G,B), is the smallest

integer t0 such that V (G) =

t0⋃
t=0

B
(t)
+ .

Definition 2.1.2. The minimum positive semidefinite (PSD) propagation time of G is

pt+(G) = min{pt+(G,B) : B is a minimum PSDZFS of G}.

Definition 2.1.3. The maximum PSD propagation time of G is

PT+(G) = max{pt+(G,B) : B is a minimum PSDZFS of G}.

Definition 2.1.4. If G is a graph then we say a minimum PSDZFS B is efficient if pt+(G,B) =

pt+(G).

Notice that if B and B′ are PSDZF sets of a graph G and B ⊆ B′ then
⋃t
i=0B

(i)
+ ⊆⋃t

i=0B
′(i)
+ and thus pt+(G,B′) ≤ pt+(G,B). However, the question was raised for standard

zero forcing, as well as positive semidefinite zero forcing, as to whether a there is a graph with

a non-minimum PSDZFS that has slower propagation time than every minimum PSDZFS. The
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question was answered positively for standard zero forcing in [? ]. The graph in Figure 2.1

answers the question positively for positive semidefinite zero forcing. Observe that Z+(G) = 3

and PT+(G) = 3 e.g. using B = {a, f, g}. However {a, b, c, f} has a propagation time of 4.

c

a

b

d

e

f

g

h

Figure 2.1: Graph G

As in [9] we will define a set of forces instead of the more often used chronological list of

forces since when studying propagation time many forces occur simultaneously. Let G be a

graph with PSDZFS B. At each time step perform as many forces as possible and as each force

occurs put it into a set of forces F . For each b ∈ B define Vb to be the set of vertices y such

that there is a sequence of forces b = v1 → v2 → · · · → vk = y in F (the empty sequence is

permitted). The forcing tree Tb is the induced subgraph G[Vb]. The forcing tree cover (for the

set of forces F) is T = {Tb | b ∈ B}. An optimal forcing tree cover is a forcing tree cover from

a set of forces of a minimum PSDZFS [8].

Example 2.1.5. In this example we illustrate some of the previous definitions.

a b

c

d e

f g

Figure 2.2: The original graph G.

a b

c

d e

f g

Figure 2.3: An optimal forcing tree cover
T .

First observe that Z+(G) = 3 and B = {a, b, g} is a minimum PSDZFS. Then B
(0)
+ =

{a, b, g}, B(1)
+ = {c}, B(2)

+ = {d, e}, B(3)
+ = {f}. Thus pt+(G,B) = 3. One possible set of
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forces is F = { a → c, c → d, c → e, g → f}. We also have pt+(G) = 2, e.g. using {a, c, g},

and PT+(G) = 3.

The following observation allows us to concentrate, for the most part, on connected graphs.

Observation 2.1.6. If G is disconnected with connected components C1, C2, . . . , Ck, then

pt(G) = max{pt(Ci)}, PT(G) = max{PT(Ci)}, pt+(G) = max{pt+(Ci)} and PT+(G) =

max{PT+(Ci)}.

LetG be a graph with vertex set V (G) and edge set E(G). If U ⊆ V (G) then the complement

of U is U = V (G)\U . A trivial graph has no edges, i.e. is a set of isolated vertices. The degree

of a vertex v is the number of vertices that are adjacent to v, namely deg(v) = {u ∈ V (G) :

uv ∈ E(G)}. A vertex u is a universal vertex in a graph G if deg(u) = |G| − 1. A cut vertex is

a vertex whose removal would disconnect the graph. A cut set is a vertex set whose removal

would disconnect the graph. The neighborhood of a vertex v in graph G, denoted NG(v) or

N(v), is the set of vertices adjacent to v. The closed neighborhood of v is N [v] = N(v) ∪ {v}.

A subset of D ⊆ V (G) is a dominating set if N [D] :=
⋃
v∈D

N [v] = V (G). The distance between

vertices u and v, d(u, v), is the length of the shortest path between u and v in G.

The complete graph on n vertices is denoted Kn and is the graph where N [v] = V (G) for

every vertex v in G. A graph is bipartite on n+m vertices if V (G) can be partitioned into two

sets of cardinality n and m such that edges only occur between the two sets and not within the

two sets. A bipartite graph G = (V +W,E), |V | = n, |W | = m, is complete bipartite, denoted

Kn,m, if edge vw exists for every v ∈ V and w ∈ W . A star on n + 1 vertices is a complete

bipartite graph of the form K1,n.

Definition 2.1.7. Let G be a graph and B a PSDZFS with pt+(G,B) = t. We will call

the t + 1-tuple (|B(0)
+ |, |B

(1)
+ |, . . . , |B

(t)
+ |) the forcing list sequence of B and will denote it by

FLS(G,B).

In Example 2.1.5 FLS(G,B) = (3, 1, 2, 1).

Remark 2.1.8. pt+(G,B) is equal to one less than the length of FLS(G,B) so minimizing

or maximizing one will minimize or maximize the other. Also, the sum of the elements in

FLS(G,B) is |G|.
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Definition 2.1.9. Let G be a graph and U, V ⊆ V (G) and v ∈ V (G). Define the distance

from a set U to a vertex v as d(U, v) = min{d(u, v)|u ∈ U} and the distance between two sets

U, V ⊆ V (G) as max{d(U, v)| v ∈ V }.

If B is a PSDZFS then dist(B,B) is the distance between the farthest white vertex and its

closest blue vertex. Using the graph and PSDZFS B from Example 2.1.5 we have dist(B,B) =

max{min{d(a, c), d(b, c), d(g, c)},min{d(a, d), d(b, d), d(g, d)}, min{d(a, e), d(b, e), d(g, e)},

min{d(a, f), d(b, f), d(g, f)}} = max{1, 2, 1, 1} = 2.

Observation 2.1.10. If G is a graph and B is a PSDZFS then pt+(G,B) ≥ dist(B,B).

Definition 2.1.11. We say a minimum PSDZFS B exhibits full forcing if for all t = 0, 1, 2, . . . ,

pt+(G,B)− 1, v ∈ Bt′
+ implies

(
N(v)−

⋃
t≤t′ B

t
+

)
∈ Bt′+1

+ i.e. the white neighborhood of the

blue vertices are all forced at the next iteration of the forcing algorithm. A graph has universal

full forcing if every minimum PSDZFS exhibits full forcing.

Example 2.1.12. The graph shown in Figure 2.4 has universal full forcing. In Figure 2.5 we

have a graph where B1 = {1, 6} has full forcing but B2 = {6, 9} does not since 6 cannot force

its neighbors at the first time step.

1 2

3

4

56

7

8

Figure 2.4

1 2

3

4

56

7

8

9 10

Figure 2.5

Remark 2.1.13. Let G be a graph. It is clear that if B is a PSDZFS with full forcing then

pt+(G,B) = dist(B,B). Further, if G has universal full forcing then pt+(G) = min{dist(B,B) :

B is a min PSDZFS} and PT+(G) = max{dist(B,B : B is a min PSDZFS}. Finally, if B

is a minimum PSDZFS that exhibits full forcing and minimizes dist(B,B), then pt+(G) =

pt+(G,B) = dist(B,B).
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Remark 2.1.14. Let B be a PSDZFS for G. Let W1,W2, . . . ,Wk be the sets of vertices of

the k connected components of G−
t⋃
i=0

B
(i)
+ for some t. Note that for i 6= j, Wi ∩NG(Wj) = ∅.

This means any forcing that happens in G[Wi] does not induce any forcing in G[Wj ] for i 6= j.

Therefore at least one vertex must be forced in each component at each time step, if not the

forcing will have stalled in that component and B was not a PSDZFS.

Remark 2.1.15. In general, pt+(G) and pt(G) are not comparable and neither are PT+(G)

and PT(G) as shown in Figures 2.6 - 2.9. Even if Z+(G) = Z(G) we cannot compare PT+(G)

and PT(G) (Figures 2.8 and 2.9). However, since a standard zero forcing set is also a PSDZFS,

if Z+(G) = Z(G) we can say pt+(G) ≤ pt(G).

Figure 2.6:
pt+(G) = 3 > 2 =

pt(G)
Z(G) = 4, Z+(G) = 1

Figure 2.7: pt+(G) =
2 < 3 = pt(G)

Z(G) = 1 = Z+(G)

Figure 2.8:
PT+(G) = 2 < 3 =

PT(G)
Z(G) = 2 = Z+(G)

Figure 2.9: PT+(G) =
4 > 3 = PT(G)

Z(G) = 2 = Z+(G)

The following is clear from Definitions 2.1.2, 2.1.3 and because the worst we can do is

force exactly one vertex blue at each time step. Also, the only way for a graph to have PSD

propagation time 0 is if it is a set of isolated vertices.

Observation 2.1.16. Let G be a graph with at least one edge. Then

1 ≤ pt+(G) ≤ PT+(G) ≤ |G| − Z+(G).

Furthermore, if B is a PSDZFS such that at least k vertices are forced at each time step
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then

pt+(G,B) ≤ |G| − |B|
k

.

2.2 Propagation time interval

Definition 2.2.1. The PSD propagation time interval of G is defined as

[pt+(G),PT+(G)] = {pt+(G), pt+(G) + 1, . . . , PT+(G)− 1, PT+(G)}.

If every integer in the PSD propagation time interval is achievable by some minimum PSDZFS

we say G has a full PSD propagation time interval.

We conjecture that every graph has a full PSD propagation time interval. This section

concentrates on results that support the claim. It was shown in [9] that this is not the case for

standard propagation time interval. Figure 2.10 is an example of a graph that does not have a

full standard propagation time interval.

Example 2.2.2. Notice that (up to symmetry) the graph in Figure 2.10 has only 3 types of

minimum standard zero forcing sets; the two vertices at the ends, the two upper vertices and

opposite upper and end vertices. The first two sets have propagation time 4 and the last zero

forcing set has propagation time 6.

Figure 2.10: pt(G) = 4, PT(G) = 6, and there is no minimum ZFS B with pt(G,B) = 5.

Next we use some basic tools to answer questions about the propagation time interval for

some common graph families. It is well known that if T is a tree then Z+(t) = 1 [2].

Observation 2.2.3. If T is a tree then T has universal full forcing.

The d iameter of a graph G is diam(G) = max{d(u, v) |u, v ∈ V (G)}.
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Proposition 2.2.4. If T is tree, diam(T ) = d, then

pt+(T ) =

⌈
d

2

⌉
and PT+(T ) = d

Further, every tree has a full PSD propagation time interval.

Proof. By Remark 2.1.13 pt+(T ) = min{dist(B,B)}. This is achieved by choosing Bmin to be

the vertex in the middle of a maximum path, thus pt+(T ) = dist(Bmin, Bmin) =

⌈
d

2

⌉
. Also

by Remark 2.1.13 PT+(T ) = max{dist(B,B)}. If we choose Bmax to be a vertex at the end of

a maximum path then PT+(T ) = dist(Bmax, Bmax) = d. Finally, we fill the propagation time

interval by moving our PSDZFS (in this case one vertex) along a maximum path.

Corollary 2.2.5. If G = Pn then pt+(G) =

⌈
n− 1

2

⌉
and PT+(G) = n− 1.

Corollary 2.2.6. If G = S(k1, k2, . . . , ks) is a generalized star and k1 ≥ k2 ≥ k3 ≥ · · · ≥ ks,

then

pt+(G) =

⌈
k1 + k2

2

⌉
and PT+(G) = k1 + k2.

It has been established that a cycle Cn has Z+(Cn) = 2 [2].

Observation 2.2.7. If Cn is a cycle on n vertices then Cn has universal full forcing

Proposition 2.2.8. Let Cn be the cycle on n vertices, then

pt+(Cn) =

⌈
n− 2

4

⌉
and PT+(Cn) =

⌈
n− 2

2

⌉
.

Further, Cn has a full PSD propagation time interval.

Proof. Since Cn has universal full forcing then by Remark 2.1.13 we have to minimize and maxi-

mize dist(B,B) to find pt+(Cn) and PT+(Cn), respectively. If we label our vertices v1, v2, . . . , vn

with d =
⌈n

2

⌉
, then Bmin = {v1, vd} gives dist(Bmin, Bmin) = pt+(Cn) =

⌈
n− 2

4

⌉
. Choosing

Bmax = {v1, v2} we have dist(Bmax, Bmax) = PT+(Cn) =

⌈
n− 2

2

⌉
. To fill the propagation

time interval we let Bi = {v1, vi} for i = 2, 3, . . . , d.
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The ability to swap one vertex into and one vertex out of a PSDZFS and not change the

PSD propagation time by more than 1 is a valuable tool for establishing full PSD propagation

time intervals. The proof of Lemma 2.2.10 is based on arguments in [10]. We state the result

related to Lemma 2.2.10 as Lemma 2.2.9.

Lemma 2.2.9. [10] Let G be a graph and B be a PSDZFS of G with v ∈ B such that v → w

at the first time step. Then B′ = (B\{v}) ∪ w is also a PSDZFS for G.

Lemma 2.2.10. Let G be a graph and B be a PSDZFS with v ∈ B such that v → w at

the first time step. Define B′ := (B\{v}) ∪ w. Then w → v at the first time step and

pt+(G,B)− 1 ≤ pt+(G,B′) ≤ pt+(G,B) + 1.

Proof. Let G be a graph and B a PSDZFS for G with v → w at the first time step. Let Ww be

the vertex set of the connected component ofG−B that contains w. DefineB′ := (B\{v})∪{w}.

Let Wv be the vertex set of the connected component of G−B′ containing v. If w cannot force

v at the first time step then w has some other white neighbor, say x, in G[B′∪Wv]. This means

there is a path of white vertices from x to v in G[Wv]. However, since w is also a neighbor of

x this means v will have two white neighbors in G[B ∪Ww]. This contradicts that v → w at

the first time step when considering B. Thus w → v at the first time step when we force using

B′. Now B has been forced blue so the rest of the graph can be forced.

Since w → v at the first time step we clearly have our upper bound. The way to achieve

the lower bound is if the vertex set of the connected component of G−B that w is in initially,

Ww, took the longest to force by at least one time step. By exchanging v and w we have sped

up the forcing of the component Ww by at most 1 and the other components have not slowed

down by more than 1.

Definition 2.2.11. Let G be a graph with PSDZFS B and B′ be another PSDZFS with the

same cardinality. If there exists a sequence of PSDZF sets B = B1, B2, . . . , Bk = B′ that have

the same cardinality and (Bi\{vi})∪{wi} = Bi+1 such that vi → wi at the first time step when

using Bi as the PSDZFS, then we say we say we can migrate from B to B′.
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Corollary 2.2.12. Let G be a graph and suppose we can migrate from one minimum PSDZFS,

B, to another, B′. Then for every integer k between pt+(G,B) and pt+(G,B′) there exists a

minimum PSDZFS B′′ such that pt+(G,B′′) = k.

Corollary 2.2.13. If G is a graph and Bmin is a minimum PSDZFS such that pt+(G) =

pt+(G,Bmin), Bmax is a minimum PSDZFS such that PT+(G) = pt+(G,Bmax) and we can

migrate from Bmin to Bmax then G has a full PSD propagation time interval.

Corollary 2.2.13 gives us a method to establish full propagation time for unicyclic graphs

and provides alternate proofs for trees and cycles.

Proposition 2.2.14. Let G be a unicyclic graph. Then G has a full propagation time interval.

Proof. Let G be a unicyclic graph with cycle Cn and label the cycle vertices r1, r2, . . . , rn. Let

Ti be a rooted tree with root ri so G = Cn ∪ T1 ∪ · · · ∪ Tn. Observe that Z+(G) = 2 and that

minimum PSDZF sets are of the form {vi, vj} with vi ∈ V (Ti) and vj ∈ V (Tj), i 6= j. Now we

will show that we can migrate from {vi, vj} to {vi, vk}. First we observe that if vj 6= rj then vj

will force each of its neighbors at the first time step. Using this idea iteratively we can migrate

from {vi, vj} to {vi, rj}. Similarly, we can migrate from {vi, rj} to {ri, rj}. Notice that rj can

force its cycle neighbors, which will allow us to migrate from {ri, rj} to {ri, rk}. Now we can

force into Ti and Tk at the first time step, which allows us to migrate from {ri, rk} to {vi, vk}.

Since vi, vj and vk were arbitrary we have the ability to migrate from any minimum PSDZFS

to another. Thus the propagation time interval is full for G by Corollary 2.2.13

Example 2.2.15. Note that we are not always able to migrate from one minimum PSDZFS to

another. Consider the complete bipartite graph K4,4 in Figure 2.11 and note that Z+(K4,4) = 4

by [11]. Also note that minimum PSDZF sets are of the form: 4 vertices on the right, 4 vertices

on the left, 3 vertices on the right and 1 on the left, 3 vertices on the left and 1 on the right. If

migration were possible we would also need 2 vertices on each side to be a PSDZFS but they

are not. Note, however, that the PSD propagation time interval for K4,4 is the full interval

[1, 2] (see also Proposition 2.3.2).
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Figure 2.11: K4,4

Next we investigate how the addition and removal of duplicate vertices affect the PSD

propagation time interval. Let G be a graph and u, v ∈ V (G) such that N [u] = N [v], i.e. their

closed neighborhoods are the same. Then we say u and v are duplicate vertices.

Observation 2.2.16. Let G be a graph and u, v ∈ V (G). If u and v are duplicate vertices then

at least one of them must be in every PSDZFS.

Proposition 2.2.17. [8] If u and v are duplicate vertices in a connected graph G with |G| ≥ 3,

then Z+(G− {u}) = Z+(G)− 1.

Proposition 2.2.18. Let G is a graph with duplicate vertices u and v that have at least one

neighbor in common. If B is a PSDZFS with u ∈ B, then pt+(G,B) = pt+(G− {u}, B\{u}).

Proof. Let G be a graph and u and v be duplicate vertices. By Observation 2.2.16 at least one

of u or v must be in any PSDZFS of G and by Proposition 2.2.17 Z+(G−{v}) = Z+(G−{u}) =

Z+(G)− 1. Let B be a PSDZFS for G and without loss of generality assume u ∈ B. If u forces

a vertex w 6= v at time t, then v must be blue so v can also force w at time t. If u forces v

at time t then N [u]\{v} = N(v) is all blue and contains a vertex besides u. Thus v is isolated

in G −
t−1⋃
i=0

B
(i)
+ and can be forced by some vertex besides u at time t, which does not affect

any other forcing that u performs. Therefore, the removal of u from G does not change the

propagation time, thus pt+(G,B) = pt+(G− {u}, B\{u}).

Corollary 2.2.19. If G is a graph and u is a duplicate vertex in G then

1. pt+(G) = pt+(G− {u})

2. PT+(G) = PT+(G− {u})
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3. If the PSD propagation time interval is full for G, it is also full for G− {u}.

Remark 2.2.20. Let G be a nontrivial graph. Add a vertex u to G that is duplicate to some

vertex v ∈ V (G) such that they have at least one neighbor in common. Call this new graph

G′. Let B ⊆ V (G) be a set of blue vertices and define B′ := B ∪ {u}. Then the connected

components of G−B and the connected components of G′−B′ are the same. This means that

if w ∈ NG[v] cannot force in G−B then w ∈ NG′(u) cannot force in G′ −B′.

Proposition 2.2.21. Let G be a nontrivial graph with a full PSD propagation time interval.

Add a vertex u to G that is a duplicate of some vertex v ∈ V (G) such that they have at least

one neighbor in common. Call this new graph G′. Then the PSD propagation time interval of

G′ is full.

Proof. By Proposition 2.2.17 Z+(G) = Z+(G′)−1 so Z+(G′) = Z+(G)+1. Let B be a minimum

PSDZFS of G with pt+(G,B) = j. Note that B′ := B ∪{u} is a minimum PSDZFS for G′ and

that
t⋃
i=0

B
(i)
+ ∪ {u} ⊆

t⋃
i=0

B
′(i)
+ for all t. Now we will show the other containment.

First notice that B
′(0)
+ = B ∪ {u} = B

(0)
+ ∪ {u}. Consider w ∈ B′(1)+ . If w was forced by

u then the argument in Proposition 2.2.18 says that w can be forced by some other vertex at

the first time step so w ∈ B(1)
+ . Remark 2.2.20 says that any any neighbors of u that force in

G′ at the first time step will also force in G at the first time step. Finally, note that u has no

affect on any forcing beyond NG′ [u] and since the set of blue vertices and the graphs G′ and

G are the same beyond NG′ [u] all of the forcing must be the same. Thus B
′(1)
+ ⊆ B

(1)
+ . We

can extend this argument in a similar way at each time step thus
t⋃
i=0

B
′(i)
+ ⊆

t⋃
i=0

B
(i)
+ ∪ {u} for

all t. This gives us containment in both directions thus pt+(G,B) = pt+(G′, B′) = j. So we

have shown that the PSD propagation time interval of G′ contains the PSD propagation time

interval of G. However, Corollary 2.2.19 tells us that the PSD propagation time intervals are

actually the same so G′ has a full PSD propagation time interval.

Corollary 2.2.22. If G is a graph with a full PSD propagation time interval adding or removing

a duplicate vertex does not change the fullness of the interval.
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Next we discuss graphs that have a universal vertex. Of particular interest is the effect on

the propagation time interval by adding a universal vertex.

Remark 2.2.23. Let G be a graph with no isolated vertices and add a universal vertex u to

get G′. First notice that once u is blue it does not affect the number or composition of any

connected components. Second, if u forces some vertex v at time t then v is an isolated vertex

in G−
t−1⋃
i=0

B
(i)
+ and, since G has no isolated vertices, there exists some vertex besides u that can

force v at time t. Together this means that once u is blue its removal from G′ neither inhibits

or assists the PSD propagation zero forcing algorithm.

In [9] it was shown that there is no connected graph of order at least two that has a unique

efficient standard zero forcing set. This was proved by showing that every graph of order at

least two has at least two efficient zero forcing sets. The next theorem allows us to easily show

these results do not hold for efficient PSD zero forcing sets.

Theorem 2.2.24. If G′ 6= Kn is a graph with a universal vertex u, then u is in every efficient

PSDZFS.

Proof. Let B′ be an efficient PSDZFS for G′, that is pt+(G′, B′) = pt+(G′). If u /∈ B′ then

B
′(1)
+ = {u}. If no more forcing occurs then Z+(G′) = n − 1 and G′ is a Kn. Since we are

assuming G′ 6= Kn we know B
′(2)
+ is not empty. Now, there is some v ∈ B′ with N(v)\{u} ⊆ B′

and v → u. However, B′′ = (B′\{v})∪{u} is also a minimum PSDZFS and B
′′(1)
+ = {v}∪B

′(2)
+

since v is isolated in G′ − B′′ and u is blue. In other words,
1⋃
i=0

B
′′(i)
+ =

2⋃
i=0

B
′(i)
+ , which

implies

j−1⋃
i=0

B
′′(i)
+ =

j⋃
i=0

B
′(i)
+ for all j ≥ 2. In particular, this is true for j = pt+(G′), thus

pt+(G′, B′′) < pt+(G′), which is a contradiction. Therefore, u is in every efficient PSDZFS of

G′ when G′ is not complete.

Theorem 2.2.24 confirms that a star K1,n, n > 1, has a unique efficient PSD zero forcing

set. We should also note that the converse of Theorem 2.2.24 is not true as the middle vertex of

P5 is in every efficient PSDZFS but is not universal. Further, this property of universal vertices

is not analogous in standard propagation time since the middle vertex of P3 is universal but is

not in any minimum zero forcing set, let alone an efficient one.
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Theorem 2.2.25. Let G be a graph with no isolated vertices and add a universal vertex u to

get G′. Then:

1. Z+(G′) = Z+(G) + 1

2. If B is a PSDZFS for G then B′ = B ∪ {u} is a PSDZFS for G′ and pt+(G,B) =

pt+(G′, B′).

3. Any minimum PSDZFS for G′ is of the form B ∪ {u} or B ∪ {v} where NG(v) ⊆ B and

B is a minimum PSDZFS for G.

4. pt+(G) = pt+(G′)

5. PT+(G) ≤ PT+(G′) ≤ PT+(G) + 1

6. If the PSD propagation time interval is full for G it is also full for G′.

Proof. Let G be a graph with no isolated vertices and add universal vertex u to get G′. By

[8] the addition of a single vertex increases the PSD zero forcing number by at most one, so

Z+(G′) ≤ Z+(G) + 1. This bound can be achieved by simply finding a minimum PSDZFS for

G and adding u to it. Now, let B′ be a PSDZFS for G′. If u ∈ B′ then, by Remark 2.2.23,

B′\{u} is a PSDZFS for G so Z+(G) + 1 ≤ |B′| ≤ Z+(G′). If u /∈ B′, then u must be the only

vertex forced at the first time step. Let’s say v ∈ B′ forces u. Then NG(v) ⊆ B′. Once u is

forced we can remove it without affecting future forces, again by Remark 2.2.23. This means

B′ is a PSDZFS for G = G′ − u. If this is the case then we can change v from blue to white

and still have a PSDZFS for G since v will be be isolated when we remove the blue vertices.

Thus B′\{v} is a PSDZFS for G so Z+(G) + 1 ≤ |B′| ≤ Z+(G′). This establishes (1), (2), (3)

and (4).

Let B be a minimum PSDZFS for G, then B ∪ {u} is a minimum PSDZFS for G′ and

pt+(G,B) = pt+(G′, B′). This means the PSD propagation time interval of G′ contains the

PSD propagation time interval of G.

Now assume B′ is a minimum PSDZFS for G′ of the form B∪{v}, NG(v) ⊆ B, B a minimum

PSDZFS for G. Then v → u at the first time step. If the graph has been completely forced after
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one step then G and G′ are complete graphs and pt+(G) = pt+(G′) = PT+(G) = PT+(G′) = 1.

If more forcing occurs observe that B
′(2)
+ = B

(1)
+ \{v}, thus

2⋃
i=0

B
′(i)
+ =

1⋃
i=0

B
(i)
+ . This pattern

continues and we see that

j+1⋃
i=0

B
′(i)
+ =

j⋃
i=0

B
(i)
+ . So unless G = Kn, pt+(G,B) + 1 = pt+(G′, B′).

This means that adding the universal vertex u to G adds at most one to PT+(G). Thus

pt+(G) = pt+(G′), PT+(G) ≤ PT+(G′) ≤ PT+(G) + 1, and if the PSD propagation time

interval is full for G, it is also full for G′.

Corollary 2.2.26. If G′ is a graph with universal vertex u and G′−u has a full PSD propagation

time interval, then so does G′.

Example 2.2.27. Note that Corollaries 2.2.22 and 2.2.26 allow us to simplify the process of

determining whether or not a graph has a full PSD propagation time interval. Starting with

graph G, Figure 2.12, we observe that G has a universal vertex u. When we remove u from G

we notice in Figure 2.13 that the top two vertices are duplicates, so we remove the top right

one, v, and end up with a unicyclic graph, Figure 2.14. Note that Proposition 2.2.14 tells

us that G − u − v has a full PSD propagation time interval. Adding duplicate and universal

vertices does not change the fullness of the interval so G also has a full PSD propagation time

interval.

u

v

Figure 2.12: Graph G

v

Figure 2.13: G− u Figure 2.14: G− u− v

2.3 Graph families

Here we study some well known graph families. For most of these families we determine the

minimum and maximum PSD propagation time and show that they have full PSD propagation
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time intervals. This adds more evidence for Conjecture 2.3.15 that all PSD propagation time

intervals are full.

Proposition 2.3.1. If G = Wn, the wheel on n vertices, n ≥ 4, then pt+(G) =

⌈
n− 3

4

⌉
and

PT+(G) =

⌈
n− 2

2

⌉
. Furthermore, G has a full PSD propagation time interval.

Proof. Let G = Wn, then by [11], Z+(G) = 3. Also notice that the hub of the wheel is a

universal vertex. In particular, adding a universal vertex to Cn−1 gives Wn. By Theorem 2.2.25,

pt+(Cn−1) = pt+(Wn). Therefore, by Proposition 2.2.8, pt+(Wn) =

⌈
(n− 1)− 2

4

⌉
=

⌈
n− 3

4

⌉
.

Let B consist of three consecutive cycle vertices. Observe that we force the hub at the

first time step, and at every other step we force at most two vertices, thus pt+(G,B) =

1 +

⌈
n− 4

2

⌉
=

⌈
n− 2

2

⌉
so PT+(G) ≥

⌈
n− 2

2

⌉
. Notice that every other minimum PSDZFS

contains u so using Theorem 2.2.25(2) and Proposition 2.2.8 their corresponding propagation

times are bound above by

⌈
n− 3

2

⌉
. Therefore PT+(G) =

⌈
n− 2

2

⌉
.

The PSD propagation time interval is full by Theorem 2.2.25.

We define Kn1,n2,...,nk
to be the complete multipartite graph on

k∑
i=1

ni vertices where we

partition the vertices into sets Vn1 , Vn2 , . . . , Vnk
such that:

• for 1 ≤ i ≤ k, |Vni | = ni

• v, w ∈ Vni means vw /∈ E(G)

• for 1 ≤ i < j ≤ k, v ∈ Vni and w ∈ Vnj means vw ∈ E(G).

If k = 2 we say G is complete bipartite.

Proposition 2.3.2. If n1 ≥ n2 ≥ · · · ≥ nk, k ≥ 2, n1 ≥ 2, and G = Kn1,n2,...,nk
then pt+(G) =

1 and PT+(G) = 2. (Note: if G = K1,1,...,1 then G is complete so pt+(G) = PT+(G) = 1.)

Further, the PSD propagation time interval is full.

Proof. Let G be as hypothesized. Then Z+(G) = n2 +n3 + · · ·+nk by [11]. Clearly G is not a

set of isolated vertices so pt+(G) ≥ 1. As in the definition, we denote the vertex partition sets

by Vn1 , Vn2 , . . . , Vnk
. Note that if B = Vn2 ∪ Vn2 ∪ · · · ∪ Vnk

then G− B is a set of n1 isolated

vertices. This gives pt+(G,B) = 1 so pt+(G) ≤ 1, therefore pt+(G) = 1.
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Now let B be a minimum PSDZFS. Suppose first that there are distinct i, j, k such that

Vni −B, Vnj −B and Vnk
−B have at least one element. Then G−B is connected so we apply

standard zero forcing. However, this tells us that every vertex of B has at least two white

neighbors so no forcing occurs and B is not a minimum PSD zero forcing set.

So if B is a minimum PSDZFS at most two vertex partition sets, say Vni and Vnj , initially

have white vertices. If both Vni and Vnj have at least two white vertices then G−B is connected

and every vertex in B has at least two white neighbors so B is not a minimum PSDZFS.

Thus the only possibilities are: Vni ⊆ B, Vnj ⊆ B, |Vni − B| = 1 or |Vnj − B| = 1. In the

former two cases pt+(G,B) = 1. In the latter cases we only have one connected component at

the first iteration of our algorithm so we apply standard zero forcing. Without loss of generality

assume |Vni −B| = 1, then Vnj has one blue vertex initially and that blue vertex has one white

neighbor in Vni so that is the only force we perform. Now, at the second iteration when we

remove the blue vertices all of the remaining white vertices are isolated thus pt+(G,B) = 2.

Obviously the PSD propagation time interval is full.

2.3.1 Cartesian products

The Cartesian product of two graphs H and G, denoted H�G, has vertex set V (H)×V (G)

with vertices (u, v) and (u′, v′) adjacent if and only if (1) u = u′ and vv′ ∈ E(G) or (2) v = v′

and uu′ ∈ E(H). This section concentrates on the PSD propagation times and PSD zero

forcing numbers of some Cartesian products.

Proposition 2.3.3. For s ≥ 2, let G = Ps�P2, then pt+(G) =

⌈
s− 1

2

⌉
and PT+(G) = s.

Further, G has a full PSD propagation time interval.

Proof. Let s ≥ 2 and G = Ps�P2. Then, by [11], Z+(G) = 2. Number the vertices as in Figure

2.15. Let m =
⌈s

2

⌉
and B = {vm1, vm2}. Then, B exhibits full forcing and d = dist(B,B) = m− 1 if s is odd

m if s is even
is minimal. By Remark 2.1.13 pt+(G) = d. Finally, observe that
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d =

⌈
s− 1

2

⌉
and we have our first result.

Recall that the forcing list sequence of a PSDZFS B, FLS(G,B), is the tuple whose (k+1)th

entry is the number of vertices forced at the kth time step in the forcing algorithm. Notice

that for almost every minimum PSDZFS the forcing list sequence is comprised of 2’s and 4’s.

If B = {v, w} is a cut set we will force at least two vertices at every time step. If B is not a

cut set then initially we implement standard zero forcing. This means B must contain a degree

two vertex, v, and one of its neighbors, w. If w also has degree two we will force two vertices

at the first time step. If w has degree three then we only force one vertex at the first time step.

In fact, up to symmetry, there is only one minimum PSDZFS, Bmax = {v11, v21}, that has

any 1’s and it has two of them. Clearly, Bmax has maximized the length of FLS(G,Bmax) so

PT+(G) = pt+(G,Bmax) = s. Finally, we can achieve all other integers in the PSD propagation

time interval by letting Bi = {vi1, vi2} for i = 1, 2, 3, . . . ,m.

V11 V21 V31 V41 V(s-1)1 Vs1

V12 V22 V32 V42 V(s-1)2 Vs2

Figure 2.15: Ps�P2

A contraction of edge e = {u, v} is obtained by identifying vertices u and v, replacing any

multiple edges by single edges, and deleting any loops that occur. A minor of G is obtained

by a series of edge deletions, vertex deletions and/or edge contractions. The Hadwiger number,

h(G), is the largest r such that Kr is a minor of G.

Theorem 2.3.4. [3] For graph G, h(G)− 1 ≤ M+(G) ≤ Z+(G).

Proposition 2.3.5. Let G = Ps�P3, s ≥ 3, then Z+(G) = 3 and pt+(G) =

⌈
s− 1

2

⌉
.

Proof. Let G be as in the theorem. Note that H = P3�P3 is a minor of G. Label the vertices

of H {1, 2, . . . , 9} starting in the top left corner then proceed left to right, top to bottom.

Contract vertices 3, 6, 9, 8 into a single vertex and 1, 4, 7 into a single vertex to obtain a K4.

Thus G has a K4 minor so the Hadwiger number of G is 4 and Theorem 2.3.4 gives 3 ≤ Z+(G).



44

Now, orient the graph so that there are three rows and s columns and note that any column

forms a PSDZFS thus Z+(G) = 3. Now let B consist of the vertices in the
⌈s

2

⌉
column, then

pt+(G,B) =

⌈
s− 1

2

⌉
. Also notice that B has full forcing and minimizes dist(B,B) so Remark

2.1.13 gives pt+(G) =

⌈
s− 1

2

⌉
.

Proposition 2.3.6. Let G = Cs�P2, s ≥ 4, then pt+(G) =

⌈
s− 2

4

⌉
.

Proof. Let G = Cs�P2. Then Z+(G) = 4 by [11]. Label the vertices of each cycle c1i, c2i, . . . , csi

for i = 1, 2. Let m =
⌈s

2

⌉
and B = {c11, c12, cm1, cm2}. Observe that B is a minimum

PSDZFS, minimizes dist(B,B), exhibits full forcing and pt+(G,B) =

⌈
s− 2

4

⌉
. By Remark

2.1.13, pt+(G,B) = pt+(G).

The c-cube Qc, c ≥ 1, is defined as repeated Cartesian products of K2. In particular,

Q1 = K2, Qc = Qc−1�K2 for c ≥ 2. The c-cube is also known as the cth hypercube.

Proposition 2.3.7. Let G = Qc, then pt+(G) = 1.

Proof. Let G = Qc, then Z+(G) = 2c−1 by [11]. Notice that B = V (Qc−1) is a minimum

PSDZFS and pt+(G,B) = 1. Thus by Observation 2.1.16 pt+(G) = 1.

Proposition 2.3.8. Let G = C4�K3, then pt+(G) = 1.

Proof. Let G = C4�K3 and note that by [11] Z+(G) = 6. Observe that choosing the vertex

sets of any two copies of K3 produces a minimum PSDZFS. Further, each of these sets has a

PSD propagation time of 1. By Observation 2.1.16 pt+(G) = 1.

Of course we can always find pt+ and PT+ by identifying all possible minimum PSDZF

sets and their corresponding propagation times. We do this for the cartesian products Ks�Pt,

s ≥ 3 and t ≥ 2, and K3�K3.

Lemma 2.3.9. Let G = Ks�Pt, s ≥ 3 and t ≥ 2, where K
(i)
s is the ith copy of Ks. Further,

label the vertices of K
(i)
s by v1i, v2i, . . . , vsi where edges not within copies of Ks are of the form
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vji ∼ vj(i+1) for 1 ≤ j ≤ s and 1 ≤ i ≤ t− 1. Then the only vertex cut sets of G with s vertices

are made up of sets of vertices in neighboring copies of Ks’s such that the set of first indices is

{1, 2, . . . , s}.

Proof. Observe first that if C is a set of vertices from neighboring copies of Ks whose set of

first indices is {1, 2, 3, . . . , s} then C is a cut set. Now assume that C is contained in two

neighboring copies of Ks, namely K
(i)
s and K

(i+1)
s , and assume that the first set of the indices

of the vertices in C are missing j, 1 ≤ j ≤ s. This means vji and vj(i+1) are not contained in

C. Let v, w ∈ V (G)\C with v ∈ K(a)
s , w ∈ K(b)

s and without loss of generality let a ≤ b. If

i+ 1 ≤ a or b ≤ i we can easily find a path from v to w that contains no vertices of C. If a ≤ i

and i+ 1 ≤ b then we can find a path, Pv, from v to vji that has no vertices of C. We can also

find a path, Pw, from vj(i+1) to w that contains no vertices of C. Then the path consisting of

Pv, Pw and the edge between vji and vj(i+1) is a path from v to w that contains no vertices

of C. Since v and w were arbitrary C is not a cut set. We can use a similar argument if we

assume C is spread out between more copies of Ks, or nonadjacent copies of Ks.

Lemma 2.3.10. Let G = Ks�Pt, s ≥ 3 and t ≥ 2, where K
(i)
s is the ith copy of Ks. Further,

label the vertices of K
(i)
s by v1i, v2i, . . . , vsi where edges not within copies of Ks are of the form

vji ∼ vj(i+1) for 1 ≤ j ≤ s and 1 ≤ i ≤ t − 1. Then there are only three types of minimum

positive semidefinite zero forcing sets:

1. vertex cut sets

2. end sets, e.g. V
(
K

(1)
s

)
3. almost end sets i.e. {v11, v21, . . . , v(j−1)1, v(j+1)1, . . . , vs1, vk2} where k 6= j.

Proof. Let G = Ks�Pt as above. Note that Z+(G) = s by [11] and observe that if B is one of

the above three sets then B is a minimum PSDZFS. Also note that the result is obvious for

s = 2. Now we suppose that s ≥ 3, t ≥ 3 and that B is a vertex subset of G, |B| = 2, and B is

not one of (1), (2) or (3).

This means that B is not a cut set so we apply standard zero forcing at the first time step.

We will argue that no forcing occurs. Clearly B is not contained in one copy of Ks and if B is
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contained in three or more copies of Ks then |B ∩K(i)
s | ≤ s− 2 for 1 ≤ i ≤ t. Therefore each

vertex in B has at least two white neighbors within the copy of Ks that it is contained in so

no forcing occurs.

Now we suppose that B is contained in two copies of Ks, say K
(i)
s and K

(j)
s , i < j. If K

(i)
s

and K
(j)
s are not adjacent then clearly all blue vertices have two or more white neighbors and

no zero forcing occurs. Next we suppose that K
(i)
s and K

(j)
s are adjacent and without loss of

generality that j = i+ 1. Let B1 = B ∩K(i)
s and B2 = B ∩K(i+1)

s .

Case 1: i = 1

Since B is not an almost end set |B1| ≤ s− 2 so every vertex in B1 is adjacent to at least

two white vertices in K
(1)
s . Further, we note that |B2| ≤ s− 1 so each vertex in B2 is adjacent

to one white vertex in K
(2)
s . However, since t ≥ 3 each vertex in B2 is also adjacent to a white

vertex in K
(3)
s so no forcing occurs.

Case 2: 1 < i < t− 1

Then |B1| ≤ s− 1. Then every vertex in B1 has at least one white neighbor in B1 and one

white neighbor not in B1 so no vertices in B1 do any forcing. A similar argument can be made

for B2 so no forcing occurs.

Therefore, B must be one of the above three forms.

Proposition 2.3.11. If G = Ks�Pt, s ≥ 3 and t ≥ 2, then pt+(G) =

⌈
t− 1

2

⌉
and PT+(G) =

t. Further, G has a full PSD propagation time interval.

Proof. Let G = Ks�Pt and B be the set of vertices of the the

⌈
t

2

⌉th
copy of Ks. Then B

exhibits full forcing and minimizes dist(B,B) so by Remark 2.1.13 pt+(G) = pt+(G,B) =⌈
t− 1

2

⌉
.

Note that the first two types of minimum PSDZF sets in Lemma 2.3.10 all force at least s

vertices at each time step, so for such a B Observation 2.1.16 gives pt+(G,B) ≤ st− s
s

= t−1.

If B is of form (3) then only one vertex is forced at the first time step, s− 1 are forced at the

second times step and thereafter s vertices are forced at each time step. Thus pt+(G,B) = t

and PT+(G) = t.

To fill the PSD propagation time interval we let B = V (K
(i)
s ) for i = 1, 2, . . . , t.
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Proposition 2.3.12. Let G = K3�K3, then pt+(G) = 1 and PT+(G) = 2. Further, G has a

full PSD propagation time interval.

Proof. Let G = K3�K3, then by [11] Z+(G) = 5. By Observation 2.1.16 we know that

pt+(G) ≥ 1. However, up to symmetry there are only 5 minimum PSDZF sets, as analyzed

below. Let B be a minimum PSDZFS.

Case 1: One copy of K3 is entirely contained in B.

Subcase 1: One of the remaining K3’s has two blue vertices (see Figure immediately above).

Up to symmetry these are all the same PSDZFS and pt+(G,B) = 2.

Subcase 2: Each remaining K3 has one blue vertex.

If they are in the same position (e.g. both the top vertex) then B is not a PSDZFS.

If they are in different positions then, up to symmetry, they are all the same and

pt+(G,B) = 2 (see Figure immediately above).

Case 2: Two K3’s have two blue vertices.

Subcase 1: The pairs of blue vertices are in the same position.

If the other blue vertex is in the other position of the K3 (see Figure immediately

above), then pt+(G,B) = 1. If the other blue vertex is in the same position as one

of the others (see Figure immediately above), then pt+(G,B) = 2.

Subcase 2: The pairs of blue vertices only match up in one position.

If the other blue vertex matches up with two of the other blue vertices (see Figure
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immediately above), then pt+(G,B) = 2. If the other blue vertex only matches up

with one of the other blue vertices then we do not have a PSDZFS.

Therefore pt+(G) = 1 and PT+(G) = 2 and G has a full propagation time interval.

2.3.2 Summary and use of software

The minimum and maximum propagation times for various graph families are summarized

in Table 2.1, which also includes the PSD zero forcing number and information about whether

the PSD propagation time interval is full.

Notice that Proposition 2.3.8 is only a partial result in the sense that it does not establish

PT+(C4�K3). Using the mathematical computer software SAGE [14] we were able write a

brute force algorithm to calculate the PSD zero forcing number of a given graph and determine

whether the PSD propagation time interval is full for a given graph. The URL in [5] has

instructions on how to access the software in SAGE and a link to the actual code with comments

(psd prop time interval.py). This software was used to obtain the next two results.

Proposition 2.3.13. Let G = C4�K3, then PT+(G) = 3 and G has a full PSD propagation

time interval.

Proposition 2.3.14. If |G| ≤ 10 then G has a full PSD propagation time interval.

Proposition 2.3.14, together with the results in Table 2.1, lead to the following conjecture:

Conjecture 2.3.15. The PSD propagation time interval is full for all graphs.

2.4 Graphs with extreme propagation time

Extreme propagation time was studied in [9]. In this section we investigate extreme

minimum and maximum PSD propagation times. In particular we investigate the values

|G| − 1, |G| − 2, 0 and 1 for both minimum and maximum PSD propagation time.
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Table 2.1: Summary of Graph Family Results

Graph G Z+(G)[reference] pt+(G) PT+(G) Full interval Prop Time Result

Tree, diam. d 1 [2]

⌈
d

2

⌉
d Yes [2.2.4]

Pn 1 [2]

⌈
n− 1

2

⌉
n− 1 Yes [2.2.5]

Cn 2 [2]

⌈
n− 2

4

⌉ ⌈
n− 2

2

⌉
Yes [2.2.8]

Wn 3 [11]

⌈
n− 3

4

⌉ ⌈
n− 2

2

⌉
Yes [2.3.1]

Kn1,...,nk
n2 + · · ·+ nk [11] 1 2 Yes [2.3.2]

Qn 2n−1 [11] 1 ? ? [2.3.7]

Ks�Pt s [11]

⌈
t− 1

2

⌉
t Yes [2.3.11]

Ps�P2, s ≥ 2 2 [11]

⌈
s− 1

2

⌉
s Yes [2.3.3]

Ps�P3, s ≥ 3 3 [2.3.5]

⌈
s− 1

2

⌉
? ? [2.3.5]

Cs�P2, s ≥ 4 4 [11]

⌈
s− 2

4

⌉
? ? [2.3.6]

K3�K3 5 [11] 1 2 Yes [2.3.12]

C4�K3 6 [11] 1 3 Yes [2.3.8], [2.3.13]

2.4.1 High propagation time

It is well known that Z+(G) = 1 if and only if G is a tree [2].

Proposition 2.4.1. If G is a graph then:

1. pt+(G) = |G| − 1 if and only if G = K2.

2. PT+(G) = |G| − 1 if and only if G is a path.

Proof. If G = K2 then it is clear that pt+(G) = |G| − 1. Now assume that pt+(G) = |G| − 1.

Then, by Observation 2.1.16, Z+(G) = 1 and at each iteration of the positive semidefinite zero
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forcing algorithm exactly one white vertex gets forced white. Since Z+(G) = 1 we also know

that G is a tree so every vertex is itself a minimum PSDZFS. Thus, by Observation 3.3, G

cannot have any vertices of degree greater than one, so G = K2.

If G = Pn is the path on n vertices then, choosing either end of the path as our minimum

PSDZFS gives PT+(G) = |G| − 1. Now we assume PT+(G) = |G| − 1. This means Z+(G) = 1,

G is a tree, and exactly one vertex is forced at each iteration of the PSD zero forcing algorithm.

However, by Observation 3.3, we cannot have any vertices of degree greater than 2, so G must

be a path.

Corollary 2.4.2. If PT+(G) = |G| − 1 then G has a full PSD propagation time interval.

Proposition 2.4.3. Let G be a disconnected graph, then:

1. pt+(G) = |G| − 2 if and only if G = P2∪̇P1.

2. PT+(G) = |G| − 2 if and only if G = Pn−1∪̇P1.

Proof. For the first statement: If G = P2∪̇P1 then clearly pt+(G) = |G| − 2. Now assume that

G is disconnected and pt+(G) = |G| − 2. This means that Z+(G) = 2 and exactly one vertex

is forced during each iteration of the PSD zero forcing algorithm. Since G is disconnected this

means that one component is a P1 and the other component, H, has pt+(H) = |H| − 1 so

H = P2. The proof of the second statement is similar.

Proposition 2.4.4. If T is a tree, PT+(T ) = |T | − 2 if and only if T = S(k, l, 1).

Proof. ⇐ This direction is shown by applying Corollary 2.2.6.

⇒ Assume T is a tree and PT+(T ) = |T | − 2. Clearly T is not a path else PT+(T ) = |T | − 1.

We also know that Z+(T ) = 1 so in order to get PT+(T ) = |T | − 2, there is a single time

step such that we force 2 vertices. As soon as a degree k vertex is blue it will force k − 1

vertices. This means exactly one vertex has degree 3 and one of its neighbors has degree 1,

thus T = S(k, l, 1).
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Proposition 2.4.5. If T is a tree, pt+(T ) = |T | − 2 if and only if T = P3 or T = P4.

Proof. If T = P3 or P4 we observe that pt+(T ) = |T |−2. Now assume T is a tree, so Z+(T ) = 1,

and pt+(T ) = |T | − 2. Then we can force two vertices at only one time step of the PSD zero

forcing algorithm. By Remark 2.1.13, all the vertices must be degree two or less, so T is a path.

This in turn limits us to P3 or P4.

Given graph G and PSDZFS B let Tb be the forcing tree induced by b ∈ B. Orient the

edges of Tb according to the forcing order to get the directed forcing tree ~Tb. This definition will

be used In Proposition 2.4.6, Corollary 2.4.7 and Proposition 2.4.8. We are trying to preserve

information, e.g. if v → w we keep the direction of the forcing arrow so we can distinguish

between Figures 2.17 and 2.18.

Figure 2.16: Path
Figure 2.17: Not a directed

path
Figure 2.18: Directed path

Proposition 2.4.6. Let B be a PSDZFS for G. If some directed forcing tree induced by B is

not a directed path then there is some time step at which multiple vertices are forced.

Proof. Let B be a PSDZFS for G such that some directed forcing tree induced by B is not a

directed path, i.e. v → x and v → w at time t1 and t2 respectively. Without loss of generality

let t1 ≤ t2. We have at least two of connected components Ww containing w and Wx containing

x in G−
t1−1⋃
i=0

B
(i)
+ . By Remark 2.1.14 at least two vertices are forced at time t1.

Corollary 2.4.7. If B is a PSDZFS for G such that there is not a time step at which multiple

vertices are forced then every oriented forcing tree induced by B is a directed path and we are

performing standard zero forcing.

A graph G is a graph of two parallel paths if there exist two independent induced paths

that cover all the vertices of G and such that any edges between the two paths can be drawn
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as straight lines that do not cross [12]. A simple path is not considered to be such a graph

and two disjoint paths not connected is considered to be such a path. Let G be a graph of two

parallel paths P1 and P2. If v ∈ V (G) then path(v) is the parallel path that contains vertex

v and path(v) denotes the parallel path that does not contain v. By first(Pi) and last(Pi) we

mean the first and last vertex of path Pi, i = 1, 2. If v, w ∈ V (Pi) then v ≺ w means v precedes

w in path Pi. Further, if v ∈ V (Pi) and v 6= last(Pi) then next(v) is the vertex such that

v ≺ next(v); prev(v) is defined similarly. A zigzag graph is a special graph of two parallel paths

and is found in [9], Definition 3.6.

A graph G on two parallel P1 and P2 is a zigzag graph if it satisfies the following conditions:

1. There exists a path Q = (z1, z2, . . . , zl) that alternates between two paths P1 and P2 such

that:

(a) z2i−1 ∈ V (Pi) and z2i ∈ V (P2) for i = 1, 2, . . . ,

⌊
l + 1

2

⌋
;

(b) zj ≺ zj+2 for j = 1, 2, . . . , l − 2.

2. Every edge of G is an edge of P1, P2, or Q or is of the form

zjw where 1 < j < l, w ∈ path(zj), and zj−1 ≺ w ≺ zj+1.

The number l in Q is called the zigzag order.

An example of a zigzag graph is shown in Figure 2.19.

P1

P2 z1

z2

z3

z4

z5

Figure 2.19: A zigzag graph with P1, P2 and Q in black. Gray edges and vertices are optional

Proposition 2.4.8. Let G be a connected graph that contains a cycle. Then G has PT+(G) =

|G| − 2 if and only if G is a zigzag graph such that

1. deg(first(P1)) > 1 or deg(first(P2)) > 1 (both paths cannot begin with a degree one vertex)
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2. (zl−1) prev(zl) ∈ E(G)

3. zl−1 = last(path(zl−1))

Proof. Let G be connected, |G| = n, contain a cycle with PT+(G) = n− 2. Then we note that

Z+(G) = 2 and there exists some PSDZFS such that exactly one vertex is forced at each time.

By Corollary 2.4.7 our two maximal oriented forcing trees from B are directed paths and we

are performing standard zero forcing; we call these forcing paths.

To show that G is a zigzag we follow the analysis from Theorem 3.7 of [9]. Let B be a

minimum PSDZFS such that exactly one force is performed at each time step. Relabel the

vertices of G as V (G) = {−1, 0, 1, 2, . . . , n − 2}, B = {−1, 0}, 0 → 1 and vertex t is forced

at time t. Then G is a graph on two parallel paths P1 and P2, which are the two forcing

paths with the order being the forcing order. Observe that deg(0) ≤ 2 and deg(−1) ≥ 2

since 0 forces at the first time step and −1 does not. If deg(−1) = 2 and |G| > 3 then let

P1 = path(−1), z1 = −1 and z2 = N(−1) ∩ P2. Otherwise, let P1 be be path(0), z2 = −1 and

z1 = min{N(−1)}. For j ≥ 2 define zj+1 by max{N(zj)∩path(zj)} until N(zj)∩path(zj) = ∅.

Define Q = (z1, z2, . . . , zl). With this labeling G is a zigzag graph.

Now we show that conditions (1) - (3) are satisfied. Since deg(−1) ≥ 2 one of the paths does

not start with a degree one vertex so condition (1) is satisfied. If (zl−1) prev(zl) /∈ E(G) then

when zl−1 is forced blue zl−1 → zl and zl−2 → next(zl−2) at the next time step, which violates

the one force per time step so condition (2) is satisfied. If zl−1 6= last(path(zl−1)) then when

zl−1 is blue, zl−1 → next(zl−1) and zl−2 → next(zl−2) at the next time step, which violates the

one force per time step so condition (3) is satisfied.

For the converse assumeG is a zigzag graph that satisfies (1) -(3). ThenB = {first(P1), first(P2)}

is a minimum PSDZFS such that pt+(G,B) = |G|−2 ≤ PT+(G). However, Observation 2.1.16

gives PT+(G) ≤ |G| − 2. Therefore PT+(G) = |G| − 2.

Corollary 2.4.9. If G is a graph with PT+(G) = |G|−2 then G is one of the following graphs:

• Pn−1∪̇P1

• S(k, l, 1)
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• A zigzag graph such that

1. deg(first(P1)) > 1 or deg(first(P2)) > 1 (both paths cannot begin with a degree one vertex)

2. (zl−1) prev(zl) ∈ E(G)

3. zl−1 = last(path(zl−1))

Theorem 2.4.10. If G is connected, not a tree and pt+(G) = |G| − 2 then G = C3.

Proof. Assume G is connected, not a tree and pt+(G) = |G| − 2. Then by Observation 2.1.16

Z+(G) = 2, pt+(G) = PT+(G) = |G| − 2 and for every minimum PSDZFS exactly one vertex

is forced at each time step. By Proposition 2.4.8 G is a zigzag graph. Further, [8] tells us that

any vertex in G can be in a minimum PSDZFS. Then if G has any appended trees we have

a cut vertex that is in a minimum PSDZFS. However, Remark 2.1.14 says that if we have a

cut vertex in our PSDZFS we force multiple vertices at the first time step. Since exactly one

vertex is forced at each time step G can have no appended trees. For similar reasons G cannot

have any minimum PSDZF sets that are a cut set. This means that the zigzag order of G is 3,

so G is a cycle, and in particular G = C3.

Corollary 2.4.11. If G is a graph with pt+(G) = |G| − 2 then G is a P3, P4, C3 or P2∪̇P1.

Furthermore, each of these graphs has a full PSD propagation time interval.

2.4.2 Low propagation time

Low propagation time

Observation 2.4.12. Let G be a graph. Then the following are equivalent:

1. pt+(G) = 0

2. PT+(G) = 0

3. G is a trivial graph.
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Observation 2.4.12 along with Observation 2.1.16 give the following:

Observation 2.4.13. If PT+(G) = 1 then pt+(G) = 1 and G has a full PSD propagation time

interval.

Note that the converse of Observation 2.4.13 is not true since G = P3 has pt+(G) = 1 but

PT+(G) = 2.

Observation 2.4.14. Let G be a graph. Then pt+(G) = 1 if and only if there exists a minimum

PSDZFS for G that is a dominating set and exhibits full forcing. Also, PT+(G) = 1 if and

only if every minimum PSDZFS is a dominating set with full forcing.

The next proposition is a consequence of Proposition 2.2.4.

Proposition 2.4.15. Let G be a tree. Then pt+(G) = 1 if and only if G is a star and

PT+(G) = 1 if and only if G = K2.

Remark 2.4.16. If G is a graph and we append a tree to get G′, then, by cut vertex reduction

[8], Z+(G) = Z+(G′).

Proposition 2.4.17. Let G be a unicyclic graph with cycle vertices labelled in order around

the cycle {1, 2, . . . , n}. Then pt+(G) = 1 if and only if G is one of the following:

1. A C3 or C4 with stars attached to at most a pair of cycle vertices.

2. A C5 with stars attached to cycle vertex 1 and/or cycle vertex 3.

3. A C6 with stars attached to cycle vertex 1 and/or 4.

Proof. Let G be one of the above graphs. Note that Z+(G) = 2 by Remark 2.4.16 and choose

our minimum PSDZFS, namely B, to be the pair of cycle vertices that (could) have stars

attached to them. Then our B is a dominating set that exhibits full forcing so by Observation

2.4.14 pt+(G) = 1.

Now assume G is unicylic and pt+(G) = 1. Then Z+(G) = 2 and by Observation 2.4.14

there must exist a minimum PSDZFS, B, that is a dominating set. Label the vertices of the

cycle in order by {1, 2, . . . , n}. Since B has to be a dominating set n ≤ 6. Further, any trees
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appended to the cycle must be stars and must be in N(B). Thus at most two of the cycle

vertices have appended stars. If n = 3 or n = 4 then any pair of vertices on the cycle dominates

the cycle so stars can be appended to at most two cycle vertices. If n = 5 then, up to symmetry,

only {1, 3} dominates the cycle so the stars can be appended to this pair of cycle vertices. If

n = 6 then, up to symmetry, only {1, 4} dominates the cycle so the appended stars can only

occur at those vertices.

Proposition 2.4.18. G is unicyclic and PT+(G) = 1 if and only if G = C3 or C4.

Proof. If G = C3 or C4 then Z+(G) = 2, G has universal full forcing and every pair of vertices

is a dominating set thus PT+(G) = 1.

Now assume G is unicyclic and PT+(G) = 1. Then Z+(G) = 2, pt+(G) = 1, G is one of

the forms from Proposition 2.4.17, and every minimum PSDZFS must be a dominating set and

exhibit full forcing. For the forms from Proposition 2.4.17, any set of two vertices that is not a

set consisting of a leaf and its neighbor is a PSDZFS. This means our cycle must have 3 or 4

vertices. This also eliminates any leaves appended to our cycle. Therefore G = C3 or C4.

The following definition is from [9]. Suppose H1 = (V1, E1) and H2 = (V2, E2) are graphs

of the same order and µ : V1 → V2 is a bijection. Define the matching graph (H1, H2, µ) to

be the graph constructed as the disjoint union of H1, H2 and the perfect matching between V1

and V2 defined by µ. From the same paper we also have the following theorem about standard

zero forcing.

Theorem 2.4.19. [9] Let G = (V,E) be a graph. Then any two of the following conditions

imply the third.

1. |G| = 2 Z(G)

2. pt(G) = 1

3. G is a matching graph.

This theorem does not extend to positive semidefinite zero forcing as the next example

illustrates.
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Example 2.4.20. If we try to extend Theorem 2.4.19 to positive semidefinite zero forcing our

conditions would be:

1. |G| = 2 Z+(G)

2. pt+(G) = 1

3. G is a matching graph.

If G = P3�P2 then G is a matching graph, pt+(G) = 1 but Z+(G) = 2 so 2 Z+(G) 6= |G|.

Also, if H is K4 without one edge then pt+(H) = 1, |G| = 2 Z+(H) but H is not a matching

graph

Observation 2.4.21. If |G| = 2 Z+(G) and G is a matching graph then pt+(G) = 1.

Proposition 2.4.22. If H is a graph of order n and G = (H,Kn, µ) is a matching graph, then

1. Z+(G) = n− 1 if H is disconnected

2. Z+(G) = n and pt+(G) = 1 if H is connected.

Proof. First assume H is disconnected with vertices {1, 2, . . . , n} and let G = (H,Kn, µ) be

a matching graph. Kn is a subgraph so by Theorem 2.3.4, n − 1 ≤ Z+(G). Now let the

connected components of H be C1, C2, . . . , Ck and label the vertices of Ck as {1, 2, . . . , l}.

Define B = V (C1) ∪ V (C2) ∪ · · · ∪ V (Ck−1) ∪ {µ(1), µ(2), . . . , µ(l− 1)}. Note that |B| = n− 1

and l = 1 is allowed. Then B
(1)
+ = µ(V (C1)) ∪ µ(V (C2)) ∪ µ(V (Ck−1)), B

(2)
+ = µ(l) and

B
(3)
+ = µ(V (Ck)). Therefore B is a PSDZFS and Z+(G) = n− 1.

If H is connected we contract all of the vertices of H into one vertex and we will have

created a Kn+1 minor, so n ≤ Z+(G). If we choose our initial blue set of vertices to be V (Kn),

we will force the graph in one time step, thus Z+(G) = n and pt+(G) = 1.

Corollary 2.4.23. Let H be a graph of order n and G = (H,Kn, µ) be a matching graph.

Then:

1. Z+(G) = n− 1 if and only if H is disconnected
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2. Z+(G) = n if and only if H is connected

Proposition 2.4.24. If H is disconnected with order n and G = (H,Kn, µ) is a matching

graph then pt+(G) ≥ 2.

Proof. Since H is disconnected Proposition 2.4.22 gives Z+(G) = n− 1. Let B be a minimum

PSDZFS for G and define X = V (Kn) and Y = V (H). If B ⊆ X or B ⊆ Y then there is a

white vertex in G that has no blue neighbor so Observation 2.1.10 gives pt+(G,B) ≥ 2. Now

assume that initially Kn has at least two white vertices, w1 and w2. Without loss of generality

the pigeonhole principle says that w1 has a neighbor in H, µ−1(w1), that is also white. Let

W be the vertex set of the connected component in G−B that contains w1, w2 and µ−1(w1).

Notice that any blue neighbor of w1 in G[B ∪W ] is also a neighbor of w2. This means w1 does

not get forced at the first time step so pt+(G) ≥ 2.

The following corollary follows from Proposition 2.4.22 and the contrapositive of Proposition

2.4.24.

Corollary 2.4.25. Let H be a graph of order n and G = (Kn, H, µ) be a matching graph, then

pt+(G) = 1 if and only if H is connected.

Note that the arguments from Theorem 2.4.22 to Corollary 2.4.25 are valid for standard

zero forcing sets and h(G)− 1 ≤ M(G) ≤ Z(G) so the arguments here would simplify some of

the arguments in [9] that dealt with matching graphs.
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CHAPTER 3. COMPUTING POSITIVE SEMIDEFINITE MINIMUM

RANK FOR SMALL GRAPHS

A paper to appear in Involve: A journal of mathematics in 2014, published by Mathematical

Sciences Publishers. c© 2014 Mathematical Sciences Publishers

Steven Osborne and Nathan Warnberg

Abstract

The positive semidefinite minimum rank of a simple graph G is defined to be the smallest

possible rank over all positive semidefinite real symmetric matrices whose ijth entry (for i 6= j)

is nonzero whenever {i, j} is an edge in G and is zero otherwise. The computation of this

parameter directly is difficult. However, there are a number of known bounding parameters

and techniques, which can be calculated and performed on a computer. We programmed

an implementation of these bounds and techniques in the open-source mathematical software

Sage. The program, in conjunction with the orthogonal representation method, establishes the

positive semidefinite minimum rank for all graphs of order 7 or less.

3.1 Introduction

Define a graph G = (V,E) with vertex set V = V (G) and edge set E = E(G). The graphs

discussed herein are simple (no loops or multiple edges) and undirected. The order of G, |G|,

is the cardinality of V (G). Two vertices v and w of a graph G are neighbors if {v, w} ∈ E(G).

If H is a graph with V (H) ⊆ V (G) and E(H) ⊆ E(G) we call H a subgraph of G. H is an
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induced subgraph of G if H is a subgraph of G and if for all pairs v, w ∈ V (H), {v, w} ∈ E(H)

if {v, w} ∈ E(G). Given a set of vertices S ⊆ V (G), G− S is the induced subgraph of G with

vertices V (G) \ S.

A graph P = (V,E), where V (P ) = {v1, v2, . . . , vn}, is called a path if the edges of the

graph are exactly {vi, vi+1} for i = 1, 2, . . . , n− 1 (see Figure 3.1). A cycle is a path that also

has the edge {vn, v1} (see Figure 3.2). A graph G is chordal if every induced cycle has length

no greater than 3. A graph is connected if for any two vertices, v1, v2, there exists a path with

endpoints v1 and v2. A connected graph with no cycles is a tree (see Figure 3.3). An induced

graph that is a tree is an induced tree. A graph with n vertices in which there is an edge

between every vertex is called a complete graph and is denoted Kn.

V1

V2

V3

Vn

Figure 3.1: A path.

Vn

V1

V2

V3

Figure 3.2: A cycle.
Figure 3.3: Example

of a tree.

1

7

6

2

3

5 4

Figure 3.4: The
complete graph on 7

vertices.

Let Sn(R) denote the set of real symmetic n×n matrices. For A = [aij ] ∈ Sn(R), the graph

of A, denoted G(A), is the graph with vertices {1, 2, . . . , n} and edges {{i, j} : aij 6= 0 and

i 6= j}.

The positive semidefinite maximum nullity of G is

M+(G) = max{nullA : A ∈ Sn(R) is positive semidefinite and G(A) = G}

and the positive semidefinite minimum rank of G is

mr+(G) = min{rankA : A ∈ Sn(R) is positive semidefinite and G(A) = G}.

Clearly mr+(G) + M+(G) = |G|.

The following concept was introduced in [2]: In a graph G where all vertices in some vertex

set S ⊆ V (G) are colored black and the remaining vertices are colored white, the positive
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semidefinite color change rule is: If W1,W2, . . . ,Wk are the sets of vertices of the k connected

components of G− S (k = 1 is a possibility), w ∈Wi, u ∈ S, and w is the only white neighbor

of u in the subgraph of G induced by V (Wi ∪ S), then change the color of w to black, written

as u→ w. Given an initial set B of black vertices, the final coloring of B is the set of vertices

colored black as result of applying the positive semidefinite color change rule iteratively until

no more vertices may be colored black. If the final coloring of B is V (G), B is called a positive

semidefinite zero forcing set of G. The positive semidefinite zero forcing number of a graph G,

denoted Z+(G), is the minimum of |B| for all B positive semidefinite zero forcing sets of G. In

[2] it was shown that if G is a graph then M+(G) ≤ Z+(G).

Example 3.1.1. Consider the graph G in Figure 3.5 with the set B = {v4} initially colored

black. When the positive semidefinite color change rule is applied, the connected component of

G−B, W1, is the induced subgraph of G on the vertices {v1, v2, v3}. Since v3 is the only white

neighbor of v4 in the subgraph of G induced by W1 ∪ B (this is actually all of G), v4 → v3 as

demonstrated in Figure 3.6. For the next iteration, the set of black vertices is B′ = {v3, v4}.

The connected components of G − B′ are W ′1, induced by {v1}, and W ′2, induced by {v2}.

Vertex v1 is the only white neighbor of vertex v3 in the subgraph of G induced by W ′1 ∪B′ and

v2 is the only white neighbor of vertex v3 in the subgraph of G induced by W ′2 ∪B′. Therefore,

v3 → v1 (Figure 3.7) and v3 → v2 (Figure 3.8). Now, the entire graph has been forced black

(Figure 3.9) and since the process was started by a single black vertex, Z+(G) ≤ 1. However,

at least one vertex must be colored to begin the zero forcing process. Therefore, Z+(G) = 1.

v4

v3

v1 v2

Figure 3.5

v4

v3

v1 v2

Figure 3.6

v4

v3

v1

Figure 3.7

v4

v3

v2

Figure 3.8

v4

v3

v1 v2

Figure 3.9
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Let G be a graph and S the smallest subset of V (G) such that G−S is disconnected. Then

|S| = κ(G) is called the vertex connectivity of G. A clique covering of G is a set of induced

subgraphs {Si} of G such that each Si is complete and E(G) =
⋃
E(Si). The clique cover

number of a graph G, denoted cc(G), is the minimum of |{Si}| over all {Si} clique coverings

of G.

In [3] M+(G) was determined for every graph G of order at most 6. Use of published software

for computing Z+(G) [4], establishes M+(G) = Z+(G) for |G| ≤ 6. We developed a program

[14] in the open-source computer mathematics software system Sage [17] to compute bounds

for positive semidefinite maximum nullity. The program utilizes software for computing Z+(G)

[4] and known results for computing positive semidefinite maximum nullity. These results are

summarized in Section 3.2. A detailed description of the program may be found in Appendix

A. Sections 3.2 and 3.3 provide a survey of techniques for computing positive semidefinite

minimum rank.

In Section 3.3 we determine M+(G) for |G| ≤ 7 and show M+(G) = Z+(G) for all such

graphs. For all but 13 graphs of order 7, M+(G) can be computed by the program. We then

established M+(G) for the remaining 13 graphs by utilizing orthogonal representation to find a

positive semidefinite matrix A with G(A) = G and nullity of A = Z+(G). This establishes that

M+(G) = Z+(G) for each graph G of order at most 7. These matrices are listed in Appendix

B.

3.2 Known results used by the program to establish positive semidefinite

minimum rank/maximum nullity

Note that all of our parameters sum over the connected components of a disconnected graph.

Given its relation to the positive semidefinite zero forcing number, the following results are

given in terms of positive semidefinite maximum nullity. However, given a graph G, M+(G) +

mr+(G) = |G|, so all of the following results may easily be translated to positive semidefinite

minimum rank.
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Theorem 3.2.1. [8] If G is a graph the following are true:

1. Z+(G) = 1 if and only if M+(G) = 1.

2. Z+(G) = 2 if and only if M+(G) = 2.

3. Z+(G) = 3 implies M+(G) = 3.

Corollary 3.2.2. If Z+(G) ≥ 3, then M+(G) ≥ 3.

Observation 3.2.3. [8] Z+(G) = |G| − 1 if and only if M+(G) = |G| − 1.

Note that the only graph G having Z+(G) = |G|−1 is Kn, the complete graph on n vertices.

For a chordal graph G, it was shown in [3] that cc(G) = mr+(G), in [9] it was shown that

OS(G) = cc(G), and in [2] it was shown that Z+(G) + OS(G) = |G|, where OS(G) is the

ordered subgraph number of G (see [13] for the definition of OS(G)). Thus Z+(G) = M+(G),

which gives the next theorem.

Theorem 3.2.4. [2][3][9] If G is chordal, then M+(G) = Z+(G).

Example 3.2.5. Consider graph G551 in Figure 3.10. Sets of vertices of size 1 and 2 are

clearly not positive semidefinite zero forcing sets, so Z+(G551) ≥ 3. Notice that choosing an

initial set of 3 black vertices that are all non-adjacent does not force anything. By symmetry

this reduces to two cases. In the first case we choose {1, 2} as our adjacent black vertices and as

our third we choose any of the remaining vertices and notice that the graph will not be forced.

Similarly, choosing {1, 3} as our adjacent black vertices and any of the remaining vertices as

our third also fails to force the graph. Thus, Z+(G551) ≥ 4. Observe that {1, 3, 4, 5} forms a

positive semidefinite zero forcing set meaning Z+(G551) ≤ 4, hence Z+(G551) = 4. However,

G551 is chordal as its largest cycle is size 3. Therefore, by Theorem 3.2.4 M+(G551) = 4.

Theorem 3.2.6. [11, 12] For every graph G, κ(G) ≤ M+(G).

Example 3.2.7. By inspection, removing any one vertex from graph G128 (see Figure 3.11)

will not result in a disconnected graph. Therefore, κ(G) ≥ 2. Further, {3, 4} forms a positive

semidefinite zero forcing set for G128. Thus, Z+(G) ≤ 2. This gives 2 ≤ κ(G) ≤ M+(G) ≤

Z+(G) ≤ 2.
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1 2

3

4 5

6 7

Figure 3.10: Graph G551

1 2

3 4

5 6

Figure 3.11: Graph G128

For a graph G the neighborhood of v ∈ V (G) is NG(v) = {w ∈ V (G) | v is adjacent to w}.

Vertices v and w are called duplicate vertices if NG(v) ∪ {v} = NG(w) ∪ {w}.

Proposition 3.2.8. [8] If v and w are duplicate vertices in a connected graph G with |G| ≥ 3,

then Z+(G− v) = Z+(G)− 1.

Proposition 3.2.9. [3] If v and w are duplicate vertices in a connected graph G with |G| ≥ 3,

then mr+(G− v) = mr+(G).

Recall that for any graph G, mr+(G) + M+(G) = |G|, which gives the following corollary.

Corollary 3.2.10. If v and w are duplicate vertices in a connected graph G with |G| ≥ 3, then

M+(G− v) = M+(G)− 1.

Example 3.2.11. In graph G1196 (see Figure 3.12) notice that 2 and 4 are duplicate vertices,

as are vertices 3 and 5. Removal of vertices 2 and 3 results in a graph that is isomorphic to

graph G43 (see Figure 3.13). Z+(G43) = 2 thus M+(G43) = 2 by Theorem 3.2.1. Therefore,

M+(G1196) = 4 by Corollary 3.2.10.

Cut-vertex reduction is a standard technique in the study of minimum rank. A vertex v

of a connected graph G is a cut-vertex if G − v is disconnected. Suppose Gi, i = 1, . . . , h, are

graphs of order at least two, there is a vertex v such that for all i 6= j, Gi ∩ Gj = {v}, and

G = ∪hi=1Gi (if h ≥ 2, then clearly v is a cut-vertex of G). Then it is observed in [10] that

mr+(G) =

h∑
i=1

mr+(Gi).
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1

2 3

4 5

6 7

Figure 3.12: Graph G1196

Figure 3.13: Graph G43

Because mr+(G) + M+(G) = |G|, this is equivalent to

M+(G) =

(
h∑
i=1

M+(Gi)

)
− h+ 1. (3.1)

It is shown in [13] that

OS(G) =
h∑
i=1

OS(Gi)

Because OS(G) + Z+(G) = |G| (shown in [2]), this is equivalent to

Z+(G) =

(
h∑
i=1

Z+(Gi)

)
− h+ 1. (3.2)

1

2 4
3

5

6 7

Figure 3.14:
Graph G419
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H1

H3

H2

Figure 3.15
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6 7

G1

Figure 3.16
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5

6 7

G2

Figure 3.17

1
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3

5

6 7G3

Figure 3.18

Example 3.2.12. Equation 3.2 can be used to compute Z+(G419) and M+(G419) (see Figure

3.14). Notice that vertex 5 is a cut vertex of the graph since removing it results in a disconnected

graph with 3 components, namely H1, H2 and H3. When vertex 5 is reconnected to each of

our components it is easy to see that Gi ∩Gj = {5} for i, j ∈ {1, 2, 3} with i 6= j, as illustrated

by Figures 3.16, 3.17, and 3.18. It is also clear that ∪3i=1Gi = G419, Z+(G1) = 2, Z+(G2) = 1,
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and Z+(G3) = 2. Thus, by Equation 3.2, Z+(G419) = 2+1+2−3+1 = 3. A similar argument

shows that M+(G419) = 3.

Observe that if κ(G) = 1, there exists a cut vertex. The next result is an immediate

consequence of the cut-vertex reduction Equations 3.1 and 3.2.

Observation 3.2.13. [8] Suppose Gi , i = 1, . . . , h are graphs, there is a vertex v such that for

all i 6= j, Gi ∩ Gj = {v}, and G =
⋃h
i=1Gi. If M+(Gi) = Z+(Gi) for all i = 1, . . . , h, then

M+(G) = Z+(G).

Observation 3.2.14. [9] If G is a graph then cc(G) ≥ mr+(G).

Corollary 3.2.15. |G| − cc(G) ≤ M+(G).

Example 3.2.16. In Figure 3.19 notice that graph G200 is not complete so mr+(G200) ≥ 2.

Also, note that the subgraphs induced by S1 = {1, 2, 3, 4, 5} and S2 = {4, 5, 6} are complete

and E(G200) = E(S1) ∪ E(S2) so cc(G200) ≤ 2, hence mr+(G200) = 2.

1

6

2 3

4 5

Figure 3.19: Graph G200

In [3] the tree size of a graph G, denoted ts(G), is defined to be the number of vertices in a

maximum induced tree of G. Also from [3], if T is a maximum induced tree and w is a vertex

not belonging to T , denote by E(w) the set of all edges of all paths in T between every pair of

vertices of T that are adjacent to w. The following theorem was established by Booth et. al.

Theorem 3.2.17. [3] For a connected graph G,

mr+(G) = ts(G)− 1 (3.3)
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4

3

5
6 7

Figure 3.20: Graph G1090

if the following condition holds: there exists a maximum induced tree T such that for u and w

not on T , E(u) ∩ E(w) 6= ∅ if and only if u and w are adjacent in G.

Note that Equation 3.3 may be rewritten as M+(G) = |G| − ts(G) + 1.

Example 3.2.18. To illustrate the previous theorem we consider graph G1090 (see Figure

3.20). To find ts(G1090) notice that G1090 has two disjoint, induced K3’s, namely the graphs

induced by vertex sets {1, 2, 3} and {5, 6, 7}. This means in order to find an induced tree,

removal of one vertex from each K3 is required. By inspection, removal of any of the nine pairs

{{1, 5}, {1, 6}, {1, 7}, {2, 5}, . . . , {3, 7}} results in a graph with a cycle, thus ts(G1090) ≤ 4.

However, the subgraph induced by {1, 4, 5, 6} is a tree (call it T ), hence ts(G1090) = 4. We

show T satisfies the condition of Theorem 3.2.17. The vertices not in G1090− T are 2, 3, and

7, which are all adjacent in G1090. E(2) = {(1, 6), (5, 6), (4, 5)} = E(3) and E(7) = {(5, 6)}.

Therefore, E(2)∩E(3)∩E(7) 6= ∅ and the condition holds because {2, 3, 7} are pairwise adjacent.

Thus M+(G1090) = 4.

3.3 Computation of positive semidefinite maximum nullity of graphs of

order 7 or less

The program [14] implements the results from Section 3.2. Running the program on all

graphs of order 7 or less yielded positive semidefinite maximum nullity for 1239 of 1252 graphs.

It may be noted that the positive semidefinite maximum nullity was already known for the 208

graphs of order 6 or less (see [3]). However, the program was able to successfully compute the
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positive semidefinite maximum nullity for these graphs without referencing this information.

For the remaining 13 graphs, the method of orthogonal representations was used to construct a

matrix representation exhibiting nullity equal to the positive semidefinite zero forcing number.

These matrices are shown in Appendix B.

A set ~V = {~v1, . . . , ~vn} in Rd is an orthogonal representation of the graph G if for i 6= j, the

dot product of ~vi with ~vj is nonzero if the vertices i and j are adjacent, and zero otherwise. If

~V = {~v1, . . . , ~vn} is an orthogonal representation of the graph G in Rd and B = [~v1 . . . ~vn], then

BTB ∈ S+(G) and rank BTB ≤ d. Thus, if a representation is found in Rd then mr+(G) ≤ d

and M+(G) ≥ |G| − d.

Example 3.3.1. Consider graph G17 in Figure 3.21. Note that when we refer to a graph in the

form G17 we are using notation from [16]. To start constructing an orthogonal representation

for G17 let v1, v2, v3, v4 ∈ R2 correspond to vertices 1, 2, 3 and 4 respectively. Choose as many

disjoint vertices as possible, say 1 and 4. By definition v1 · v4 = 0 so let v1 =

 1

0

 and

v4 =

 0

1

. To find v2 and v3, set v2 =

 a2

b2

 and v3 =

 a3

b3

. Now, v2 is adjacent to

v1 and v4 so v1 · v2 6= 0 and v2 · v4 6= 0. Thus a2 6= 0 6= b2. Similarly, a3 6= 0 6= b3. Since

v2 and v3 are not adjacent, we know v2 · v3 = a2a3 + b2b3 = 0. With these restrictions it

is clear that a2 = a3 = b2 = 1 and b3 = −1 is a solution and an orthogonal representation

construction is complete. This gives B =

 1 1 1 0

0 1 −1 1

 and BTB = A (see Figure 3.22).

By construction, rank(A) = 2. Thus mr+(G17) ≤ 2 and M+(G17) ≥ |G|− 2 = 2. Observe that

{1, 2} forms a positive semidefinite zero forcing set for graph G17 hence Z+(G17) ≤ 2. Finally,

2 ≤ M+(G17) ≤ Z+(G17) ≤ 2.

In every case, positive semidefinite maximum nullity was found to equal the positive semidef-

inite zero forcing number. This has established the next result.

Theorem 3.3.2. If G is a graph with 7 or fewer vertices, then M+(G) = Z+(G).

See [15] for a complete spreadsheet containing positive semidefinite maximum nullity and

zero forcing number for all graphs with 7 or fewer vertices.
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1 2

3 4

Figure 3.21: Graph G17


1 1 1 0

1 2 0 1

1 0 2 −1

0 1 −1 1


Figure 3.22: A, a matrix

representation of G17

Corollary 3.3.3. Suppose Gi , i = 1, . . . , h, are graphs with |Gi| ≤ 7, there is a vertex v such

that for all i 6= j, Gi ∩Gj = {v}, and G =
⋃h
i=1Gi. Then M+(G) = Z+(G).

Proof. Apply Theorem 3.3.2 to Observation 3.2.13.

Note that Theorem 3.3.2 cannot be extended to graphs with more than 7 vertices as

Z+(V8) = 4 and M+(V8) = 3 (shown in [13]), where V8 is the Möbius ladder on 8 vertices

(see Figure 3.23).

1 2

3

4

56

7

8

Figure 3.23: Möbius ladder on 8 vertices
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APPENDIX A: METHOD USED BY THE PROGRAM

The program uses the following general method:

1. Separate the graph into its connected components and work on each component sepa-

rately. Results will be summed before reporting.

2. Compute Z+(G).

(a) If Z+(G) ≤ 3, apply the results of Theorem 3.2.1.

(b) Else, use Corollary 3.2.2 to establish a lower bound for M+(G).

3. If Z+(G) = |G| − 1, apply the results of Observation 3.2.3.

4. If G is chordal, apply Theorem 3.2.4.

5. Compute the vertex connectivity of G (κ(G)).

(a) If κ(G) = Z+(G), apply Theorem 3.2.6.

(b) Else, if κ(G) is a tighter bound for M+(G), improve the lower bound.

6. If there are duplicate vertices in the graph, discard all but one copy by applying Corollary

3.2.10 and returning to step 2.

7. Apply the cut-vertex formula iteratively by applying Equation 3.1 and returning to step

2 for each component.

8. Compute the clique cover number of G.

(a) If |G| − cc(G) = Z+(G), apply Corollary 3.2.15.

(b) Else, if cc(G) is a tighter bound for M+(G), improve the lower bound.

9. Apply Theorem 3.2.17 to determine if M+(G) = |G| − ts(G) + 1.
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APPENDIX B: MATRIX REPRESENTATIONS

For each of the following thirteen matrices null(A) = 4 = Z+(G).

G 1060

2 −1 −1 0 1 1 0

−1 1 1 0 0 0 1

−1 1 2 1 1 0 1

0 0 1 1 1 0 0

1 0 1 1 2 1 1

1 0 0 0 1 1 1

0 1 1 0 1 1 2



1

2 3 4 5 6

7

G 1075

1 −1 1 0 0 0 0

−1 3 0 −1 3 1 0

1 0 2 −2 1 0 −1

0 −1 −2 5 0 1 3

0 3 1 0 5 2 1

0 1 0 1 2 1 1

0 0 −1 3 1 1 2



1
2 3

4 5

6 7

G 1100

1 0 −1 4 0 −1 0

0 1 4 2 0 0 1

−1 4 33 0 −4 −15 0

4 2 0 21 1 0 3

0 0 −4 1 1 4 1

−1 0 −15 0 4 17 4

0 1 0 3 1 4 2



1 2

3 4

5
6 7

G 1104

1 1 1 2 0 3 0

1 6 7 0 −1 0 1

1 7 10 −1 −3 0 0

2 0 −1 5 1 7 0

0 −1 −3 1 2 0 1

3 0 0 7 0 11 −1

0 1 0 0 1 −1 1



1 2
3

4 5

6 7
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G 1105

1 1 1 1 0 −1 0

1 3 2 0 1 0 1

1 2 2 2 1 0 0

1 0 2 6 1 0 −2

0 1 1 1 1 1 0

−1 0 0 0 1 2 0

0 1 0 −2 0 0 1



1 2
3

4 5

6 7

G 1135

1 1 −1 0 0 0 0

1 3 −2 1 1 3 0

−1 −2 6 −2 1 0 3

0 1 −2 1 0 1 −1

0 1 1 0 1 2 1

0 3 0 1 2 5 1

0 0 3 −1 1 1 2



12 3

4 5

6 7

G 1137

2 1 −3 0 3 −1 0

1 1 −2 0 2 0 1

−3 −2 30 5 0 1 −1

0 0 5 1 1 0 0

3 2 0 1 6 −1 1

−1 0 1 0 −1 1 1

0 1 −1 0 1 1 2



1 23

4

56 7

G 1165

3 1 −3 1 3 1 0

1 1 2 0 2 0 1

−3 2 21 −4 0 −1 0

1 0 −4 1 1 0 1

3 2 0 1 5 0 3

1 0 −1 0 0 1 −2

0 1 0 1 3 −2 6



1

2
3

4

5
6

7

G 1167

1 2 1 1 1 0 0

2 6 1 0 0 2 1

1 1 2 3 0 −1 0

1 0 3 5 −1 −2 0

1 0 0 −1 11 −2 −3

0 2 −1 −2 −2 2 1

0 1 0 0 −3 1 1



1

2 3 4 5

6

7
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G 1168

2 −3 1 0 1 1 0

−3 6 −1 0 −1 0 1

1 −1 1 −1 0 0 0

0 0 −1 3 2 3 1

1 −1 0 2 2 3 1

1 0 0 3 3 5 2

0 1 0 1 1 2 1



1 23

4

56 7

G 1169

1 1 3 0 2 0 0

1 6 0 −2 0 −1 1

3 0 14 2 0 3 1

0 −2 2 1 −1 1 0

2 0 0 −1 21 −5 −4

0 −1 3 1 −5 2 1

0 1 1 0 −4 1 1



1

2 34

6

5

7

G 1202

1 −4 1 1 0 0 0

−4 21 −2 0 1 −3 −1

1 −2 2 2 1 −1 0

1 0 2 6 −1 −3 −2

0 1 1 −1 2 0 1

0 −3 −1 −3 0 2 1

0 −1 0 −2 1 1 1



1
2

3
4

5 6

7

G 1205

1 1 1 0 0 1 −3

1 3 1 1 1 4 0

1 1 3 3 1 0 −4

0 1 3 5 2 0 0

0 1 1 2 1 1 1

1 4 0 0 1 6 2

−3 0 −4 0 1 2 14



1

2 3

4

56 7

1
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CHAPTER 4. GENERAL CONCLUSIONS

4.1 General discussion

Previously known results on zero forcing, propagation time and positive semidefinite zero

forcing were presented in Section 1.2. In Chapter 2 the ideas about propagation time based on

the zero forcing number were extended to PSD propagation time using the PSD zero forcing

number. In particular, the PSD propagation time interval, minimum and maximum propaga-

tion time for graph families and extreme propagation time were discussed.

In Chapter 3 current graph parameters that are related to PSD minimum rank and PSD

zero forcing number are synthesized to create upper and lower bounds on PSD maximum

nullity. These parameters were programmed using the mathematical software SAGE. From the

program and the use of orthogonal representations it is established that M+(G) = Z+(G) for

all graphs on 7 or fewer vertices. This established that the Möbius ladder on 8 vertices (see

Figure 1.15) is the smallest graph with M+(G) < Z+(G).

4.2 Recommendations for future research

There are many questions yet to be answered about positive semidefinite propagation time.

The most interesting question is whether or not the PSD propagation time interval is full for

all graphs. To date it is known that all graphs of order 10 or less have a full propagation

time interval, along with the graph families discussed in Chapter 2 and others that have been

analyzed but not published. The migration tool has not been exploited as much as it could be,

particularly on nicely structured graph families. There are also several other color change rules

that have corresponding zero forcing numbers [1]; can the propagation time for these other

rules be developed? It has also been established that the standard zero forcing number has
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applications in physics [2]; can these connections be further strengthened and utilized? Zero

forcing and positive semidefinite zero forcing also can be viewed as models for rumor spreading

or virus spreading; can they be modified to investigate more complex models? The algorithms

used for zero forcing and PSD zero forcing are also very similar to those used in the power

domination [4] and generalized power domination [3] of graphs. Can known results for zero

forcing algorithms help answer questions about graph domination problems?
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