Open problems: Amoebas and tropical geometry

Corrections and additions to this open problems can be made at http://aimath.org/mathresources/openproblems/

Version: Sat Jan 24 11:52:10 2009

We know that the Bergman complex of a variety (as defined in Chapter 9 of Sturmfels' book on "Solving systems of polynomial equations"), i.e. the tropical variety, is a polyhedral complex. For linear subspaces, the paper of Ardila and Klivans shows that this Bergman complex has a very nice combinatorial structure: a subdivision of it is the order complex of the lattice of flats of the associated matroid, a very well understood combinatorial object. (As a corollary we get the topology, etc.)
0.1 Can we find a similar combinatorial description for other classes of Bergman complexes?
Posed by Federico Ardila

There exists a Bernstein theorem for tropical varieties (see Sturmfels' book on "Solving systems of polynomial equations"), there also exists a mixed Monge-Ampere measure whose value at any connected compact component K of the intersection of the considered amoebas is the number of solutions of the corresponding polynomial system in the pre-image (in the complex torus) by Log of K (see the paper "Amoebas, Monge-Ampere measures and triangulations of the Newton polytope" from M. Passare and H. Rullgaard).
0.2 Is it true that this value coincides with the volume of the mixed cell corre- sponding to K (this volume participates in the Bernstein theorem for tropical varieties)? Is there a one-to-one correspondence with the solutions of our system in $\log ^{-1}(K)$ and the solutions of a binomial system corresponding to the mixed cell, and which sends real solutions to real solutions?
Posed by Frederic Bihan

For every ideal \mathfrak{a} in $R_{d}=\mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots x_{d}^{ \pm 1}\right]$ there is a related dynamical system generated by d commuting automorphisms of a compact abelian group via Pontryagin duality. For dynamics it is very important to determine when such systems have a finiteness condition called expansiveness. A theorem of Klaus Schmidt states in effect that when \mathfrak{a} contains no nonzero integers, then the system is expansive if and only if the complex amoeba of \mathfrak{a} does not contain the origin.
0.3 Is there an algorithm to determine whether the complex amoeba of an ideal \mathfrak{a} in R_{d} contains the origin?
Posed by Manfred Einsiedler and Doug Lind

Let k be an algebraically closed non-archimedean field, and \mathfrak{p} be a prime ideal in $k\left[x_{1}^{ \pm 1}, \ldots x_{d}^{ \pm 1}\right]$. We know that the non-archimedean amoeba of \mathfrak{p} coincides with the Bieri-Groves set of the algebra $A=k\left[x_{1}^{ \pm 1}, \ldots x_{d}^{ \pm 1}\right] / \mathfrak{p}$, and is thus a homogeneous polyhedral complex whose dimension is the Krull dimension of A, and which is rationally defined over the value group of k. It also has the geometric property of total concavity, a sort of harmonic condition of spreading for the complex.
0.4 Given a homogeneous polyhedral complex that is rationally defined over a dense subgroup of the reals and is also totally concave, what further conditions are necessary in order for it to be the amoeba of a prime ideal in the ring of Laurent polynomials over an algebraically closed non-archimedean field?
Posed by Manfred Einsiedler and Doug Lind

0.5 lavidjio

Posed by Manfred Einsiedler and Doug Lind
Comments
lavidjio

An affine manifold is a real manifold with coordinate charts whose transition maps are in $\operatorname{Aff}\left(\mathbb{R}^{n}\right)$.

We will call a tropical Calabi-Yau manifold a real manifold B with a dense open subset $B_{0} \subseteq B$ which has an affine structure with transition maps in $\mathbb{R}^{n} \rtimes \mathrm{GL}_{n}(\mathbb{Z})$, and such that $B \backslash B_{0}=: \Delta$ is a locally finite union of locally closed submanifolds of B.

It makes sense to call B_{0} a tropical variety. Certainly B_{0} locally looks like tropical affine space, and maps in $\mathbb{R}^{n} \rtimes \mathrm{GL}_{n}(\mathbb{Z})$ look like maps defined by tropical monomials, so this seems natural. One can additionally talk about the sheaf of piecewise linear functions on B_{0} with integral slope, or the sheaf of continuous functions on B which restrict to piecewise linear functions on B_{0} with integral slope. This should play the role of the structure sheaf.
0.8 Is it natural to call B a tropical Calabi-Yau variety? In other words, do these singularities make sense in the tropical context? This is related to Zharkov's question of cutting tentacles.
Posed by Bernd Sturmfels
Background

Let $\operatorname{Aff}(B, \mathbb{R})$ denote the sheaf of functions on B which are continuous and restrict to affine linear functions with integral slope on B_{0}. We define a tropical line bundle to be an element of $H^{1}(B, \operatorname{Aff}(B, \mathbb{R}))$. Representing an element by a Čech 1-cocycle
$\left(\alpha_{i j}\right)$ for an open cover $\left\{U_{i}\right\}$, a section of this tropical line bundle is a collection of tropical functions s_{i} on U_{i} such that $s_{i}-s_{j}=\alpha_{i j}$. (Here this is ordinary subtraction).

We saw how sections of tropical line bundles over tori are tropical theta functions.

0.9 What is tropical Riemann-Roch?

Posed by David Eisenbud

Comments

The above discussion should go over to tropical varieties in general, if we have the right definitions. The same question applies.
0.10 What is the notion of an ample line bundle? Is it interesting to study embeddings into tropical projective space?
Background
Exercise: Consider a tropical plane cubic, say

$$
-6 x^{3}-4 x^{2} y-3 x y^{2}-6 y^{3}-4 y^{2} z-3 y z^{2}-0 x y z-3 x^{2} z-1 x z^{2}-3 z^{3} .
$$

Draw a picture of this curve. Cut off the infinite rays, to get a polygon. The affine length of each edge is defined as follows. For the vertices of an edge, v and w, write $v-w=l d$, where d is a primitive integral vector and l is a real number. Then the affine length is $|l|$. Check that the sum of the affine lengths of the edges is 13 . Show this polygon can be obtained as an embedding $\mathbb{R} / 13 \mathbb{Z} \rightarrow T \mathbb{P}^{2}$, using three tropical sections of a tropical line bundle of degree five.

Question: This seems a bit strange, doesn't it?

Comments

Observation: If one uses a line bundle of degree 3 to try to map to $T \mathbb{P}^{2}$, certain line segments in the circle will be contracted! Does this mean that the line bundle of degree 3 isn't very ample?

Given such a B, we can form two manifolds of twice the dimension, both torus bundles over B_{0}. Let $\Lambda \subseteq \mathcal{T}_{B_{0}}$ be a family of lattices in the tangent bundle generated locally by $\partial / \partial y_{1}, \ldots, \partial / \partial y_{n}$ where y_{1}, \ldots, y_{n} are local affine coordinates on B_{0}. Because of the $\mathrm{GL}_{n}(\mathbb{Z})$ restriction on transition functions, this is well-defined. Let $X\left(B_{0}\right)=\mathcal{T}_{B_{0}} / \Lambda$. This carries a complex structure which interchanges horizontal and vertical directions in the tangent bundle. Similarly, let $\check{\Lambda} \subseteq \mathcal{T}_{B_{0}}^{*}$ be the dual family of lattices generated by $d y_{1}, \ldots, d y_{n}$. Then we set $\check{X}\left(B_{0}\right)=\mathcal{T}_{B_{0}}^{*} / \check{\Lambda}$. This is canonically a symplectic manifold.

One particularly important question relevant for the Strominger-Yau-Zaslow conjecture is the following. We would like to find classical sections of tropical line bundles
(i.e. smooth functions $\left(U_{i}, s_{i}\right)$ with $\left.s_{i}-s_{j}=\alpha_{i j}\right)$ satisfying the Monge-Ampère equation

$$
\operatorname{det}\left(\partial^{2} s_{i} / \partial y_{j} \partial y_{k}\right)=\text { constant }
$$

If one does this, then pulling back the functions s_{i} to $X\left(B_{0}\right)$ will give Kähler potentials for Ricci-flat metrics.

Real tropical hypersurfaces are directly related to T-hypersurfaces (piecewiselinear hypersurfaces arising in the combinatorial patchworking). Many restrictions on the topology of T-hypersurfaces are known. It would be interesting to look at these restrictions from the point of view of tropical geometry and to study the topology of real tropical varieties. For example, the following question arises.
0.12 What can be said about Betti numbers of a real tropical variety?

Posed by Ilia Itenberg

The tropical Grassmannian, studied by Speyer and Sturmfels, turns out, at least in the cases they study, $(2, n)$ and $(3,6)$ to have strong combinatorial connections with the Kapranov's Chow quotient $G(r, n) / /\left(\mathbb{C}^{*}\right)^{n}$.
0.13 Try to understand the precise relationship.

Posed by Sean Keel and Eugene Tevelev
G. Tian and S. Kwon recently defined a real Gromov-Witten invariant on each chamber in the real Chow cycles' parameter space when the target space is $\mathbb{C P}^{2}$. That is a real enumerative invariant, counting the number of intersection points of pull back of real Chow cycles in the real part of the Kontsevich's moduli space of stable maps from genus 0 curves. To use Mikhalkin's work on counting plane rational nodal curves, we showed that the classical nodal Severi variety is embedded as a Zariski open dense subset in the Kontsevich's moduli space.
0.14 It will be interesting to develop techniques to calculate real Gromov-Witten invariants by using tropical geometry.
Posed by Seongchun Kwon
0.15 Is it possible to construct a version of algebraic geometry over a class of algebraically closed idempotent semifields (not only tropical semifields)?
Posed by G.L. Litvinov, in cooperation with G.B. Shpiz
Background
A simple criterion for an idempotent semifield to be algebraically closed is proved in the paper of G. Shpiz "Solving algebraic equations in idempotent semifields", Uspekhi Mat. Nauk, v.55, \#5 (2000), p.185-186 (in Russian; there is an English
translation in Russian Mathematical Surveys, 2000). There are many examples of algebraically closed idempotent semifields. For example, some standard linear function spaces and all the Banach lattices generate algebraically closed idempotent semifields; see, e.g., the paper of G.L. Litvinov, V.P. Maslov, and G.B. Shpiz "Idempotent functional analysis: an algebraic approach", Math. Notes, v.69, \#5 (2001), p.758-797.
0.16 Is it possible to define a notion of an abstract algebraic (not only affine or projective) variety over tropical and idempotent semifields?
Posed by G.L. Litvinov, in cooperation with G.B. Shpiz
0.17 Is it possible to define idempotent/tropical versions of such concepts as regular functions and regular maps to get a natural category of idempotent/tropical "affine" algebraic varieties? Is it possible to construct a natural correspondence between this category and a category of idempotent semirings of functions in the spirit of the traditional algebraic geometry?

Posed by G.L. Litvinov, in cooperation with G.B. Shpiz
0.18 It would be useful to define tropical/idempotent versions of such notions as algebraic equations and ideals of affine algebraic varieties in such a way that points and subvarieties correspond to analogs of ideals.
Posed by G.L. Litvinov, in cooperation with G.B. Shpiz
0.19 It would be useful to describe tropical/idempotent versions of such notions as prime ideals and irreducible varieties. How to investigate the corresponding decomposition into irreducible components?
Posed by G.L. Litvinov, in cooperation with G.B. Shpiz
0.20 It would be nice to construct dequantization procedures for a natural correspondence between traditional algebraic varieties and tropical varieties? Is it possible to construct something like a functor ("almost functor") between the corresponding categories?
Posed by G.L. Litvinov, in cooperation with G.B. Shpiz

In the paper with Fukaya "Zero loop open strings in the cotangent bundle and Morse homotopy", Asian J. Math. 1 (1997), 96-180, we proved that
"The moduli space of holomorphic polygons with boundary lying on k-tuples of Lagrangian graphs of k-Morse functions is diffeomorphic to that of graph flows of the Morse functions in the adiabatic limit or (in the large complex structure limit). The projections, near the limit, of the holomorphic polygons on the base of the cotangent bundle resembles amoeba-type shapes and it shrinks to the graphs of Morse flows in the limit."

In the paper, we dealt with the case of discs, i.e., open Riemann surfaces of genus zero.
0.21 Study the similar degeneration problem for the higher genus case.

Posed by Yong-Geun Oh

Let $f(z)=\sum_{\alpha \in A} a_{\alpha} z^{\alpha}$, with A a finite subset of the integer lattice \mathbf{Z}^{n}, be a complex Laurent polynomial. Its amoeba is the subset of \mathbf{R}^{n} obtained as the image of $\{f(z)=0\}$ under the mapping $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$. The amoeba is said to be solid if the number of connected components of its complement is minimal, that is, equal to the number of vertices of the Newton polytope Δ_{f} of f. Solid amoebas are particularly well adapted to tropical geometry. The polynomial f is said to be maximally sparse if the support of summation A is minimal, that is, equal to the set of vertices of Δ_{f}. When $n=1$ a maximally sparse polynomial is a binomial.
0.22 Does every maximally sparse polynomial have a solid amoeba?

Posed by Mikael Passare

Background

The conjecture is mainly based on empirical data (=computer pictures). I did prove with Hans Rullgård that if the number of vertices is less than or equal to $n+2$, then the tropical spine is contained in the amoeba. (So it would seem very plausible that the number of complement components is minimal for maximally sparse polynomials with at most $n+2$ terms.)

Consider a d-dimensional linear subspace V of \mathbb{C}^{n}, and let M be the intersection of V with $\left(\mathbb{C}^{*}\right)^{n}$. Then M is the complement of a collection H of n hyperplanes in V, and (virtually) any arrangement of hyperplanes arises in this way. It is a classical problem to study the topology of M in terms of the combinatorics (for example the matroid) of H.
0.23

What conditions on H will guarantee that this map is a homeomorphism?
What can we say in general about the topology of the amoeba of a linear space?
How does this relate to Federico Ardila's characterization of the tropicalization of V in terms of the matroid of H ?
(1) What are the fibers of the map Log: $M \rightarrow A$, where A is the amoeba of V ?
(2) What conditions on H will guarantee that this map is a homeomorphism?
(3) What can we say in general about the topology of the amoeba of a linear space?
(4) How does this relate to Federico Ardila's characterization of the tropicalization of V in terms of the matroid of H ?

When $d=1$, the answer to (1) is easy. In this case, H is a collection of points on a complex line. If there exist three points that do not lie on a common real line, then Log is injective. If all n points lie on a real line, then the fibers of Log are the orbits of the \mathbb{Z}_{2} action given by reflection over this line.

Higher dimensional examples of hyperplane arrangements such that Log is injective can be constructed by taking a product of d copies of three generic points on a complex line, and then adding arbitrarily many more hyperplanes to this collection of 3d-hyperplanes in $V=\mathbb{C}^{d}$. But there should be many examples that are simpler than these.

Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a Laurent polynomial, and write $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{n=1}^{l} m_{i}(x)$, where $m_{i}(x)$ are the monomial terms of x. Given a point $a \in \mathbb{R}^{n}$, let $f\{a\}$ denote the list of positive reals $\left[\left|m_{1}\left(\log ^{-1}(a)\right)\right|, \ldots,\left|m_{l}\left(\log ^{-1}(a)\right)\right|\right]$. Note this is well defined, even though Log is not injective.

We say that a list of positive numbers satisfies the polygon condition if it is possible to make a polygon with those side lengths, i.e. no number is greater than the sum of all the others.

Theorem 1. Let I be an ideal, and $A(I)$ its amoeba. Then $a \in A(I)$ if and only if $f\{a\}$ satisfies the polygon condition for all $f \in I$.

Let $P(f)=\left\{a \in \mathbb{R}^{n}: f\{a\}\right.$ satisfies the polygon condition $\}$. Think of this as an approximation to the amoeba of a hypersurface.

Theorem 2. Let $A(f)$ be the amoeba of a hypersurface. Let

$$
f_{m}\left(x_{1}, \ldots, x_{n}\right)=\text { the product of } f\left(u_{1} x_{1}, \ldots, u_{n} x_{n}\right)
$$

over all u_{i} such that $u_{i}^{m}=1$. The family $P\left(f_{m}\right)$ converges uniformly (in the Euclidean norm) to $A(f)$.
0.24

An analogous statement to theorem 1 is known for non-archimedean Amoebas. Is theorem 1 true in an even more general context?

The convergence of the family in theorem 2 is of order $O(\log m / m)$, at least in worst case situations. How fast does this family converge for a randomly chosen f ? If the approximation is within $(a \log m+b) / m$ of the actual amoeba, what are a and b, in typical examples?
What open problems can this be used to solve?
(1) Is there a version of theorem 2 (an explicit family approximating the amoeba) in the higher codimension case?
(2) An analogous statement to theorem 1 is known for non-archimedean Amoebas. Is theorem 1 true in an even more general context?
(3) The convergence of the family in theorem 2 is of order $O(\log m / m)$, at least in worst case situations. How fast does this family converge for a randomly chosen f ? If the approximation is within $(a \log m+b) / m$ of the actual amoeba, what are a and b, in typical examples?
(4) What open problems can this be used to solve?

Posed by Kevin Purbhoo

An example of a tropical Calabi-Yau is the base of a Lagrangian fibered K3 surface. This is a sphere with, generically, an affine structure \mathcal{A} on the complement of 24 points where the singularity at each point has a structure specified by two features:
(1) The monodromy in the affine structure \mathcal{A} along a simple loop around a singular point is conjugate to

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

and
(2) there is an injective map $\Phi:(U-R, \mathcal{A}) \rightarrow\left(\mathbb{R}^{2}, \mathcal{A}_{0}\right)$ where U is a neighborhood of the singularity and R is a ray based at the singular point. (Here the map Φ is assumed to be a local isomorphism of the affine structures \mathcal{A} and \mathcal{A}_{0}.) The injectivity follows from an argument involving three-dimensional contact geometry.

A natural question is what closed surfaces admit such a singular affine structure, and how many singular points there can be on such a surface. In fact, the possibilities are: a torus or Klein bottle with no singular points, a sphere with 24 singular points, or an $\mathbb{R} P^{2}$ with 12 singular points. Each one can be realized as the base of a (singular) Lagrangian fibration. The singular fibers in each are diffeomorphic to the singular fibers in a genus one Lefschetz fibration, i.e. they are spheres with one positive self-intersection.
0.25 What can one say about the geometry or topology of the set of tropical Calabi-Yau structures on S^{2} ?
Comments
If one is willing to give up the second condition on the singular points, retaining only the monodromy constraint, then one can construct affine structures on S^{2} with $12 k$ singularities for any $k \geq 2$.

Motivated by the moment map images of Kahler toric varieties, one can consider tropical manifolds that are not necessarily Calabi-Yau. Such a manifold would be built out of strata that are tropical Calabi-Yau manifolds with boundary that satisfy appropriate compatibility conditions. A simple example would be a cylinder equipped with an affine structure such that the boundary of the cylinder is an affine submanifold.
0.26 Zharkov asked whether one can perform tropical Gromov-Witten calculations on a Calabi-Yau. Continuing on this line of thought, can one make such calculations on manifolds that have Lagrangian fibrations over these more general tropical manifolds? In particular, on $S^{2} \times T^{2}$ fibering over the cylinder?

Posed by Margaret Symington

For $f \in \mathbb{C}\left[x_{1}, x_{2}\right]$, let $\mathcal{C}_{f} \subset \mathbb{R}^{2}$ denote the contour of the amoeba of f, i.e., the locus of the critical points of the Gauss map. The singular points V on \mathcal{C}_{f} naturally divides \mathcal{C}_{f} into several $\operatorname{arcs} E$, and thus (V, E) defines a planar graph.
0.27

How does this generalize to higher dimension? What combinatorial properties does the graph (V, E) have? Which graphs can be realized by some function f ?

How does this generalize to higher dimension?
Posed by Thorsten Theobald

Background

Some examples of the contour can be found e.g., in T. Theobald, Computing amoebas, Exp. Math. 11:513-526, 2002, or in M. Passare and A. Tsikh, Amoebas: their spines and their contours, Preprint, 2003. Since tracing the contour can be used to (numerically) compute the boundary of the amoeba,understanding the combinatorial properties of the contour helps to compute the boundary of the amoeba.

Let $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. The problem is to characterize/compute subsets J of I which suffice to define the tropical variety $\mathcal{T}(I)$, i.e. $\mathcal{T}(I)=\cap_{j \in J} \mathcal{T}(j)$.

Theorem. The 3×3-minors of an $n \times n$-matrix of indeterminates (which are not a not a universal Gröbner basis) suffice to define the tropical variety of that ideal.
0.28

Find a characterization of a (smaller) sufficient set (which should be easier/better to compute). Do the 4×4-minors of a 5×5-matrix of indeterminates (which are far from a universal Gröbner basis) suffice to define the tropical variety?

Find a characterization of a (smaller) sufficient set (which should be easier/better to compute).
Posed by Rekha Thomas and Bernd Sturmfels

In the lecture I gave at the AIM workshop on Amoebas and tropical geometry, I defined some enumerative invariants of real algebraic convex 3-manifolds. For example, through a generic configuration of $2 d$ real points in the complex projective space, there passes only finitely many irreducible real rational curves of degree d. Their real parts provide a collection of embedded knots in $\mathbb{R} \mathbb{P}^{3}$. Equip this real projective space with a spin structure. Then it is possible to define a spinor orientation on these knots. Indeed, considering a real subholomorphic line bundle of maximal degree in the normal bundle of the curves, one first defines a framing on these knots. From this framing, one can then build a loop in the $\mathrm{SO}_{3}(\mathbb{R})$-principal bundle of orthonormal frames of $\mathbb{R} \mathbb{P}^{3}$. Then, the spinor orientation of the real curve is the obstruction to lift this loop as a loop of the Spin_{3}-principal bundle given by the spin structure. Now the algebraic number of real curves, counted with respect to their spinor orientation,
turns out to be independent of the choice of the configuration of points and this is my invariant.
0.29 Is it possible to compute this invariant with the help of tropical algebraic geometry?
Posed by Jean-Yves Welschinger
0.30 What is the connection between the tropicalization of the totally positive part of a variety, and the cluster algebra structure of the variety?
Posed by Lauren Williams
Background
In joint work with David Speyer, we have described the tropicalization of the totally positive part of the Grassmannian $G(k, n)$. When $k=2$, we get a fan which is closely related to the type A associahedron. For $G(3,6)$ and $G(3,7)$, we get fans which are related to the type $D 4$ and type $E 6$ associahedra. Our results seem to be related to the results of Joshua Scott, who showed that the cluster algebra structure of the Grassmannians $G(2, n), G(3,6)$, and $G(3,7)$ are of types $A, D 4$, and $E 6$, respectively.

In statistical algebraic geometry, we put a Gaussian probability measure on the space of polynomials of degree N in m real or complex variables. For simplicity, we think mainly of the $U(m+1)$-invariant Gaussian measure in the complex case and the $O(m+1)$ invariant measure in the real case. We then consider probabilities and expected values for interesting random variables. The real and complex cases are quite different, since deterministic problems in the complex case can become random in the real case.
0.31

Consider random spherical harmonics of degree N. Let the random variable be the number of nodal domains (i.e. components of the complement of the zero set of the harmonic). What is the most probable number of nodal domains? The expected number?
Questions for real algebraic plane curves:

- Consider the ensemble of plane algebraic curves of degree N. Let the random variable be: the number of components of the curve. What is the most probable number of connected components? What is the expected number?
- Consider random spherical harmonics of degree N. Let the random variable be the number of nodal domains (i.e. components of the complement of the zero set of the harmonic). What is the most probable number of nodal domains? The expected number?

Random real fewnomials. We fix a number f. In dimension m, we select m real fewnomials of degree N at random, each with at most f monomials. We pick the
spectrum of each fewnomial at random (f lattice points in $\mathbb{Z}_{+}^{m} \cap N \Sigma$). We then pick the coefficients of these fewnomials at random from the $O(m+1)$ ensemble. The problem is:
0.32 What is the expected number of real zeros of a random fewnomial system of degree N with f monomials in each fewnomial?
Posed by Steve Zelditch

Comments

The current bound, due to Khovanski, is

$$
\text { \#real zeros } \leq 2^{m} 2^{f(f-1) / 2}(m+1)^{f} .
$$

It is believed to be an enormous over-estimate.

Zeros of random real fewnomials with fixed Newton polytope. We now pick m random fewnomials p_{1}, \ldots, p_{m} with prescribed Newton polytopes $\Delta_{1}, \ldots, \Delta_{m}$ and fixed fewnomial number f.
0.33 How does the number of simultaneous zeros behave as the polytopes are dilated, $\Delta_{j} \rightarrow N \Delta_{j}$? I.e. we increase the degrees, but keep the fewnomial number f fixed and keep the spectra in the dilates of the polytopes.
Posed by Steve Zelditch
0.34 Zeros of random real Kac fewnomials. We ask the same questions but define random real fewnomial as $\sum_{\alpha} c_{\alpha} x^{\alpha}$ where c_{α} are normal. That is, we do not use projective space to define norms of monomials. [The number of real zeros then goes way down.]
Posed by Steve Zelditch

Comments

Shiffman and I currently have an exact formula for the expected number of real zeros of random fewnomial ensembles, but we have not yet found its asymptotics.

We adapt Gross's definition of tropical Calabi-Yau manifolds as well as notations (see his contribution on tropical Calabi-Yau manifolds and tropical line bundles).

Compact tropical varieties. The natural question is how to make sense of compact tropical manifolds, not necessarily Calabi-Yau. There has to be a procedure of deleting pseudo-pods and leaving as much of affine structure as possible. My guess is that this will require a choice of polarization (tropical Kähler class). But the affine structure should not depend on this choice and has to be of purely algebro-geometric nature.
0.35 How to modify naturally the valuation map for compact tropical varieties?
0.165 why there are exactly 2 oreintation onjof j vector spaces?

