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We know that the Bergman complex of a variety (as defined in Chapter 9 of
Sturmfels’ book on “Solving systems of polynomial equations”), i.e. the tropical va-
riety, is a polyhedral complex. For linear subspaces, the paper of Ardila and Klivans
shows that this Bergman complex has a very nice combinatorial structure: a subdivi-
sion of it is the order complex of the lattice of flats of the associated matroid, a very
well understood combinatorial object. (As a corollary we get the topology, etc.)

0.1 Can we find a similar combinatorial description for other classes of Bergman
complexes?

Posed by Federico Ardila

There exists a Bernstein theorem for tropical varieties (see Sturmfels’ book on
“Solving systems of polynomial equations”), there also exists a mixed Monge-Ampere
measure whose value at any connected compact component K of the intersection of
the considered amoebas is the number of solutions of the corresponding polynomial
system in the pre-image (in the complex torus) by Log of K (see the paper “Amoebas,
Monge-Ampere measures and triangulations of the Newton polytope” fromM. Passare
and H. Rullgaard).

0.2 Is it true that this value coincides with the volume of the mixed cell corre- sponding
to K (this volume participates in the Bernstein theorem for tropical varieties)? Is there
a one-to-one correspondence with the solutions of our system in Log−1(K) and the
solutions of a binomial system corresponding to the mixed cell, and which sends real
solutions to real solutions?

Posed by Frederic Bihan

For every ideal a in Rd = Z[x±1
1 , . . . x±1

d ] there is a related dynamical system
generated by d commuting automorphisms of a compact abelian group via Pontryagin
duality. For dynamics it is very important to determine when such systems have a
finiteness condition called expansiveness. A theorem of Klaus Schmidt states in effect
that when a contains no nonzero integers, then the system is expansive if and only if
the complex amoeba of a does not contain the origin.
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0.3 Is there an algorithm to determine whether the complex amoeba of an ideal a in
Rd contains the origin?

Posed by Manfred Einsiedler and Doug Lind

Let k be an algebraically closed non-archimedean field, and p be a prime ideal
in k[x±1

1 , . . . x±1
d ]. We know that the non-archimedean amoeba of p coincides with

the Bieri-Groves set of the algebra A = k[x±1
1 , . . . x±1

d ]/p, and is thus a homogeneous
polyhedral complex whose dimension is the Krull dimension of A, and which is ratio-
nally defined over the value group of k. It also has the geometric property of total
concavity, a sort of harmonic condition of spreading for the complex.

0.4 Given a homogeneous polyhedral complex that is rationally defined over a dense
subgroup of the reals and is also totally concave, what further conditions are necessary
in order for it to be the amoeba of a prime ideal in the ring of Laurent polynomials
over an algebraically closed non-archimedean field?

Posed by Manfred Einsiedler and Doug Lind

0.5 lavidjio

Posed by Manfred Einsiedler and Doug Lind

Comments

lavidjio

An affine manifold is a real manifold with coordinate charts whose transition
maps are in Aff(Rn).

We will call a tropical Calabi-Yau manifold a real manifold B with a dense open
subset B0 ⊆ B which has an affine structure with transition maps in R

n
o GLn(Z),

and such that B \ B0 =: ∆ is a locally finite union of locally closed submanifolds of
B.

It makes sense to call B0 a tropical variety. Certainly B0 locally looks like tropical
affine space, and maps in R

n
oGLn(Z) look like maps defined by tropical monomials,

so this seems natural. One can additionally talk about the sheaf of piecewise linear
functions on B0 with integral slope, or the sheaf of continuous functions on B which
restrict to piecewise linear functions on B0 with integral slope. This should play the
role of the structure sheaf.

0.8 Is it natural to call B a tropical Calabi-Yau variety? In other words, do these
singularities make sense in the tropical context? This is related to Zharkov’s question
of cutting tentacles.

Posed by Bernd Sturmfels

Background
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Let Aff(B,R) denote the sheaf of functions on B which are continuous and restrict
to affine linear functions with integral slope on B0. We define a tropical line bundle
to be an element of H1(B,Aff(B,R)). Representing an element by a Čech 1-cocycle

(αij) for an open cover {Ui}, a section of this tropical line bundle is a collection of
tropical functions si on Ui such that si−sj = αij. (Here this is ordinary subtraction).

We saw how sections of tropical line bundles over tori are tropical theta functions.

0.9 What is tropical Riemann-Roch?

Posed by David Eisenbud

Comments

The above discussion should go over to tropical varieties in general, if we have
the right definitions. The same question applies.

0.10 What is the notion of an ample line bundle? Is it interesting to study embeddings
into tropical projective space?

Background

Exercise: Consider a tropical plane cubic, say

−6x3 − 4x2y − 3xy2 − 6y3 − 4y2z − 3yz2 − 0xyz − 3x2z − 1xz2 − 3z3.

Draw a picture of this curve. Cut off the infinite rays, to get a polygon. The affine
length of each edge is defined as follows. For the vertices of an edge, v and w, write
v − w = ld, where d is a primitive integral vector and l is a real number. Then the
affine length is |l|. Check that the sum of the affine lengths of the edges is 13. Show
this polygon can be obtained as an embedding R/13Z → TP

2, using three tropical
sections of a tropical line bundle of degree five.

Question: This seems a bit strange, doesn’t it?

Comments

Observation: If one uses a line bundle of degree 3 to try to map to TP
2, certain

line segments in the circle will be contracted! Does this mean that the line bundle of
degree 3 isn’t very ample?

Given such a B, we can form two manifolds of twice the dimension, both torus
bundles over B0. Let Λ ⊆ TB0

be a family of lattices in the tangent bundle gener-
ated locally by ∂/∂y1, . . . , ∂/∂yn where y1, . . . , yn are local affine coordinates on B0.
Because of the GLn(Z) restriction on transition functions, this is well-defined. Let
X(B0) = TB0

/Λ. This carries a complex structure which interchanges horizontal and
vertical directions in the tangent bundle. Similarly, let Λ̌ ⊆ T ∗B0

be the dual family of

lattices generated by dy1, . . . , dyn. Then we set X̌(B0) = T
∗
B0
/Λ̌. This is canonically

a symplectic manifold.

One particularly important question relevant for the Strominger-Yau-Zaslow con-
jecture is the following. We would like to find classical sections of tropical line bundles
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(i.e. smooth functions (Ui, si) with si− sj = αij) satisfying the Monge-Ampère equa-
tion

det(∂2si/∂yj∂yk) = constant.

If one does this, then pulling back the functions si toX(B0) will give Kähler potentials
for Ricci-flat metrics.

Real tropical hypersurfaces are directly related to T-hypersurfaces (piecewise-
linear hypersurfaces arising in the combinatorial patchworking). Many restrictions on
the topology of T-hypersurfaces are known. It would be interesting to look at these
restrictions from the point of view of tropical geometry and to study the topology of
real tropical varieties. For example, the following question arises.

0.12 What can be said about Betti numbers of a real tropical variety?

Posed by Ilia Itenberg

The tropical Grassmannian, studied by Speyer and Sturmfels, turns out, at least
in the cases they study, (2, n) and (3, 6) to have strong combinatorial connections
with the Kapranov’s Chow quotient G(r, n)//(C∗)n.

0.13 Try to understand the precise relationship.

Posed by Sean Keel and Eugene Tevelev

G. Tian and S. Kwon recently defined a real Gromov-Witten invariant on each
chamber in the real Chow cycles’ parameter space when the target space is CP

2.
That is a real enumerative invariant, counting the number of intersection points of
pull back of real Chow cycles in the real part of the Kontsevich’s moduli space of
stable maps from genus 0 curves. To use Mikhalkin’s work on counting plane rational
nodal curves, we showed that the classical nodal Severi variety is embedded as a
Zariski open dense subset in the Kontsevich’s moduli space.

0.14 It will be interesting to develop techniques to calculate real Gromov-Witten in-
variants by using tropical geometry.

Posed by Seongchun Kwon

0.15 Is it possible to construct a version of algebraic geometry over a class of alge-
braically closed idempotent semifields (not only tropical semifields)?

Posed by G.L. Litvinov, in cooperation with G.B. Shpiz

Background

A simple criterion for an idempotent semifield to be algebraically closed is proved
in the paper of G. Shpiz “Solving algebraic equations in idempotent semifields”,
Uspekhi Mat. Nauk, v.55, #5 (2000), p.185-186 (in Russian; there is an English
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translation in Russian Mathematical Surveys, 2000). There are many examples of al-
gebraically closed idempotent semifields. For example, some standard linear function
spaces and all the Banach lattices generate algebraically closed idempotent semifields;
see, e.g., the paper of G.L. Litvinov, V.P. Maslov, and G.B. Shpiz “Idempotent func-
tional analysis: an algebraic approach”, Math. Notes, v.69, #5 (2001), p.758-797.

0.16 Is it possible to define a notion of an abstract algebraic (not only affine or pro-
jective) variety over tropical and idempotent semifields?

Posed by G.L. Litvinov, in cooperation with G.B. Shpiz

0.17 Is it possible to define idempotent/tropical versions of such concepts as regular
functions and regular maps to get a natural category of idempotent/tropical “affine”
algebraic varieties? Is it possible to construct a natural correspondence between this
category and a category of idempotent semirings of functions in the spirit of the tra-
ditional algebraic geometry?

Posed by G.L. Litvinov, in cooperation with G.B. Shpiz

0.18 It would be useful to define tropical/idempotent versions of such notions as alge-
braic equations and ideals of affine algebraic varieties in such a way that points and
subvarieties correspond to analogs of ideals.

Posed by G.L. Litvinov, in cooperation with G.B. Shpiz

0.19 It would be useful to describe tropical/idempotent versions of such notions as
prime ideals and irreducible varieties. How to investigate the corresponding decompo-
sition into irreducible components?

Posed by G.L. Litvinov, in cooperation with G.B. Shpiz

0.20 It would be nice to construct dequantization procedures for a natural correspon-
dence between traditional algebraic varieties and tropical varieties? Is it possible to
construct something like a functor (“almost functor”) between the corresponding cat-
egories?

Posed by G.L. Litvinov, in cooperation with G.B. Shpiz

In the paper with Fukaya “Zero loop open strings in the cotangent bundle and
Morse homotopy”, Asian J. Math. 1 (1997), 96 - 180, we proved that

“The moduli space of holomorphic polygons with boundary lying on k-tuples of
Lagrangian graphs of k-Morse functions is diffeomorphic to that of graph flows of the
Morse functions in the adiabatic limit or (in the large complex structure limit). The
projections, near the limit, of the holomorphic polygons on the base of the cotangent
bundle resembles amoeba-type shapes and it shrinks to the graphs of Morse flows in
the limit.”
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In the paper, we dealt with the case of discs, i.e., open Riemann surfaces of genus
zero.

0.21 Study the similar degeneration problem for the higher genus case.

Posed by Yong-Geun Oh

Let f(z) =
∑

α∈A aαz
α, with A a finite subset of the integer lattice Zn, be a

complex Laurent polynomial. Its amoeba is the subset of Rn obtained as the image
of {f(z) = 0} under the mapping (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|). The amoeba is
said to be solid if the number of connected components of its complement is minimal,
that is, equal to the number of vertices of the Newton polytope ∆f of f . Solid
amoebas are particularly well adapted to tropical geometry. The polynomial f is said
to be maximally sparse if the support of summation A is minimal, that is, equal to
the set of vertices of ∆f . When n = 1 a maximally sparse polynomial is a binomial.

0.22 Does every maximally sparse polynomial have a solid amoeba?

Posed by Mikael Passare

Background

The conjecture is mainly based on empirical data (=computer pictures). I did
prove with Hans Rullg̊ard that if the number of vertices is less than or equal to
n + 2, then the tropical spine is contained in the amoeba. (So it would seem very
plausible that the number of complement components is minimal for maximally sparse
polynomials with at most n+ 2 terms.)

Consider a d-dimensional linear subspace V of C
n, and let M be the intersection

of V with (C∗)n. Then M is the complement of a collection H of n hyperplanes in
V , and (virtually) any arrangement of hyperplanes arises in this way. It is a classical
problem to study the topology of M in terms of the combinatorics (for example the
matroid) of H.

0.23

What conditions on H will guarantee that this map is a homeomorphism?

What can we say in general about the topology of the amoeba of a linear space?

How does this relate to Federico Ardila’s characterization of the tropicalization of V
in terms of the matroid of H?

(1) What are the fibers of the map Log : M → A, where A is the amoeba of V ?
(2) What conditions on H will guarantee that this map is a homeomorphism?
(3) What can we say in general about the topology of the amoeba of a linear space?
(4) How does this relate to Federico Ardila’s characterization of the tropicalization

of V in terms of the matroid of H?

Comments
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When d = 1, the answer to (1) is easy. In this case, H is a collection of points
on a complex line. If there exist three points that do not lie on a common real line,
then Log is injective. If all n points lie on a real line, then the fibers of Log are the
orbits of the Z2 action given by reflection over this line.

Higher dimensional examples of hyperplane arrangements such that Log is injec-
tive can be constructed by taking a product of d copies of three generic points on a
complex line, and then adding arbitrarily many more hyperplanes to this collection of
3d-hyperplanes in V = C

d. But there should be many examples that are simpler than
these.

Let f(x1, . . . , xn) be a Laurent polynomial, and write f(x1, . . . , xn) =
∑l

n=1mi(x),
where mi(x) are the monomial terms of x. Given a point a ∈ R

n, let f{a} denote the
list of positive reals [|m1(Log

−1(a))|, . . . , |ml(Log
−1(a))|]. Note this is well defined,

even though Log is not injective.

We say that a list of positive numbers satisfies the polygon condition if it is possible
to make a polygon with those side lengths, i.e. no number is greater than the sum of
all the others.

Theorem 1. Let I be an ideal, and A(I) its amoeba. Then a ∈ A(I) if and only
if f{a} satisfies the polygon condition for all f ∈ I.

Let P (f) = {a ∈ R
n : f{a} satisfies the polygon condition}. Think of this as an

approximation to the amoeba of a hypersurface.

Theorem 2. Let A(f) be the amoeba of a hypersurface. Let

fm(x1, . . . , xn) = the product of f(u1x1, . . . , unxn)

over all ui such that umi = 1. The family P (fm) converges uniformly (in the Euclidean
norm) to A(f).

0.24

An analogous statement to theorem 1 is known for non-archimedean Amoebas. Is
theorem 1 true in an even more general context?

The convergence of the family in theorem 2 is of order O(logm/m), at least in worst
case situations. How fast does this family converge for a randomly chosen f? If the
approximation is within (a logm + b)/m of the actual amoeba, what are a and b, in
typical examples?

What open problems can this be used to solve?

(1) Is there a version of theorem 2 (an explicit family approximating the amoeba)
in the higher codimension case?

(2) An analogous statement to theorem 1 is known for non-archimedean Amoebas.
Is theorem 1 true in an even more general context?

(3) The convergence of the family in theorem 2 is of order O(logm/m), at least
in worst case situations. How fast does this family converge for a randomly
chosen f? If the approximation is within (a logm+b)/m of the actual amoeba,
what are a and b, in typical examples?
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(4) What open problems can this be used to solve?

Posed by Kevin Purbhoo

An example of a tropical Calabi-Yau is the base of a Lagrangian fibered K3
surface. This is a sphere with, generically, an affine structure A on the complement
of 24 points where the singularity at each point has a structure specified by two
features:

(1) The monodromy in the affine structureA along a simple loop around a singular
point is conjugate to

(

1 1
0 1

)

and
(2) there is an injective map Φ : (U − R,A)→ (R2,A0) where U is a neighbor-

hood of the singularity and R is a ray based at the singular point. (Here the
map Φ is assumed to be a local isomorphism of the affine structures A and
A0.) The injectivity follows from an argument involving three-dimensional
contact geometry.

A natural question is what closed surfaces admit such a singular affine structure,
and how many singular points there can be on such a surface. In fact, the possibilities
are: a torus or Klein bottle with no singular points, a sphere with 24 singular points,
or an RP 2 with 12 singular points. Each one can be realized as the base of a (singular)
Lagrangian fibration. The singular fibers in each are diffeomorphic to the singular
fibers in a genus one Lefschetz fibration, i.e. they are spheres with one positive
self-intersection.

0.25 What can one say about the geometry or topology of the set of tropical Calabi-Yau
structures on S2?

Comments

If one is willing to give up the second condition on the singular points, retaining
only the monodromy constraint, then one can construct affine structures on S2 with
12k singularities for any k ≥ 2.

Motivated by the moment map images of Kahler toric varieties, one can con-
sider tropical manifolds that are not necessarily Calabi-Yau. Such a manifold would
be built out of strata that are tropical Calabi-Yau manifolds with boundary that
satisfy appropriate compatibility conditions. A simple example would be a cylinder
equipped with an affine structure such that the boundary of the cylinder is an affine
submanifold.

0.26 Zharkov asked whether one can perform tropical Gromov-Witten calculations on
a Calabi-Yau. Continuing on this line of thought, can one make such calculations on
manifolds that have Lagrangian fibrations over these more general tropical manifolds?
In particular, on S2 × T 2 fibering over the cylinder?

Posed by Margaret Symington
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For f ∈ C[x1, x2], let Cf ⊂ R
2 denote the contour of the amoeba of f , i.e., the

locus of the critical points of the Gauss map. The singular points V on Cf naturally
divides Cf into several arcs E, and thus (V,E) defines a planar graph.

0.27

How does this generalize to higher dimension?What combinatorial properties does
the graph (V,E) have? Which graphs can be realized by some function f?

How does this generalize to higher dimension?

Posed by Thorsten Theobald

Background

Some examples of the contour can be found e.g., in T. Theobald, Computing
amoebas, Exp. Math. 11:513-526, 2002, or in M. Passare and A. Tsikh, Amoebas:
their spines and their contours, Preprint, 2003. Since tracing the contour can be used
to (numerically) compute the boundary of the amoeba,understanding the combinatorial
properties of the contour helps to compute the boundary of the amoeba.

Let I ⊂ C[x1, . . . , xn] be an ideal. The problem is to characterize/compute subsets
J of I which suffice to define the tropical variety T (I), i.e. T (I) = ∩j∈JT (j).

Theorem. The 3× 3-minors of an n× n-matrix of indeterminates (which are not
a not a universal Gröbner basis) suffice to define the tropical variety of that ideal.

0.28

Find a characterization of a (smaller) sufficient set (which should be easier/better
to compute).Do the 4 × 4-minors of a 5 × 5-matrix of indeterminates (which are far
from a universal Gröbner basis) suffice to define the tropical variety?

Find a characterization of a (smaller) sufficient set (which should be easier/better
to compute).

Posed by Rekha Thomas and Bernd Sturmfels

In the lecture I gave at the AIM workshop on Amoebas and tropical geometry, I
defined some enumerative invariants of real algebraic convex 3-manifolds. For exam-
ple, through a generic configuration of 2d real points in the complex projective space,
there passes only finitely many irreducible real rational curves of degree d. Their
real parts provide a collection of embedded knots in RP

3. Equip this real projective
space with a spin structure. Then it is possible to define a spinor orientation on these
knots. Indeed, considering a real subholomorphic line bundle of maximal degree in
the normal bundle of the curves, one first defines a framing on these knots. From this
framing, one can then build a loop in the SO3(R)-principal bundle of orthonormal
frames of RP

3. Then, the spinor orientation of the real curve is the obstruction to
lift this loop as a loop of the Spin3-principal bundle given by the spin structure. Now
the algebraic number of real curves, counted with respect to their spinor orientation,
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turns out to be independent of the choice of the configuration of points and this is
my invariant.

0.29 Is it possible to compute this invariant with the help of tropical algebraic geome-
try?

Posed by Jean-Yves Welschinger

0.30 What is the connection between the tropicalization of the totally positive part of
a variety, and the cluster algebra structure of the variety?

Posed by Lauren Williams

Background

In joint work with David Speyer, we have described the tropicalization of the
totally positive part of the Grassmannian G(k, n). When k = 2, we get a fan which is
closely related to the type A associahedron. For G(3, 6) and G(3, 7), we get fans which
are related to the type D4 and type E6 associahedra. Our results seem to be related
to the results of Joshua Scott, who showed that the cluster algebra structure of the
Grassmannians G(2, n), G(3, 6), and G(3, 7) are of types A, D4, and E6, respectively.

In statistical algebraic geometry, we put a Gaussian probability measure on the
space of polynomials of degree N in m real or complex variables. For simplicity, we
think mainly of the U(m + 1)-invariant Gaussian measure in the complex case and
the O(m+ 1) invariant measure in the real case. We then consider probabilities and
expected values for interesting random variables. The real and complex cases are
quite different, since deterministic problems in the complex case can become random
in the real case.

0.31

Consider random spherical harmonics of degree N . Let the random variable be the
number of nodal domains (i.e. components of the complement of the zero set of the
harmonic). What is the most probable number of nodal domains? The expected
number?

Questions for real algebraic plane curves:

• Consider the ensemble of plane algebraic curves of degree N . Let the random
variable be: the number of components of the curve. What is the most probable
number of connected components? What is the expected number?

• Consider random spherical harmonics of degree N . Let the random variable be
the number of nodal domains (i.e. components of the complement of the zero
set of the harmonic). What is the most probable number of nodal domains?
The expected number?

Random real fewnomials. We fix a number f . In dimension m, we select m real
fewnomials of degree N at random, each with at most f monomials. We pick the
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spectrum of each fewnomial at random (f lattice points in Z
m
+ ∩NΣ). We then pick

the coefficients of these fewnomials at random from the O(m + 1) ensemble. The
problem is:

0.32 What is the expected number of real zeros of a random fewnomial system of
degree N with f monomials in each fewnomial?

Posed by Steve Zelditch

Comments

The current bound, due to Khovanski, is

#real zeros ≤ 2m2f(f−1)/2(m+ 1)f .

It is believed to be an enormous over-estimate.

Zeros of random real fewnomials with fixed Newton polytope. We now pick m
random fewnomials p1, . . . , pm with prescribed Newton polytopes ∆1, . . . ,∆m and fixed
fewnomial number f .

0.33 How does the number of simultaneous zeros behave as the polytopes are dilated,
∆j → N∆j? I.e. we increase the degrees, but keep the fewnomial number f fixed
and keep the spectra in the dilates of the polytopes.

Posed by Steve Zelditch

0.34 Zeros of random real Kac fewnomials. We ask the same questions but define
random real fewnomial as

∑

α cαx
α where cα are normal. That is, we do not use

projective space to define norms of monomials. [The number of real zeros then goes
way down.]

Posed by Steve Zelditch

Comments

Shiffman and I currently have an exact formula for the expected number of real
zeros of random fewnomial ensembles, but we have not yet found its asymptotics.

We adapt Gross’s definition of tropical Calabi-Yau manifolds as well as notations
(see his contribution on tropical Calabi-Yau manifolds and tropical line bundles).

Compact tropical varieties. The natural question is how to make sense of compact
tropical manifolds, not necessarily Calabi-Yau. There has to be a procedure of deleting
pseudo-pods and leaving as much of affine structure as possible. My guess is that this
will require a choice of polarization (tropical Kähler class). But the affine structure
should not depend on this choice and has to be of purely algebro-geometric nature.

0.35 How to modify naturally the valuation map for compact tropical varieties?

0.165 why there are exactly 2 oreintation on¡of¿ vector spaces?


