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Preface

This document is intended as a public record of the workshop on Braid Groups, Clus-

ters, and Free Probability, which was held at the American Institute of Mathematics in Palo
Alto, on January 10–14, 2005. The organizers of the workshop were Jon McCammond,
Alexandru Nica, and Vic Reiner.

What follows is a joint statment of the participants regarding important open problems
and promising directions for future progress in the subject. For further information, including
a list of participants and participant abstracts, see the AIM webpage www.aimath.org. Jon
McCammond also maintains a webpage with resources related to these topics [37].

The goal of this workshop was to bring together mathematicians from different back-
grounds to discuss a central theme which has recently emerged in many different contexts.
Given a finite Coxeter group W , define the corresponding Catalan number

Cat(W ) :=
n
∏

i=1

h+ ei + 1

ei + 1
,

where h is the Coxeter number, and e1, e2, . . . , en are the exponents of the group W (for
notation related to Coxeter groups and reflection groups, we refer to [31]). When W is the
symmetric group An−1, this is just the usual Catalan number Cat(An−1) =

1
n+1

(

2n
n

)

. As with
the classical Catalan numbers, these typeW Catalan numbers have a wealth of combinatorics
associated with them, and they have recently appeared independently in several different
fields, including Garside structures for braid groups, cluster algebras, and free probability.
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This Catalan combinatorics describes extensive and surprising enumerative correspon-
dences between these subjects, which in most cases are still unexplained (the term “numerol-
ogy” is often used). A common goal of the workshop participants is to understand these
concurrences, and search for underlying theories which can explain the combinatorics.

This is an exciting, emerging subject with many fundamental questions yet to be
solved. We present here a collection of important and interesting questions offered by the
participants. Many problems have attributions. These are to the person who brought the
problem to my attention, and are used for the purpose of facilitating communication. No
attempt has been made to track down the original source. A more detailed history can likely
be found by contacting the contributor of the problem.

I would like to thank the organizers and participants of the workshop for their helpful
comments in preparing this outline.

1. Central Questions

There are three main families of combinatorial structures counted by the Catalan com-
binatorics, which arise independently in three different subjects.

(1) Let W be a finite Coxeter group, and let T be the generating set of all reflections
(T is defined as the set of conjugates of a standard Coxeter generating set S). Let
` denote the word length on W with respect to T . This function induces a partial
order on W by setting a ≤ b whenever `(b) = `(a) + `(a−1b). The Hasse diagram of
this poset is just the Cayley graph of (W,T ), directed away from the identity element
1.

Let c be a Coxeter element of W . The interval [1, c] in this poset is called the poset
of noncrossing partitions NCW . (This is well-defined, since Coxeter elements form a
conjugacy class.) NCW in its full generality was defined independently by David
Bessis [6] and Tom Brady and Colum Watt [12, 13] in order to study the geometric
group theory of braid groups. However, important special cases of the generalization
had been considered earlier by Vic Reiner [42] and Philippe Biane [9]. In the type
A case, Roland Speicher showed that this poset lies at the heart of the subject of
free probability in operator algebras [47]. The study of the type A case is classical
and goes back to Kreweras [32]. The survey paper [45] by Rodica Simion gives a
comprehensive view of the classical noncrossing partitions, and the survey [36] by
Jon McCammond gives a more modern overview of the subject.

(2) For every finite Coxeter group W , Sergey Fomin and Andrei Zelevinsky have defined
a simplicial complex ∆W called the simplicial associahedron of type W . Let Φ be the
root system corresponding to W , and let Φ+ and Π be a choice of positive roots and
simple roots, respectively. Then ∆W is defined as a flag complex on the set of almost

positive roots Φ≥−1 := Φ+ ∪ (−Π). Their original construction [24] applied only to
crystallographic root systems, but the definition may be uniformly generalized to
all root systems (see the notes [22]). The complex ∆W generalizes the well-known
associahedron (or Stasheff polytope) in type A, and the well-known cyclohedron (or
Bott-Taubes polytope) in type B. For more information, see Section 6.

Related to this are the Cambrian lattices of Nathan Reading [40]. To each orienta-
tion of the Coxeter diagram of W , he associates a lattice which is a quotient of the
weak order on W . Conjecturally, each of these Cambrian lattices is an orientation
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of the 1-skeleton of the simple associahedron, the dual complex to ∆W . Cambrian
lattices may be regarded as a generalization of the classical Tamari lattices, and this
idea has also been considered by Hugh Thomas in type B [50].

(3) In the case that W is a Weyl group (that is, a crystallographic Coxeter group),
Postnikov has suggested how to define a poset of nonnesting partitions NNW (see
remarks in [42]). Given a crystallographic root system Φ with positive roots Φ+, the
root order (Φ+,≤) is a partial order on Φ+, where α ≤ β if and only if β−α is in the
positive integer span of Π.

To each antichain A (set of pairwise-incomparable elements) in the root order,
associate the vector subspace ∩α∈Aα

⊥, which is the intersection of the orthogonal
hyperplanes to the corresponding roots. Then NNW is defined as the poset of an-
tichains under reverse inclusion of subspaces.

The antichains may also be interpreted as order ideals (or order filters) in the root
order, and Cellini and Papi have shown that these are in bijection with nilpotent
ideals of a Borel subalgebra of the corresponding semisimple Lie algebra [16]. One
may define a different partial order on the antichains via inclusion of ideals, and this
poset describes the structure of the chambers within the dominant cone of the Shi
hyperplane arrangement [44].

Problem 1.1. Explain the numerology. The cardinality of NCW , the cardinality of NNW

and the number of facets of ∆W are all equal to the Catalan number Cat(W ). The rank
numbers of NCW , the height numbers of NNW (in general, NNW is not graded), and the h-
vector of ∆W are all the same, given by the Narayana numbers (for which there is no known
closed formula, in general). The enumerative coincidences are quite extensive, and quite
mysterious, as there is still no theoreretical connection between these objects. In fact, only
for NNW and its relatives is there any proof whatsoever of the enumerative formulas that is
not case-by-case, using the finite type classification.

Find bijections between these objects which preserve the numerology. Is there some
theoretical algebraic framework behind the scenes, as yet undiscovered? David Bessis has
suggested a notion of “dual” Coxeter systems [6]. Is there a way to formalize this notion?
The exponents of W are one below the corresponding degrees of the fundamental polynomial
invariants of W (see [31]). Does the number Cat(W ) have any significance in an invariant
theory context?

Remarks:

• There are two remarkable enumerative refinements of the Catalan combinatorics,
each in a different direction.
(1) Frédéric Chapoton has defined a two variable generating function on each of the

three main families (the M -triangle on noncrossing partitions, the F -triangle
on the associahedron, and the H-triangle on nonnesting partitions), and conjec-
tured precise algebraic relationships between these functions [17, 18]. This gives
very refined enumerative correspondences between these objects, and is strong
evidence for the existence of hidden structural relationships. Explain Chapoton’s
formulas.

(2) Christos Athanasiadis and Vic Reiner have described an enumerative correspon-
dence between NCW and NNW that refines the Narayana numbers [4]. Both of
these posets may be injected into the lattice of hyperplane intersections ΠW of
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the corresponding Coxeter arrangement. For π in NCW let f(π) be the fixed
subspace of π, and for A in NNW , let g(A) be the intersection of hyperplanes
∩α∈Aα

⊥, as before. The result states that the filters of f and g over any W -orbit
in ΠW are equinumerous.
The proof is case-by-case, using computer in the exceptional types. Find a theo-
retical proof. Is there a natural statistic on ∆W that agrees with this refinement
of the Narayana numbers? Is there a way to express this statistic within the con-
text of Chapoton’s M -triangle, F -triangle and H-triangle generating functions?

• The recent work of Nathan Reading on Coxeter-sortable elements [41] gives an explicit
bijection between NCW and the facets of ∆W , however the proof of this bijection is
currently case-by-case (see Problem 3.2). Also, Tom Brady and Colum Watt have
given a new definition of ∆W in terms of noncrossing partitions [14]. This may provide
some connection between the structure of NCW and ∆W .

Problem 1.2. What are the largest natural domains of definition for the families NCW ,
NNW and ∆W , and for their corresponding applications? In a sense, the broadest setting
possible for the numerology is finite groups generated by pseudoreflections. (A pseudoreflec-
tion is a unitary operator on an n-dimensional complex vector space whose eigenvalues are
0 with multiplicity n − 1, and −1 with multiplicity 1.) It is a classical result of Shephard
and Todd that the ring of invariants of a group W is a polynomial ring precisely when the
group is of this type. And in this case the sequence of degrees d1, d2, . . . , dn of fundamental
invariants is unique [43].

In the general (complex) case, David Bessis suggests that the Catalan number should
be

Cat(W ) :=
n
∏

i=1

h+ di
di

,

where we set h equal to the highest degree dn. This agrees with our earlier definition in
the real types. However, this may apply only when W is a duality group (or a well-generated

group), since otherwise Cat(W ) may fail to be an integer. See the paper [7] by David Bessis
for more information.

• The noncrossing partitions are currently the most general of the Catalan families.
The poset NCW is defined for all finite Coxeter groups, and the definition makes
sense in principle for any finitely generated Coxeter group (although the definition
may not be unique when W is infinite [11]). David Bessis and Ruth Corran gave a
combinatorial realization of NCW for an infinite class of complex reflection groups
in [8], and Bessis has suggested a uniform definition for NCW whenever W is a
well-generated complex reflection group [7].

• Can one generalize free probability beyond types A and B? The combinatorics of free
probability is naturally expressed in terms of the type A noncrossing partitions [47],
and some work has been done on a type B free probability [10]. Does it make sense
to generalize further? One would presumably need to express Roland Speicher’s work
on multiplicative functions [48] in the completely general case. See Problem 5.1.

• Explain the theory of cluster algebras in infinite types. See Problem 6.5.
• The most glaring case of this problem is the seeming dependence of NNW and its
relatives on the crystallographic structure of W . When W is a Weyl group, there
are amazing enumerative correspondences with the other Catalan objects (see the
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remarks following Problem 1.1). But there is currently no idea how to generalize
these objects to the noncrystallographic types.

To what extent can the nonnesting partitions and root order be generalized to
noncrystallographic types? Presumably, there are objects which can not be general-
ized in their current form, such as Lie algebras and affine hyperplane arrangements.
Generalize where possible, and explain where there are essential barriers to this gen-
eralization. Cathy Kriloff and Arun Ram have dealt with some of these issues in
studying the representation theory of noncrystallographic types [33].

Frédéric Chapoton’s conjecture gives a way to define the H-triangle for all finite
Coxeter groups [18]. What object is it counting in the noncrystallographic types?

Problem 1.3. What are the most natural generalizations of the families NCW , NNW , and
∆W ? Classical combinatorics is full of enumerative generalizations of the Catalan numbers.
Which of these is relevant in the reflection group setting?

Define the Fuss-Catalan numbers

Cat(k)(W ) :=
n
∏

i=1

kh+ ei + 1

ei + 1
,

where k is a positive integer. In type A, these generalize the classical Fuss numbers and the
Catalan numbers [21, 30]. As seen from the formula, Cat(k)(W ) is a very natural generaliza-
tion of the Catalan numbers in the reflection group context. Recently these numbers have
shown up in all three of the Catalan families.

(1) Drew Armstrong has defined a generalization of the noncrossing partitions NC
(k)
W ,

called the k-divisible noncrossing partitions [1]. This is a graded join-semilattice which

is counted by Cat(k)(W ). Call the rank numbers the Fuss-Narayana numbers. In types

A and B, NC
(k)
W is isomorphic to the poset of k-divisible noncrossing set partitions

(partitions in which each block has size divisible by k).

(2) Sergey Fomin and Nathan Reading have defined a simplicial complex ∆
(k)
W which is

a generalization of the simplicial associahedron [21]. The facets of ∆
(k)
W are counted

by the Fuss-Catalan numbers, and the entries of the h-vector are given by the Fuss-
Narayana numbers. In types A and B, this complex is defined in terms of (k +
2)-angulations of a regular polygon, and has been studied independently by Eleni
Tzanaki [51].

(3) The Fuss-Catalan numbers appear in many places in the NNW family of objects.
Let W be a finite Weyl group. Christos Athanasiadis suggested the definition of the
Fuss-Narayana numbers in this context, and proved that these numbers count several
objects, including positive regions in a certain affine deformation of the Coxeter
hyperplane arrangement, as well as co-filtered multichains of ideals in the root order
[2, 3]. Mark Haiman has shown that the Fuss-Catalan numbers count orbits in the
quotient Q̌/(kh+1)Q̌ of the coroot lattice Q̌ [28], and Eric Sommers has encountered
these numbers in the study of Lie algebras [46].

Repeat Problems 1.1 and 1.2 in this more general setting. Any theoretical relation-
ships found between NCW , NNW , and ∆W , must generalize to explain the Fuss-Catalan
combinatorics. Given that Cat(k)(W ) is naturally defined in terms of the exponents of W ,
is there an underlying algebraic framework that explains these numbers?
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Remarks:

• Extend Frédéric Chapoton’s M -triangle, F -triangle, and H-triangle to the Fuss-
Catalan case. (Eleni Tzanaki has worked on this for the H-triangle.)

• What is the significance of these Fuss-Catalan objects in applications, for instance in
Garside Structures, cluster algebras, or free probability? For example, the k-divisible
noncrossing partitions may have some application to Problem 5.3, in free probability.

• Is there a natural generalization of the poset of nonnesting partitions NN
(k)
W ? In type

A, one may take k-divisible nonnesting set partitions under refinement (mimicking

NC
(k)
An−1

). In the general case, perhaps this is isomorphic to a partial order on co-
filtered multichains of ideals in the root order.

• Christos Athanasiadis and Stavros Garoufallidis have suggested a q-version of the
Catalan combinatorics. See Problem 2.1 below.

2. Enumerative Combinatorics

Problem 2.1. (C. Athanasiadis) Define the q-Fuss-Catalan numbers

q-Cat(k)(W ) :=
n
∏

i=1

[kh+ ei + 1]q
[ei + 1]q

, (1)

where [n]q = q + q2 + · · · + qn is the usual q-analogue of the positive integer n. Show that

q-Cat(k)(W ) is a polynomial in q with nonnegative integer coefficients. This is known in the
classical A, B, and D cases. In type A with k = 1, this coincides (up to a power of q) with
the q, t-Catalan number of Adriano Garsia and Mark Haiman [25], with the specialization
t = 1/q.

Remarks:

• (D. Bessis) Does the same statement hold when W is a complex finite reflection
group, with the fundamental degrees di subsituted for the ei + 1, and the highest
degree substituted for h?

• (V. Reiner) Conjecture: Let c be a Coxeter element of W , and let ζ be a primitive

dth root of unity, where d divides the Coxeter number h. Then ζ-Cat(1)(W ) is the
number of elements of NCW = [1, c] that are invariant under conjugation by ch/d.

• (S. Fomin, V. Reiner) Are there corresponding q-analogues of other Catalan sta-
tistics? For instance, is the expression

q-Cat
(k)
+ (W ) :=

n
∏

i=1

[kh+ ei − 1]q
[ei + 1]q

also a polynomial in q with nonnegative integer coefficients? Is there a refinement
of q-Cat(k)(W ) as a sum of polynomials in q with nonnegative integer coefficients,
generalizing the q = 1 refinement by Fuss-Narayana numbers?

• Can one extend Frédéric Chapoton’s M -triangle, F -triangle, and H-triangle to the
q-Fuss-Catalan case?

Problem 2.2. (C. Kriloff, V. Reiner) This is a possible systematic approach to Problem
2.1. As mentioned, in type A with k = 1, the numbers (1) correspond (up to a power of
q, and specialized at t = 1/q) with the q, t-Catalan numbers of Garsia and Haiman, which
are given by the q, t-bigraded Hilbert series for the sign-isotypic component of the ring of
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diagonal harmonics C[V ⊕ V ]/(C[V ⊕ V ]W+ ) [29]. Can this situation be generalized to other
W?

WhenW is a symmetric group An−1, it is known that the action ofW on the (ungraded)
diagonal harmonics has the same irreducible decomposition as the action of W on the “finite
torus” Q/(h+1)Q, where Q is the root lattice. Mark Haiman noted that this does not hold
in type B [29]. However, Iain Gordon has shown that the problem may be feasible for general
W , since it is possible to take a further quotient which does give the right combinatorics
[26].

Problem 2.3. The following are two elementary combinatorial facts, for which it would be
nice to have elementary explanations. Both problems are unique to type B, and concern
centrally symmetric structures on polygons (structures that are invariant under the antipodal
map).

(1) (S. Fomin) Among the centrally symmetric partial (k + 2)-angulations of a regular
(2kn + 2)-gon containing i orbits (under the antipodal map) of k-admissible chords
[21, 51], the proportion that contain a diameter is i/n. (A k-admissible chord is one
that may be present in a full (k + 2)-angulation.) Give an elementary proof.

(2) (D. Armstrong) Among the centrally symmetric k-divisible noncrossing partitions
of a 2kn-gon with i orbits (under the antipodal map) of nonzero blocks [1, 42], the
proportion that contain a zero block is i/n. (A zero block is a block that contains a
diameter.) Give an elementary proof.

Remarks:

• These problems are strikingly similar. The first is a statement about the f -numbers

of the complex ∆
(k)
Bn

[21], and the second is a statment about the h-numbers of this
complex. The similarity between these problems, and the fact that they both have
been resistant to elementary proofs, suggests that there may be some connection.

However, no connection between ∆
(k)
Bn

and NC
(k)
Bn

is currently known. (See Problem
1.3.)

Problem 2.4. (H.T. Hall) Suppose that a stream has 2n bridges across it. A classical
meander is (the homotopy class of) a closed path which crosses each bridge once without
intersecting itself. On each side of the stream, the meander is given by a noncrossing pairing
of the set [2n] := {1, 2, . . . , 2n}. Noncrossing pairings are naturally in bijection with type A
noncrossing partitions of the set [n].

Every ordered pair of noncrossing partitions defines a path (with possibly multiple
components) which crosses each bridge exactly once. There is a bijection which says that
the meanders (the paths with only one connected component) correspond exactly to pairs of
noncrossing partitions that are maximally separated in the Hasse diagram of NCAn−1

(they
are diameters in the graph theoretical sense). Does this bijection suggest a new way to count
meanders?

One may also use this bijection to define meanders of type W (they are the ordered
diameters of the Hasse diagram of NCW ). Is there some combinatorial object that this
corresponds to? Is there a type B meander?

Remarks:
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• (A. Nica, J. Scott) In type A, one may build a “meander determinant” which is
known to factor as a product of Chebyshev polynomials [20]. Similarly, one may
define a type W meander determinant. What factorization properties does it have?

Meanders are related to chromatic polynomials of graphs, and the Temperley-Lieb
algebra [15]. What is the significance of type W meanders in this context?

3. Reflection Groups

Problem 3.1. (V. Reiner) Let W be a finite Coxeter group, and let T be the generating
set of all reflections, as in Section 1. Again, let ` denote the word length on W with respect
to T . This is often called the absolute length on W . In general, for all u, v in W , we have
the triangle inequality `(uv) ≤ `(u) + `(v).

Define the absolute length poset, as before, by setting a ≤ b whenever `(b) = `(a) +
`(a−1b). This is a partial order on W whose Hasse diagram is the Cayley graph of W with
respect to T . The poset is graded with rank function given by `.

What is the topology of this poset? In types A and B is there an EL-labelling which
exhibits a shelling of the order complex? It is known that the absolute length poset is not
shellable in type D. Perhaps this can be fixed in a uniform way by considering only the
subposet which is the order ideal of parabolic Coxeter elements (elements of W which are a
Coxeter element in some parabolic subgroup).

Remarks:

• The noncrossing partitions NCW are defined as an interval in the absolute length
poset. Recent work of Brady and Watt [14] seems to give an EL-labelling for NCW .
Do their methods generalize to the problem above?

Problem 3.2. (N. Reading) Let W be a finite Coxeter group. In [41], Nathan Reading
defines the notion of Coxeter-sortability for elements of W , relative to some Coxeter element
c.

There are natural maps nc and cl from the Coxeter-sortable elements of W to the
noncrossing partitions NCW , and to the set of clusters of type W , respectively. In [41], these
maps are concretely defined, but the proof that they are bijections is case-by-case, using the
fact that both objects are known to be counted by the Catalan number Cat(W ).

(1) Give a uniform proof that the Coxeter-sorted elements are counted by Cat(W ).
(2) Give a uniform proof that the map nc is well-defined.
(3) Give a uniform proof that the maps nc and cl are bijections.
(4) The notion of Coxeter-sortable elements, and the maps nc and cl can be defined for

infinite type Coxeter groups. What happens in this case?

Problem 3.3. (D. Bessis, F. Chapoton) The Lyashko-Looijenga mapping associates to
any complex-valued function on a manifold the polynomial in one variable whose roots are
the critical values of the function. The main theorem in [34] states that this mapping is
a ramified covering for some families of functions. There is a known relationship between
the Lyashko-Looijenga covering of the complex sphere, and the combinatorial cacti of Ian
Goulden and David Jackson [27].

Interpret the combinatorics of the typeA noncrossing partitions in terms of the Lyashko-
Looijenga covering of the sphere. The degree of the covering is nn−2, which is also the number
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of maximal chains in NCAn−1
. This number is known to count many things, including la-

belled trees, and cacti.

Do these combinatorics generalize to other types?

Problem 3.4. (D. Bessis) Is there a structure theory of Lie groups and algebraic groups
that is analogous to the dual braid monoid [6]? Is there some dual notion of BN -pairs?

4. Garside Structures

As mentioned, the lattice of noncrossing partitions NCW in its full generality was
defined by David Bessis [6] and Tom Brady [12] in order to study the Artin group A(W )
corresponding to the Coxeter group W . It turns out that the properties of the poset NCW

have many consequences for the group theory, including a nice algorithmic solution to the
word and conjugacy problems.

In general, every poset P together with a labelling of the edges in its Hasse diagram
generates a monoid M(P ) and a group G(P ). When this labelling has certain properties, P
is called a combinatorial Garside structure. Having such a Garside structure gives a powerful
tool for studying the monoid M(P ) and the group G(P ). This is an emerging subject with
interest to combinatorics and group theory. The survey article [35] by Jon McCammond
gives a good introduction to these topics.

Problem 4.1. (R. Charney) Questions about classification.

(1) Given an arbitrary poset P , when can it be given a Garside labelling? When such a
labelling exists, say that P is a Garside poset.

(2) Given a Garside poset P , what are the relationships between its inequivalent Garside
labellings? When does P have a unique Garside labelling?

(3) Given a poset with an edge labelling, when can this be embedded in a Garside struc-
ture? When do the corresponding monoids/groups embed? What are the minimal
obstructions to doing this?

Problem 4.2. (P. Dehornoy)

(1) Given a cancellative, finitely-generated monoid M in which lcm’s exist, is M neces-
sarily a Garside monoid? That is, does there exist a Garside element ∆ in M?

(2) In the case of Artin groups, the nicest Garside structures come from the Cayley graph
of the corresponding Coxeter group. Is there a way to systematize this? Is there some
notion of a “Coxeter group” corresponding to each Garside group?

(3) Let M be a Garside monoid with Garside element ∆, and let ` be a length on M (M
is atomic). Is it always true that `(∆k) ≤ Ck |∆| for some constant C?

Problem 4.3. (J. McCammond) In general, the most difficult property of a Garside
structure to establish is the lattice property. Call an edge-labelled poset a quasi-Garside

structure if it satisfies all properties except the lattice property.

There is a large natural source of quasi-Garside structures. Let G be a group, generated
by a finite, conjugate-closed generating set T . Then any interval in the Cayley graph of G
with respect to T is a quasi-Garside structure. Many of these have the lattice property, and
many do not. Are there natural conditions on G and T that imply the lattice property?
Find a natural class of these posets in which the presence or absence of the lattice property
can be explained.
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Remarks:

• Tom Brady and Colum Watt [14] have recently given a uniform proof that the non-
crossing partitions NCW are lattices. Their proof depends on the realization of W
as a real reflection group. Is there a class of quasi-Garside structures in which the
lattice property can be seen only to depend on the group structure?

Problem 4.4. (D. Armstrong) As above, let G be a group generated by T , where T is
finite and closed under conjugation. Then every interval in the Cayley graph of (G, T ) is a
locally self-dual poset (every interval in the poset is self-dual).

In particular, to each element g of G, associate the poset Pg which is the interval [1, g]
in the Cayley graph of (G, T ). Note that Pg and Ph are isomorphic whenever g and h are
conjugate. Now, associate to each Pg its Ehrenborg quasisymmetric function

F (Pg) :=
∑

k

∑

1≤g0≤g1≤···≤gk≤g

x
`(g−1

0
g1)

1 x
`(g−1

1
g2)

2 · · · x
`(g−1

k−1
gk)

k .

It is known that the Ehrenborg function of a self-dual poset must, in fact, be a symmetric
function (see [49]). So F is a map from conjugacy classes of G to the ring of symmetric
functions. What is the structure of this map? Does it preserve some Hopf algebra structure?

5. Free Probability

Free probability, initiated by Dan Voiculescu, is a subject in functional analysis which
has been used successfully to study von Neumann algebras. It is a noncommutative analogue
of probability in which the role of random variables is played by operators in some ∗-algebra
(typically a C∗-algebra). The theory naturally describes the asymptotics of large random
matrices, as well as the asymptotics of representations of large symmetric groups.

Roland Speicher showed that the combinatorics of free probability is governed by the
lattice of type A noncrossing partitions, in a role which is analogous to the role played by the
lattice of unrestricted set partitions in classical probability. Many of the natural transforms
on free algebras of random variables can be understood in terms of Möbius inversion in the
incidence algebra of NCAn−1

. See the survey [47] for more information.

Problem 5.1. (F. Goodman, P. Sniady) Philippe Biane, Fred Goodman, and Alexan-
dru Nica have defined a type B analogue of free probability [10]. The definition has been
motivated by the combinatorics, and there is currently no model of this theory (as the large
random matrices are a model for type A free probability).

Find a natural model for type B free probability, which motivates the combinatorics.
Is there a corresponding notion of free probability in other types?

Remarks:

• Many of the formulas of free probability depend on the fact that there is an infinite
sequence of type A noncrossing partition latticesNCAn−1

, including, in particular, the
formulas involving multiplicative functions [48]. Type B multiplicative functions were
described by Vic Reiner [42]. Is it possible to say something about free probability
for an exceptional type W , where there is no infinite sequence?

Problem 5.2. (A. Nica) Let (A, ϕ) be a ∗-probability space. That is, A is some ∗-algebra,
and ϕ is a linear functional on A which plays the role of “expectation”. Let C0〈〈z1, . . . , zs〉〉
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denote the set of power series in s noncommuting variables which have zero constant term.
For each s-tuple of elements a1, , . . . , as in A, there is a function Ra1,...,as

called the R-

transform, which is an element of C0〈〈z1, . . . , zs〉〉. See [39] for details.

There is a unique binary operation ?s defined on C0〈〈z1, . . . , zs〉〉 with the property that
for any two families {a1, . . . , as} and {b1, . . . , bs} of freely independent random variables, we
have

Ra1,...,as
?sRb1,...,bs = Ra1b1,...,asbs .

The operation ?s is associative, and has a unit ∆s(z1, . . . , zs) := z1 + · · · + zs. In [39],
Alexandru Nica and Roland Speicher show that, in general, the coefficients of f ?s g can be
described combinatorially, using a summation over noncrossing partitions of type A.

Describe the structure of the group of invertible elements in the semigroup (C0〈〈z1, . . . , zs〉〉, ?s).

Remarks:

• The answer is known in the case s = 1. This is the only value of s for which ?s is
commutative. Here, C0〈〈z1, . . . , zs〉〉 is just C0[[z]], the set of power series with zero
constant term. In [38], Nica and Speicher define an isomorphism F (the free Fourier

transform) between the group of invertible elements in (C0[[z]], ?1) and the group of
invertible elements in (C0[[z]], ·), under the usual multiplication of power series.

• In the case s = 1, the map F provides a connection between the R-transform and
the S-transform of Voiculescu. More precisely, we have F(Ra) = Sa for any element
a ∈ A such that ϕ(a) 6= 0.

As mentioned, there is a version of the R-transform when s > 1, but it is not
known how to define an S-transform in this case. Find a multi-variable version of
the S-transform. One way to approach this problem would be to find an analogue of
the map F in this case.

Problem 5.3. (A. Nica) Let u be a unitary element of a ∗-probability space (A, ϕ). Sup-
pose u has order k and that ϕ(ui) = 0 for 1 ≤ i < k. Let κn denote the multilinear cumulant
functionals of (A, ϕ).

Give a combinatorial way to compute the cumulants in u and u∗. Equivalently, give a
formula for the R-transform of (u, u∗).

Remarks:

• The answer is known for k = 2 and k = ∞. When k = 2, the only nonvanishing
cumulants are given by the Catalan numbers κ2n(u, u, . . . , u) = (−1)n−1Cat(An−1).
When k =∞, the only nonvanishing cumulants are of the form

κ2n(u, u
∗, . . . , u, u∗) or κ2n(u

∗, u, . . . , u∗, u),

and these are both equal to (−1)n−1Cat(An−1).
• The cumulants may be expressed as a sum over noncrossing set partitions

κn =
∑

π∈NCn

π={A1,A2,...,At}

α(π)ϕA1
ϕA2

· · ·ϕAt
.

For finite k, and with u as above, the only nonvanishing terms in this sum come from
the k-divisible noncrossing partitions.
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6. Cluster Algebras and Associahedra

Cluster algebras were defined by Sergey Fomin and Andrei Zelevinsky to study the
phenomena of total positivity and dual canonical bases in semisimple Lie groups. In [23] they
show that the finite type cluster algebras are described by the Cartan-Killing classification.

Each cluster algebra has an associated simplicial complex, called the cluster complex

∆W . As before, let Φ be a (crsytallographic) root system with Weyl groupW , and let Φ+ and
Π be a corresponding choice of positive roots and simple roots, respectively. In [24], Fomin
and Zelevinsky define a binary relation on the set of almost positive roots Φ≥−1 = Φ+∪(−Π),
called compatibility. Then ∆W is defined as the flag complex of pairwise compatible subsets
of Φ≥−1. In types A and B, they show that these complexes generalize (the duals of) the
classical associahedron and cyclohedron. The number of facets of ∆W for finite type W is
the Catalan number Cat(W ), and the h-vector of the complex is given by the Narayana
numbers.

When W is a noncrystallographic finite Coxeter group, there is no associated cluster
algebra, but the complex ∆W can still be defined as a flag complex on the almost positive
roots of the corresponding (noncrystallographic) root system, and this complex obeys the
same Catalan numerology. However, the only known polytopal realization of the type W
associahedron (given by Chapoton, Fomin and Zelevinsky in [19]) does not generalize to this
case.

For more on the combinatorics of cluster algebras and associahedra, see the notes [22].

Problem 6.1. (H. Thomas, A. Zelevinsky) When W is a noncrystallographic finite
Coxeter group, give a geometric construction that realizes ∆W as a convex polytope. There
is a realization of ∆W in all types as a complete simplicial fan, but it is not clear whether
this fan is polytopal in the noncrystallographic types.

Problem 6.2. (A. Zelevinsky) In the classical types (A, B, C, and D), the associahedron
∆W has a visually transparent realization in terms of regular plane polygons and their
triangulations. Find a similar interpratation in the exceptional types.

Problem 6.3. (S. Fomin) Conjecture: The Fomin-Reading generalization of the associa-

hedron ∆
(k)
W (see Problem 1.3) is Cohen-Macaulay, and is homotopy equivalent to a wedge

of

Cat(k−1)(W ) =
n
∏

i=1

(k − 1)h+ ei + 1

ei + 1

spheres. This has been proved by Eleni Tzanaki in types A and B using shelling methods
[51].

Moreover, ∆
(k)
W seems to be the skeleton of a polytopal manifold. Can this be realized

geometrically? (This generalizes Problem 6.1 above.)

Remarks:

• (V. Reiner) Is the Fomin-Reading complex k-Cohen-Macaulay in the sense of Ba-
clawski [5]?

Problem 6.4. (D. Bessis, C. Kriloff) There is no construction of a cluster algebra in the
noncrystallographic finite types. What happens when one applies matrix mutations to the
Cartan matrix of a noncrystallographic finite Coxeter group? Are there recurrences?
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Remarks:

• (N. Reading, D. Speyer) Early calculations suggest that there are “approximate”
recurrences, that one returns close to, but bounded away from the original matrix.

Problem 6.5. (A. Zelevinsky) Describe a classification of infinite type cluster algebras
as tame or wild. This should generalize the notions of tame/wild Artin groups, tame/wild
quivers, etc.

Remarks:

• Affine types are certainly tame.
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