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CHAPTER A: PARTICIPANT CONTRIBUTIONS

A.1 Amadori, Debora

I would be interested in the numerical approximation of the scalar equation

wt e =-h (%) (1)

€

with A continuous and 1-periodic, with zero average; f € C*(R), u- f'(u) > 0, f(u) — +o0
as |u| — +o00, and with 1-periodic initial data.

I can contribute some recent results on the pointwise behavior of the oscillation, as
e — 0, of the solutions to (1); this analysis could be of help in the numerical approximation
of (1).

More generally, I am interested in the analysis of problems that exibit resonant phe-
nomena.

A.2 Chertock, Alina

One of the projects I am working on is aimed at developing a hybrid finite-volume-
particle method for systems of conservation or balance laws coupled with a nonlinear trans-
port equation. Solutions of such systems are usually nonsmooth: they may contain shocks,
rarefaction waves and contact discontinuities. The presence of a stiff source term adds
another level of complexity to the model. Such problems arise, for instance, in modeling
transport of a passive pollutant in shallow water (in which case the source of the pollutant
may be even a point-source modeled by a delta-function) or compressible inviscid reacting
gases (in which case the source is usually stiff, since the reaction is fast and the time scale as-
sociated with the reaction is much smaller than that associated with the fluid advection). It
is well known that numerical dissipation present in shock-capturing methods may not only
seriously degrade the quality of the computed solution but may also lead to nonphysical
states, which in turn, may completely destroy the numerical solution.

The core idea of the new method is to use a finite-volume method to numerically
integrate a system of conservation (balance) laws and a particle method to solve transport
equations coupled with the system. This way the specific advantages of each scheme are
utilized at the right place. Particle methods applied to transport equations, can ameliorate
most of the problems posed by the presence of numerical viscosity since particles provide a
non-dissipative approximation of the convection. In these methods, the solution is sought
in the form of a linear combination of the delta-functions, whose positions and coefficients
represent locations and weights of the particles, respectively. The locations and weights of
the particles are then evolved in time according to a system of ODEs, obtained from the
weak formulation of the transport equations.

We have successfully implemented the finite-volume-particle method for the above as
well as some other (inviscid) models and we plan to apply the method to more realistic
advection-diffusion-reaction models. This extension is not straightforward since it will in-
volve the treatment of diffusion and reaction terms that may appear in the equation. There
was a number of attempts in the past to use particle methods for approximating solutions
of convection-diffusion models, but each of them has its own drawback, associated primarily
with the reconstruction of the point values of the computed solution from its particle distri-
bution. Most of known recovering procedures, suitable for smooth functions, typically fail
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to produce reasonable results in the nonsmooth case. In the purely convective case, we were
able to overcome this difficulty using the concept of the dual equation, but it is not clear
whether this approach can be generalized for the viscous case.

Another (theoretical) difficulty one may encounter while implementing the finite-volume-
particle method is related to the lack of smoothness in the right-hand side of the ODE system
that describes the evolution of particles and their weights. While the existence of a general-
ized solution is guaranteed by the theory of Filippov, the uniqueness can only be obtained
via a proper regularization. The presence of a point-source term makes the problem even
more challenging and a theoretical justification of the particle method in this case is a wide
open problem.

A.3 Christoforou, Cleopatra

My area of interest is the theory of hyperbolic conservation laws. My current research
is an application of the method of vanishing viscosity: The aim is to construct solutions of
hyperbolic systems of balance laws with dissipative source terms

ur + (f(u))e + g(u) =0

as limits of solutions of parabolic systems

up + (f(u)e + g(u) = eug,

with viscosity € tending to zero. The analysis of the vanishing viscosity method of Bianchini
and Bressan [BiB] is extended to this class of systems. Because of the presence of the
dissipative source terms, supplementary Lyapunov functionals are constructed and additional
techniques are employed to those already devised in [BiB]. Moreover, an exponential decay
of the total variation of vanishing viscosity approximations is established. I am interested in
applying these techniques to other systems of conservation laws. A very challenging question
would be the case of systems with physical viscosity.

Finally, I am very interested in increasing my knowledge in mathematical biology. It
is a challenging, fast-growing area that together with numerical methods will introduce me
to new tools and assist me to improve my ability to work with physical problems.

A.4 Despres, Bruno

My interests go in two directions.

The first one is not directly related to the subject of the Workshop. It is about the
theory of convergence of Finite Volume schemes by means of the old consistency+stability-
implies-convergence approach. It helps to get a linear approach of the convegrence of these
methods and it is possible to prove quite accurate results even for a non linear scalar con-
servation law.

The other one is directly related to the subject of Workshop. With a colleague
(Christophe Buet) we are currently working on the numerical approximation of the model
problem

{ U + lUx = 0,
v+ 2 f(u,v) = —Fv.
Our idea is that we absolutely need an implicite solver for time step requirements of the
diffusion limit. Various stability criteria are possible. If the model is the moment modeliza-
tion of some kinetic equation, then % < 1 is natural. We have develop a 1D solver for this
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system : the solver is implicit (we only solve a linear system with ad-hoc frozen coefficients),

stable ('Z—l < 1), and has the correct diffusion limit. I will be happy to compare this approach
with others.

A.5 Filbet, Francis

Approximation of Hyperbolic Models for Chemosensitive Movement

Numerical methods with different orders of accuracy are proposed to approximate hy-
perbolic models for chemosensitive movements. On the one hand, first and second order
well-balanced finite volume schemes are presented. This approach provides an exact con-
servation of the steady state solutions. On the other hand, a high order finite difference
weighted essentially non-oscillatory (WENO) scheme is constructed and the well-balanced
reconstruction is adapted to this scheme in order to exactly preserve steady states and to
retain high order accuracy. Numerical simulations are performed to verify accuracy and the
well-balanced property of the proposed schemes and to observe the formation of networks in
the hyperbolic models similar to those observed in the experiments.

Keywords: chemotaxis, hyperbolic systems, finite volume methods, finite difference
methods, WENO schemes, well-balanced schemes.

This work is in collaboration with Chi-Wang Shu, Brown University

A.6 Gamba, Irene

Non-equilibrium time dependent reactive kinetic-Poisson systems appear in the mod-
eling of such diverse areas as electron transport in solids, biological transport, granular and
energy dissipative flows. These non-conservative systems exhibit a common feature: their
steady or self similar states are given by statistical Stationary Non-equilibrium States (SNS),
meaning they are far deviated from Gaussian probability distributions. They entice approx-
imating hydrodynamic models modeling ”source” representing momentum and energy gain
or dissipation due to strong friction or forcing scales.

When these non-equilibrium regimes take over, classical hydrodynamic models (based
on Gaussians/Maxwellian closures) do not apply and need to be corrected to account for the
non-equilibrium statistics.

I am interested in issues related to the mathematical properties of these models such
as existence, uniqueness, self-similarity, stability and to analyze their higher order moment
equations (hydro-dynamical corrections) and corresponding boundary value problems; as
well as to investigate optimal numerical simulation methods for corresponding quantum,
kinetic and macroscopic (hydrodynamic) models.

[ will present a very recent work related to item (1.i) below:

“Deterministic solvers to transient Boltzmann-Poisson equations”

Abstract: The Boltzmann-Poisson system is the most reliable model for the flow of
charged particles in semiconductors devices. Real device models have not already been
simulated by deterministic computations due to its high computational cost, although is very
well known and general practice to solve these models by Monte-Carlo (DSMC) methods.

We focus in a rather easy and fast deterministic solver for a channel flow: one and
two-dimension and three-velocity dimension. The system of equations reduces to a linear
kinetic (non-local) equation solved by WENO methods coupled with the Poisson equation
for the force field acting on the particles accounting for long range interactions. We will
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focus on the development of the method, simulation results for diodes and MESFET as well
as comparisons to other classical models in the field. In particular we compute, determin-
istically, the evolution probability density function with its first three moments. Boundary
singularities for 2-space dimensions models are accurately computed.

This work has been done in collaboration with J.A. Carrillo, A. Majorana and C.-W.
Shu.

Finally, I will present work in progress on computations by DG schemes of linear
Boltzmann equations, work in collaboration with Jennifer Proft and Ross Heath.

Some other issues I am and have been studying, and I am interested in learning more,
are:

1)Self-consistent models of kinetic charged transport. Perturbations of Stationary Non-
Equilibrium States (SNS).

1.i) Numerical implementation of deterministic kinetic-Poisson systems and compar-
isons to DSMC simulations by WENO schemes, and more recently, developing Discontinuous
Galerkin (DG) schemes.

1.ii)Boundary value problems, existence and hydrodynamics limits for strong force
fields. Coupling of hyperbolic (SNS) and diffusion (SES) scaling regimes by kinetic layers.

1.iii) Biological transport of charged molecules and Chemotaxis kinetic transport.

2) Quantum Trajectory Models (QTM) for charged transport and Quantum hydrody-
namics (QHD) from a semi-classical picture: thermalization and Bose-Einstein condensates
models. Existence and non-existence to dispersion/diffusion models. Applications and com-
putations.

2.1) Strong force field (Chapman-Enskog) expansion to the semi-classical Wigner trans-
port equation

2.ii) Finite time flow up for the QHD equations under high velocity data

2.iii)Numerical calculations for quantum states.

3) The Boltzmann equation for energy dissipative flows, such as inelastic collisions in
the modeling of rapid granular flows or elastic collisions in mixtures.

3.1) Energy dissipative Maxwell model type-solutions with power like tails-Levy distri-
butions. Trends to equilibrium for energy dissipative Pseudo Maxwell models.

3.i1) Point-wise upper bounds for variable hard spheres, both in the elastic and inelastic
case. Boundary value problems. Space inhomogeneous equation.

3.iii) Numerical implementations by spectral methods

References can be found at www.ma.utexas.edu/users/gamba/research.html

A.7 Gelb, Anne

I am most interested in shallow water equations as they pertain to environmental fluid
dynamics. Specifically I am interested in global and local methods as they can be applied
to spheres. I am also interested in problems of long term simulations.

A.8 Gerritsen, Margot

Joint contribution with Rami Younis.

Our general area of interest is the efficient numerical solution of flow and transport
equations in reservoirs. At the moment, we focus primarily on the design of accurate meth-
ods for simulation of miscible gas injection and in-situ combustion (or fire-flooding), which
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are important Enhanced Oil Recovery processes. These processes are inherently multi-scale.
They are generally modeled by two sets of equations. One describing the general flow and
energy (if non isothermal) in the reservoir, which either parabolic in character. The sec-
ond set models transport of components present in the oil, gas and water in the reservoir.
The resulting equations are (weakly) hyperbolic, and very strongly nonlinear. In in-situ
combustion processes additional reaction terms render the system also very stiff. We are ex-
ploring Euler-Lagrangian type methods for gas injection processes, and splitting techniques
for treatment of the equations governing in-situ combustion.

A.9 Hauck, Cory

My interest in this workshop stems from work on hydrodynamic models of electron
transport in semiconductors. These models are balance laws that approximate the evolu-
tion of a kinetic distribution of electrons by tracking a given set of velocity and/or energy
moments. Hydrodynamic equations contain conservative terms, relaxation terms that arise
from collisions, and drift terms derived from a electrical potential that satifies a Poisson
equation.

Hydrodynamic equations suffer from several difficulties. First of all, most electronic
devices contain some type of abrupt material interface which make it difficult to devise
a numerical scheme that properly captures the balance of forces found at the differential
level. For high-field, transition-regime devices, numerical results are characterized by current
oscillations that pollute the solution and can even cause breakdown via negative temperatures
and densities. It would very helpful to know if this issue can be overcome with a well-balanced
numerical scheme or whether it is a model defect.

Second, in the low-field, high-density limit, the hydrodynamic equations recover the
well-known drift-diffusion model. Hydrodynamic equations become stiff in this limit, and
this includes stiff lux terms. Thus, with the restrictions given by a CFL condition, it is not
straightforward how to implement an implicit scheme in an efficient way.

Finally, I am interested in finding reasonable approximations to relaxation terms and,
in particular, relaxation times. In gas dynamics there is an issue of obtaining the correct
transport coefficients predicted by the kinetic model in the fluid limit. More specifically, one
would like to recover an appropriate ratio of thermal conductivity to viscosity. In electron
transport, the drift-diffusion equations contain only one transport coefficient — the mobility
— and therefore this is not an issue. However, the behavior of a numerical solution, especially
the current and the temperature, is still drastically affecting by the choice of transport
coefficients. Although this is more of a physical modeling issue, I think it is important to
understand the effects of relaxation times on numerical solutions.

A.10 Jin, Shi

My recent interests include numerical methods for physical problems involving multiple
scales. In particular I am interested in the transition from quantum to classical mechanics,
from kinetic theory to hydrodynamics, and its numerical relavance. In the workshop I will
present recent results on numerical methods for Liouville equations with singular Hamiltoni-
ans (which arise either from a discontinuous potential or a discontinuous local wave speed).
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A.11 Katsaounis, Theodoros

Balance laws appear as mathematical models in a great number of applications areas
such as gas dynamics, mechanics, geophysics, biology. In recent years there has been enor-
mous activity on developing numerical methods for capturing correctly the properties and
features of the analytical solutions. I am particularly interested in developing numerical
schemes for balance laws using relaxation approximation.

The starting point of our approach is the class of relaxation schemes, introduced in
[JX], which are based on the relaxation approximation to the nonlinear conservation law,
that has a linear convection term and needs neither a Riemann solver nor the characteristic
decomposition and thus enjoys great simplicity in the expense of increasing the number of
unknowns. The stabilization mechanisms are the regularization by wave operators. The idea
is to use a local relaxation approximation to construct linear hyperbolic system with a stiff
lower order term that approximates the original nonlinear system with a small dissipative
correction. Relaxation is a flux approximation and relaxation linearizes the Riemann prob-
lem. This simplicity can be of great significance when one has to solve large-scale engineering
problems.

The numerical schemes are based on finite volume and finite element discretizations
of the relaxation models. In [DK1], [DK2] the finite volume(difference) method is used to
descritize the relaxation approximation of the shallow water equations in one and two space
dimensions respectively. The source term is treated in two different ways. The numerical
schemes are of first or second order in space and time, do not need Riemann solvers, they
are able to treat the dry bed case(vacuum case) with no extra effort, and satisfy the steady
states, an important feature of the analytical solution, within the accuracy of the relaxation
parameter e.

In [DK3] the numerical schemes presented in [DK1], [DK2| are used to compute the
transport and diffusion of a passive pollutant by a water flow. The flow is modeled by
the well-known shallow water equations and the pollutant propagation is described by a
transport equation. It’s worth mentioning that that no special treatment is needed for the
transport equation in order to obtain accurate results.

The relaxation approximation of conservation laws provide a natural setting for apply-
ing the finite element method. We apply the standard finite element method combined with
appropriate Runge-Kutta methods for the time discretization. Adaptive mesh refinement
strategies based on a-posteriori indicators and inverse inequalities are employed for resolv-
ing accurately regions with shocks. The resulting schemes have a regularization mechanism
with finite speed of propagation, do not need the solution of approximate local Riemann
problems, can be formulated as low order or high order schemes, or even a combination of
them (h-p methods), and can be extended in multi-dimensions by using the finite element
framework, [AKM], [KM], [GM]. Some properties of these schemes, concerning stability and
convergence are presented in [AMT].

Simulating a shear band(a narrow layer of intense shearing in a material, not a crack
though) is another topic of interest. The mathematical model consists of a system of con-
servation laws, close related to that of elastodynamics. The highly nonlinear model has a
internal diffusion mechanism which collapses on the shear band. The temperature and the
strain rate grow (blow up?) while the velocity develops a d-function behavior. It is an
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open question whether the temperature and the strain rate blow up in finite or infinite time.
Numerical simulation of this singular behavior is a challenge, [BKT].
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A.12 Kroener, Dietmar

My main research topics concern the analysis of numerical schemes for convection
dominated flows, in particular convergence analysis, adaptive grid refinement, a posteriori
error estimates, discontinuous Galerkin schemes and discretisations for problems with source
terms. Applications include the MHD-, the compressible Euler- and Navier-Stokes-equations
as well as the system for flow through porous media.

A.13 Kurganov, Alexander

I have been recently working on the development of numerical methods for hyperbolic
systems of balance laws. One of the key examples is the Saint Venant system of shallow
water equations with the source term due to the bottom topography. Besides accurately
capturing shocks, contact discontinuities, and rarefaction waves, it is very important for the
scheme to be able preserve both the positivity of the water height and the discrete balance
between the fluxes and the source. There are several high-order methods that satisfy all
these requirements, but some of the problems are still very challenging. For example, the
cases when the bottom is modeled by the discontinuous function or/and when there are some
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regions that get dry only for some finite time intervals and then get filled back by the water
are of particular interest.

The system gets even more interesting when a transport equation describing the prop-
agation of pollutant is added, especially when the source of pollutant is not turned off (the
source is sometimes a point-source modeled by the delta-function). When the pollutant is
passive, we have successfully used a deterministic particle method for its tracing, while the
Saint Venant system has been solved by the central-upwind finite-volume scheme (this re-
sults in a hybrid finite-volume-particle method). However, if the pollutant is diffusing and/or
reacting, then the extension of the finite-volume-particle method is not so obvious and the
task of accurately tracing the pollutant becomes much more challenging.

Another extension of the Saint Venant system is the multilayer shallow water equations.
They are significantly more complicated due to the nonconservative terms used to model
the momentum exchange between the layers. A quality of the numerical method would
obviously depend on the way the nonconservative products are discretized. We believe that,
as in the single layer case, the key point is ability of the scheme to preserve (stationary)
steady states and positivity of the width of each layer, but a lack of rigorous mathematical
formulation/justification of the model makes it hard to design reliable numerical methods.

A similar problem arises in designing numerical methods for multiphase models, in
which the governing equations are obtained by averaging over a large number of material
interfaces without tracking any of them individually (this needs to be done, for example, in
modeling bubbly liquids, when capturing the propagation of each bubble is simply unrealis-
tic). The momentum and energy exchange terms are nonconservative and their discretization
is even more challenging than in the multilayer shallow water case. Additional difficulty is
related to the presence of stiff pressure and velocity relaxation terms.

A.14 Levy, Doron

My personal experience is dealing with balance laws follows from a series of works.
Two of these works deal with the shallow water equations with bottom topography. In both
works we extended central schemes for conservation laws to balance laws. First, together
with Kurganov, we derived a central scheme on Cartesian meshes that satisfies the ”lake in
rest” constraint, preserves the positivity of the solution, and handles dry states [3]. Recently,
Steve Bryson and I have extended this scheme to unstructured meshes (preserving stationary
steady-state solutions) [2].

In some sense, from a numerical point of view, we have realized that the challenge
always boils down to the question as of how to discretize the source terms, in such a way
that the constraints are satisfied. I have been dealing with related questions in some other
recent works:

1) modeling the dynamics of the solar atmosphere (together with Bryson and Koso-
vichev) [1]. Here some of the challenges were in numerically maintaining initial hydrostatic
balance.

2) stable schemes for the incompressible Euler and Navier-Stokes equations [4]. Some
connections to related issues are made over there.

There are several goals I hope to obtain in this meeting:

1) A discussion on the models. Balance laws with (and without) stiff source terms exist
in many applications. My experience shows that engineers are not always interested in the
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equations that mathematicians are trying to solve. Several questions follow: are we solving
the right problems? what problems should be look at?

2) Regarding specific models: e.g., the shallow water equations with bottom topogra-
phy, a problem that a lot of the conference participants seem to be interested in. What are
the open problems? For example, with these specific equations, what can’t we solve? (and
why?) Similar questions hold for other models as well.

3) Numerical methods: a lot of work has been put into developing numerical methods
for balance laws in recent years. It will be interesting to survey some of the recent results
and successes and even more importantly to try to explicitly define what kind of problems
we still do not know how to deal with numerically. Then try to understand why.

[1] S. Bryson, A. Kosovichev, and D. Levy, High-Order Shock Capturing Methods for
Modelling Dynamics of the Solar Atmosphere, Physica D., 201 (2005), pp.1-26.

[2] S. Bryson and D. Levy, Balanced Central Schemes for the Shallow Water Equations
on Unstructured Grids, STAM Journal on Scientific Computing, accepted.

[3] A. Kurganov and D. Levy, Central-Upwind Schemes for the Saint-Venant System
With a Source Term, Mathematical Modelling and Numerical Analysis, 36 (2002), pp.397-
425.

[4] D. Levy, A Stable Semi-Discrete Central Scheme for the Two-Dimensional Incom-
pressible Euler Equations, IMA Journal of Numerical Analysis, accepted.

A.15 Liao, Xiaomei

There are two different descriptions for the motion of an ensemble of particles under the
influence of internal and external forces. One is via the viewpoint of classical trajectories,
the other one is via quantum mechanical wave functions. The corresponding two models
are the classical Vlasov-Poisson equation and the quantum mechanical Schrodinger-Poisson
equation. It’s important to relate these two descriptions since transport processes in semi-
conductors are often studied in regimes on the border between the classical and quantum
mechanical view of the world. This relation is well described by vanishing Planck constant
€ — 0 in Schrodinger equations, which means the transition from quantum mechanics to
classical mechanics and deserves the name “semi-classical limit”. Some special interest is in
the semi-classical limit of the Schrodinger-Poisson system, which is frequently used in the
study of quantum transport and quantum semiconductor modelling.

The semi-classical limit of Schrédinger-Poisson in one dimensional space is pretty closed
to be well understood now. But it’s still open in higher dimensional space, especially after
singularity. It’s also interesting to do the numerical simulation to check this semi-classical
limit if there is some difficulty in theory now. The related numerical simulation includes
the schemes for Vlasov-Poisson equation and the multi-value solution of the corresponding
moment system, the schemes for Euler-Poisson, etc.

A.16 Lukacova, Maria

In my recent research I have been dealing with multidimensional hyperbolic balance
laws

U + Z fl(u)xz = b(ua xz, y)a (2)
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where u is the vector of conservative variables, f;, i = 1,...,d are flux functions, d denotes
the dimension, and b(u, z,y) is a source term. Our aim is to derive a scheme which

e approximates correctly multidimensional wave phenomena / shocks (takes into ac-
count all infinitely many directions of wave propagations)

e preserves steady and quasi-steady states exactly or at least up to the second order of
accuracy (well-balanced schemes), cf., e.g. [botta], [greenberg], [kurganov], [Iv1] for
other related approaches.

There are many practical applications where the balance laws and the correct approx-
imation of their quasi-steady states are necessary. Some examples include shallow water
equations with the source terms modelling the bottom topography, which arise in oceanog-
raphy and river flow simulations. Shallow water equations with source terms modelling the
Coriolis forces are used in climate modelling and meteorology for (quasi-) geostrophic flow,
see, e.g., [bottal, [klein], [klein2]. Further examples includes the gas dynamic equations with
geometrical source terms, e.g. a duct with variable cross-section, or fluid dynamics with
gravitational terms. In what follows we briefly illustrate our methodology on the example
of the shallow water equations with the source terms modelling the bottom topography,
the Coriolis forces and the friction effects. The results can be generalized to more complex
systems of balance laws. The shallow water equations read

ue + fi(uw)e + fo(u), = b(u), (3)
where

h hu
u= |, ) = | he g )@

hv huv

hv 0
fo(u) = huv , b(u) = | —ghby + fhv — ghSy, | .(5)
hv? + %gh2 —ghby, — fhu — ghSy,

Here h denotes the water depth, u,v are vertically averaged velocity components in
x— and y— direction, g stands for the gravitational constant, f is the Coriolis parameter,
and b = b(z,y) denotes the bottom topography and the friction slopes S¢,, Sf, describe the
friction effects in the boundary layer between the fluid and the bottom.

Let us note that in some practical geophysical applications, especially in the river flow
modelling or oceanography, the friction effects are very important. The determination of the
friction slopes Sy is a very complex problem. The bottom composition of a river varies very
rapidly, especially when vegetation is taken into account. In the literature several simplified
models in order to determine the friction slope can be found. Basis for our calculation is the
friction law of Darcy-Weisbach. Thus, the friction slopes are evaluated as

Au vV u? + v? vV u? + v?
Sto=—957"—"1 Sp=—"(g 7 (6)
8gh 8gh

where \ stays for the so-called resistance value, which is determined according to the sim-
plified form of the Colebrook-White relation

1 k/?"h
— — 203l s/Thy )
I\ 03log (14.84)
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Here ky denotes the friction parameter, which depends on the composition of the river bot-
tom. Typically, ks can vary from 1 mm for beton until 300 mm for bottom with dense
vegetation.

In general the reliable approximation of the above hyperbolic balance laws is a challeng-
ing problem due to several difficulties. First, if the characteristic time step for the evolution
of source term is much smaller than the time step of the convection part the problem is
stiff. The reliable methods should be positivity preserving and need to correctly approxi-
mate dry zones, i.e. h = hu = hv = 0. As already mentioned above the steady or stationary
solutions have to be preserved and the numerical method should not evolve steady or sta-
tionary solutions introducing spurious waves. Physically reliable solutions need to satisfied
corresponding entropy condition. In this context it should be pointed out that the so-called
resonance phenomenon can appear in the solution leading to its non-uniqueness. In the case
of the shallow water equations it can happen for example under large topographical changes,
when the subcritical flow changes to the supercritical one through transcritical stationary
shock.

The basis of our numerical approach is the finite volume evolution Galerkin (FVEG)
scheme, which belongs to the class of genuinely multidimensional finite volume schemes.
The FVEG methods has been derived for homogeneous hyperbolic conservation laws by
Lukacova, Morton and Warnecke, cf. [fvca3]-[3d]. It couples a finite volume formulation
with approximate evolution operators which are based on the theory of bicharacteristics for
the first order systems [mathcom]. As a result exact integral equations for linear or linearized
hyperbolic conservation laws can be derived, which take into account all of the infinitely many
directions of wave propagation. In the finite volume framework the approximate evolution
operators are used to evolve the solution along the cell interfaces up to an intermediate
time level ¢,./2 in order to compute fluxes. This step can be considered as a predictor
step. In the corrector step the finite volume update is done. The FVEG schemes have been
studied systematically from the theoretical as well as experimental point of view with respect
to their stability and accuracy. Extensive numerical experiments confirm robustness, good
multidimensional behaviour, high accuracy, stability, and efficiency of the FVEG schemes,
see, e.g. [jepl, [siscl.

In our recent works [lv], [In] we have generalized the FVEG scheme for hyperbolic
balanced laws and derived the well-balanced FVEG method. First, using the theory of
bicharacteristics we derive the approximate evolution operator, that includes the time evo-
lution of the physical source terms. They need to be approximated in a suitable way, such
that steady states are preserved. This is the predictor step, in which the so-called well-
balanced approximate evolution operator is used in order to predict intermediate solution
at cell-interfaces. It should be pointed out that this genuinely multi-dimensional predictor
step is in some sense an analogy of the one-dimensional hydrostatic reconstruction due to
Audusse et al. [bouchutl].

In the corrector step the well-balanced approximation of the source terms in the finite-
volume update is done using the interface-based approximation of the source term, see [shi-
jin]. In order to obtain the well-balanced approximation of the Coriolis forces as well as of
the friction terms we evaluate their primitives approximatively. They are then use in an
analogous way as the bottom topography slope in the well-balanced approximation of the
source term.
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In cooperation with Noelle [In] we have proved that our well-balanced FVEG method
preserves exactly stationary states (i.e. u =0 = v and h + b = const.) as well as the steady
jet in the rotational frame (i.e. u = 0,v = v(x),b = b(z),h = h(z),0.(h +b) = gv), cf.
[bouchut2]. The friction effects have not been included in these theoretical results. Extensive
experimental treatment confirm that stationary states, their small perturbations as well as
steady jets in the rotational frame are preserved up to the machine accuracy.

Open problem:

Consider two-dimensional shallow water equations with source terms modelling the bottom
topography and Coriolis forces. Find a methodology to derive multidimensional schemes
which preserve for any two-dimnesional flow

e stationary states, i.e. 0;h=0,0,u=0,0,v =0
e steady states, i.e. ¢0,(h+b) = fv, go,(h+0b) = —fu.
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A.17 Noelle, Sebastian

I/ Geophysical flows.

At the center of my recent interests are geophysical flows:

Paper with Jostein Natvig, Normann Pankratz, Gabriella Puppo

“Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water
flows”

Abstract:

Many geophysical flows are merely perturbations of some fundamental equilibrium
state. If a numerical scheme shall capture such flows efficiently, it should be able to preserve
the unperturbed equilibrium state at the discrete level. Here we present a class of schemes
of any desired order of accuracy which preserve the lake at rest perfectly. These schemes
should have an impact for studying important classes of lake and ocean flows.

Related issues that I would like to discuss:

I am more and more closely interacting with people from water and ocean research. I
want to understand

1. the phenomena they are interested in.

2. the derivation and range of applicability of their models, e.g. shallow water vs
Navier-Stokes.

3. the numerical methods they use, often rather successfully.

4. the possible impact of us as numerical analysts.

IT1/ Adjoint error control

Together with Christina Steiner, we are deriving an adaptive time step control for
instationary aerodynamical problems using adjoint error control. Together with Roland
Schaefer, I am beginning to use the method to control geophysical flows. Another issue
is adaptive modelling. I would like to discuss the potential and the possible risks at the
workshop, perhaps in the form of a roundtable discussion.

A.18 Perthame, Benoit

Balance laws with source terms are particularly interesting and difficult for their nu-
merical solution. Indeed, by opposition to the 'free case’, the constant states are no longer
determinant in this case. Steady states are obtained by balancing the flux and the source.

As a consequence such a balancing is fundamental in the numerical solution. In the
framework of Finite Volumes, this leads to "'Upwind the Source at Interfaces’ rather than
centering it. A particularly well studied case is that of Saint-Venant system with topography
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which leads to well-balanced schemes. Interesting is to compare numerical algorithms and
share the experience on how they work.

Other examples are

-) rotating fluids in ocean/atmosphere

-) friction terms

-) diffusion limit for strong friction

I would be mostly interested in discussing and learning other cases of such systems
with sources especially

-) which applications lead to such modeling in general

-) are there new difficulties arising

-) specific problems from biology (chemotaxis?)

From the numerical side, I would be interested in notions and consistancy and stability
associated to these schemes on non-uniform grids (motivated by triangles in 2D...etc)

A.19 Puppo, Gabriella

In the last year I've been working, with Giovanni Russo of the University of Catania) to
the development of high accurate numerical schemes for stiff balance laws. These methods are
based on IMEX time discretizations. IMEX (Implicit - Explicit) Runge-Kutta schemes allow
to treat stiff balance laws with the techniques already developed for conservation laws. With
these time marching schemes in fact it is possible to integrate convective terms explicitly,
while using an implicit scheme for the stiff terms.

With this technique, we have developed finite difference schemes on staggered and
unstaggered grids for stiff balance laws. These schemes so far have been implemented only
in one dimensional problems, but several aspects deserve further investigation.

For one thing, these schemes must have an L-stable implicit part, in order to decay to
the correct limit equation, when the stiffness parameter goes to infinity. This requirement
causes a severe restriction, and the schemes obtained so far, to my knowledge, are only up
to third order accurate. Is it possible to get higher order IMEX schemes?

Another interesting issue is that IMEX schemes are a sort of splitting methods. Is it
possible to obtain IMEX schemes respecting some further requirement, as, say, the preser-
vation of equilibrium states in shallow water equations?

The effectiveness of IMEX schemes derives also from the possibility of separating the
issues of space and time discretizations. It is in fact particularly easy to implement the IMEX
idea on semidiscrete schemes for conservation laws. However, in this fashion, one inherits
all the weak points of semidiscrete schemes. Just to mention a few, these include a poor
resolution of contact discontinuities, and the development of spurious oscillations. These
points can be improved, but the price to pay usually is a sharp increase in the computational
cost. For this reason, it is interesting to explore adaptive strategies, where the scheme can
be locally modified where needed, to increase its nonoscillatory properties or its resolution.

A more difficult task arises when dealing with applications. I've been discussing with a
group interested in modelling vasculogenesis with chemiotactic models. In this case, a reliable
numerical scheme can produce interesting results, but it is clear that the main problem is a
lack of modelling. The same argument, I think, holds for say shallow water equations used in
oceanography or multiphase flows, such as sprays. How can we use numerical computations
to modify a model and improve its ability to predict phenomena?
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A.20 Simeoni, Chiara

Hyperbolic conservation laws with source terms and constraints figure in many ap-
plications, especially as mathematical models for geophysical flows, and an incontestable
importance is attached to the question of their numerical approximation from both a theo-
retical and practical viewpoint.

This brief contribution intends to reaffirm the interest in the main research objec-
tives of the workshop in that field, by suggesting some relevant issues to be raised further
and introducing specific problems which indicate the possibility of extending the techniques
developed for the numerical modelling of hyperbolic conservation laws with source terms.
Numerical simulation of experimental data. Despite its simple configuration, the
shallow water flow in channels with nontrivial topography is characterized by a wide variety
of regimes, exhibiting some peculiar behaviours of the free-surface (wave trains, hydraulic
jumps, turbulent profiles, ...), which have not yet been fully examined.

Due to the inherent limitations of the theoretical models, their predictions have to be inter-
preted in terms of experimental verifications, that leads to introduce more complex source
terms for an accurate description of the empirical context.

The interaction of the source terms corresponding to the bottom topography and fric-
tion in the Saint-Venant equations for shallow water, for instance, is determinant of the
appearance of steady states.

In numerical simulations of experimental data, it is rather difficult to reproduce correctly
the steady states and to preserve this kind of solutions for a large number of time-steps,
especially while dealing with transcritical flow regimes.

The focus on numerical schemes for shallow water equations with friction terms is moti-
vated by the interest in recovering the results of experimental studies on the free-surface flows
over complex topography [KS1] and some recent applications to the models of avalanches, in
particular to describe the stopping mechanism of a granular mass in presence of Coulomb-
type friction terms [MVB].

A few specific methods to approximate the friction terms in the Saint-Venant equations
have been developed, which present the common feature to be semi-implicit, as suggested
by the specific nature of the friction term whose effects on the flow are observed all during
the phenomena.

For the experimental framework, the question of the boundary conditions has also to
be rigorously addressed, that is crucial for the computational accuracy with unstructured
mesh in presence of source terms.

Those directions would be exploited to make further achievements in that field.
Incompressible Navier-Stokes equations. We are interested in the numerical modelling
of the incompressible Navier-Stokes equations, in two space dimensions.

In the context of finite element methods, for instance, this problem leads to specific
difficulties related to the treatment of the incompressibility condition, as the divergence-free
constraint holds only weakly in the finite element spaces.

Moreover, in the limit of small viscosity, when the transport terms are dominant and
the equations converge (at least formally) to the incompressible Euler equations, the error
estimates become meaningless due to the general loss of stability of the numerical schemes.

The main idea of this contribution is to consider numerical schemes for the incompress-
ible Navier-Stokes equations, based on finite volume or finite difference methods, with the
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incompressibility condition (which turns out to be an algebraic constraint) treated as the
steady state equations in the context of well-balanced schemes for conservation laws with
source terms.

That approach is expected to provide stability properties, uniformly with respect to
the diffusion parameters of the system, to prove error estimates and deduce the convergence
of the numerical schemes to the (smooth) solutions of the incompressible Navier-Stokes
equations.

That issue is particular important in the numerical modelling of the incompressible

Navier-Stokes equations, because dealing with the divergence-free condition rigorously is
still an open question [RR].
Some theoretical questions. The question of formulating appropriate consistency con-
ditions for the Upwind Interface Source method [KPS] to prove error estimates in the general
case of a non-uniform spatial mesh is particularly interesting, motivated by two-dimensional
problems set on unstructured grids.

Some results in that direction have already been obtained in collaboration with Th.
Katsaounis, most in the spirit of [KS2].
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A.21 Tadmor, Eitan

We study the questions of global regularity vs. finite time breakdown in Eulerian
dynamics, u; + u - Vyu = V,F, subject to different source terms F(u, Vu, D*u,...). To
address these questions, we propose the notion Critical Threshold (CT), where a conditional
finite time breakdown depends on whether the initial configuration crosses an intrinsic, O(1)
critical threshold. Our approach is based on the spectral dynamics of the eigenvalues, A :=
A(Vu). We shall outline three prototype cases.

We begin with the n-dimensional restricted Euler equations, obtaining [n/2]+1 spectral
invariants which surprising characterizations of critical thresholds in 3D and, in particular,
4D restricted Euler dynamics. Next we introduce the corresponding n-dimensional Restricted
Euler-Poisson (REP) system, identifying a remarkable two-dimensional CT configurations
with global REP smooth solutions. Finally we show how rotation prevents finite-time break-
down. Our study reveals the dependence of the CT phenomenon on the initial spectral gap,

A2(0) = A1(0).
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A.22 Xing, Yulong

Hyperbolic balance laws have steady state solutions in which the flux gradients are
nonzero but exactly balanced by the source term. Such cases, along with their perturbations,
are very difficult to capture numerically. We are interested in finding such well-balanced
schemes which are high order accurate for general solutions.

A typical example is the still water solution of the shallow water equation with a
non-flat bottom topology. The equation takes the form

1
(hu); + (hu2 + éth) = —ghb,, (7)

xT

with the still water solution:
h+ b= constant ~ and  hu=0. (8)

Recently, we have developed a well balanced high order finite difference WENO scheme [XS],
and then generalized the result into high order finite volume schemes and discontinuous
Galerkin methods [XS3]. In [XS2]|, we extend this idea to a general class of balance laws
with separable source terms, allowing the design of well balanced high order scheme for all
balance laws falling into this category. This class includes some steady state solutions of the
elastic wave equation, the hyperbolic model for a chemosensitive movement, the nozzle flow
and a two phase flow model.

We are also interested in preserving more general steady state solution exactly. For
example, the shallow water equation has a more general steady state solution, which takes
the form:

1
§u2 +g(h+0b) = constant ~ and  hu = constant. (9)

This is a pretty difficult problem and we are still working on it.
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A.23 Younis, Rami

See contribution of Margot Gerritsen.

A .24 Zeitlin, Vladimir

A fundamental problem in Geophysical Fluid Dynamics (GFD) is that of dynamical
separation (non-interaction), or non-separation of fast and slow components of motion. The
fast component is provided by waves and the slow one by vortices or jets. It is known
that many utmostly important meteorological and climatic phenomena depend crucially on
such (non-)separation. There are theoretical reasons for separation at small nonlinearities
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in rotating stratified fluids, based on the asymptotic expansions (e.g. Reznik, Zeitlin and
Ben Jelloul, 2001; Zeitlin, Reznik and Ben Jelloul, 2003). The question what happens at
moderate/large nonlinearities is largely unanswered and should be adressed numerically.
However, the fact of the presence of very different time- and space-scales in the problem
renders numerical simulations difficult as they have to resolve well the small-scale fast waves
and maintain balanced slow vortex motions quasi-stationary. In addition, wave-breaking
should be properly resolved as it plays a crucial role in the wave-vortex interactions (e.g. Le
Sommer, Reznik and Zeitlin, 2004). Wave-breakings of different nature may occur in GFD
(Bouchut, Le Sommer and Zeitlin, 2005).

The simplest possible GFD model is rotating shallow water (RSW) equations. The
Coriolis force enters the equations written as a system of conservation laws in a form of
specific source which needs balancing. Recent progress in this model allows to obtain well-
balanced schemes (Bouchut, 2004). The next in the hierarchy of the GFD models are models
with superposition of several constant-density RSW layers, where the progress is much more
difficult to make. The problem of well-balanced wave-breaking resolving numerical scheme
is yet harder for full continuously stratified, so called “primitive”, equations (PE) of the
GFD. It should be noted that multi- or one-layer RSW models may be obtained by vertical
averaging from the PE model.
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