Models for Crystals

Cristian Lenart

State University of New York at Albany

Includes joint work with A. Postnikov (MIT).
Crystal graphs

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_{λ} (of highest weight λ) of a semisimple Lie algebra \mathfrak{g}.
Crystal graphs

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_λ (of highest weight λ) of a semisimple Lie algebra \mathfrak{g}. The definition is in the setup of the corresponding quantum group $U_q(\mathfrak{g})$. Note. Each monochromatic subgraph is a disjoint union of paths. Some applications: ▶ character formulas; ▶ decomposing tensor products of representations; ▶ branching rules; ▶ description of Lusztig's involution (to be mentioned).
Crystal graphs

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_λ (of highest weight λ) of a semisimple Lie algebra \mathfrak{g}. The definition is in the setup of the corresponding quantum group $U_q(\mathfrak{g})$.

Crystal graphs partially encode the action of the Chevalley generators of \mathfrak{g} on the canonical basis of V_λ (Lusztig, Kashiwara).
Crystal graphs

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_λ (of highest weight λ) of a semisimple Lie algebra \mathfrak{g}. The definition is in the setup of the corresponding quantum group $U_q(\mathfrak{g})$.

Crystal graphs partially encode the action of the Chevalley generators of \mathfrak{g} on the canonical basis of V_λ (Lusztig, Kashiwara).

Note. Each monochromatic subgraph is a disjoint union of paths.
Crystal graphs

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_λ (of highest weight λ) of a semisimple Lie algebra \mathfrak{g}. The definition is in the setup of the corresponding quantum group $U_q(\mathfrak{g})$.

Crystal graphs partially encode the action of the Chevalley generators of \mathfrak{g} on the canonical basis of V_λ (Lusztig, Kashiwara).

Note. Each monochromatic subgraph is a disjoint union of paths.

Some applications:

> character formulas;
Crystal graphs

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_λ (of highest weight λ) of a semisimple Lie algebra \mathfrak{g}. The definition is in the setup of the corresponding quantum group $U_q(\mathfrak{g})$.

Crystal graphs partially encode the action of the Chevalley generators of \mathfrak{g} on the canonical basis of V_λ (Lusztig, Kashiwara).

Note. Each monochromatic subgraph is a disjoint union of paths.

Some applications:

- character formulas;
- decomposing tensor products of representations;
Crystal graphs

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_λ (of highest weight λ) of a semisimple Lie algebra \mathfrak{g}. The definition is in the setup of the corresponding quantum group $U_q(\mathfrak{g})$.

Crystal graphs partially encode the action of the Chevalley generators of \mathfrak{g} on the canonical basis of V_λ (Lusztig, Kashiwara).

Note. Each monochromatic subgraph is a disjoint union of paths.

Some applications:

- character formulas;
- decomposing tensor products of representations;
- branching rules;
Crystal graphs

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_λ (of highest weight λ) of a semisimple Lie algebra \mathfrak{g}. The definition is in the setup of the corresponding quantum group $U_q(\mathfrak{g})$.

Crystal graphs partially encode the action of the Chevalley generators of \mathfrak{g} on the canonical basis of V_λ (Lusztig, Kashiwara).

Note. Each monochromatic subgraph is a disjoint union of paths.

Some applications:

- character formulas;
- decomposing tensor products of representations;
- branching rules;
- description of Lusztig’s involution (to be mentioned).
A crystal

\[B_3 : \Lambda_2 + \Lambda_1 \]
Models for crystals

- **tableaux** - type specific: Kashiwara-Nakashima
Models for crystals

- **tableaux** - type specific: Kashiwara-Nakashima

- **path models**: Littelmann, Lakshmibai-Seshadri, Gaussent-Littelmann, L. and Postnikov
Models for crystals

- **tableaux** - type specific: Kashiwara-Nakashima

- **path models**: Littelmann, Lakshmibai-Seshadri, Gaussent-Littelmann, L. and Postnikov

- **Lusztig’s parametrization** of his canonical basis: Berenstein-Zelevinsky et al.
Models for crystals

- **tableaux** - type specific: Kashiwara-Nakashima

- **path models**: Littelmann, Lakshmibai-Seshadri, Gaussent-Littelmann, L. and Postnikov

- **Lusztig’s parametrization** of his canonical basis: Berenstein-Zelevinsky et al.

- **MV polytopes**: Kamnitzer.
Models for crystals

- **tableaux** - type specific: Kashiwara-Nakashima

- **path models**: Littelmann, Lakshmibai-Seshadri, Gaussent-Littelmann, L. and Postnikov

- **Lusztig’s parametrization** of his canonical basis: Berenstein-Zelevinsky et al.

- **MV polytopes**: Kamnitzer.

I will present the alcove path model (L. and Postnikov).
Weyl group:

\[W = \langle s_\alpha : \alpha \in \Phi \rangle = \langle s_i : i = 1, \ldots, r \rangle. \]

Length: \(\ell(w) = \min \{ k : w = s_{i_1} \ldots s_{i_k} \} . \)
Weyl group:

\[W = \langle s_\alpha : \alpha \in \Phi \rangle = \langle s_i : i = 1, \ldots, r \rangle. \]

Length: \(\ell(w) = \min \{ k : w = s_{i_1} \ldots s_{i_k} \} \).

Bruhat graph: directed graph on \(W \) with labeled edges

\[w \xrightarrow{\alpha} ws_\alpha \text{ if } \ell(ws_\alpha) = \ell(w) + 1. \]
Alcoves

Hyperplanes $H_{\alpha,k} = \{ \lambda : \langle \lambda, \alpha^\vee \rangle = k \}$ ($k \in \mathbb{Z}$).

Reflection in $H_{\alpha,k}$ denoted by $s_{\alpha,k}$.

Alcoves

Hyperplanes $H_{\alpha,k} = \{ \lambda : \langle \lambda, \alpha^\vee \rangle = k \}$ ($k \in \mathbb{Z}$).

Reflection in $H_{\alpha,k}$ denoted by $s_{\alpha,k}$.

Alcoves: connected components of $V \setminus (\bigcup H_{\alpha,k})$.
Alcoves

Hyperplanes \(H_{\alpha,k} = \{ \lambda : \langle \lambda, \alpha^\vee \rangle = k \} \) \((k \in \mathbb{Z})\).

Reflection in \(H_{\alpha,k} \) denoted by \(s_{\alpha,k} \).

Alcoves: connected components of \(V \setminus (\bigcup H_{\alpha,k}) \).

Fundamental alcove:

\[
A_\circ = \{ \lambda \in V : 0 < \langle \lambda, \alpha^\vee \rangle < 1 \text{ for } \alpha \in \Phi^+ \}.
\]
Given $\lambda \in \Lambda^+$, let
\[
(A_0 = A_0, A_1, \ldots, A_l = A_0 - \lambda)
\]
be a shortest sequence of adjacent alcoves (alcove path).
Given $\lambda \in \Lambda^+$, let

$$(A_\circ = A_0, A_1, \ldots, A_l = A_\circ - \lambda)$$

be a shortest sequence of adjacent alcoves (alcove path).

Let $F_i \subset H_{\beta_i, k_i}$: common wall of A_{i-1} and A_i, where $\beta_i \in \Phi^+$.
Given \(\lambda \in \Lambda^+ \), let

\[(A_0 = A_0, A_1, \ldots, A_l = A_0 - \lambda)\]

be a shortest sequence of adjacent alcoves (alcove path).

Let \(F_i \subset H_{\beta_i, k_i} \): common wall of \(A_{i-1} \) and \(A_i \), where \(\beta_i \in \Phi^+ \).

Let \(\hat{r}_i := s_{\beta_i, k_i} \).
Given $\lambda \in \Lambda^+$, let

$$(A_0 = A_0, A_1, \ldots, A_l = A_0 - \lambda)$$

be a shortest sequence of adjacent alcoves (alcove path).

Let $F_i \subset H_{\beta_i,k_i}$: common wall of A_{i-1} and A_i, where $\beta_i \in \Phi^+$. Let $\hat{r}_i := s_{\beta_i,k_i}$.

λ-chain (of roots): $\Gamma = (\beta_1, \ldots, \beta_l)$.
Given $\lambda \in \Lambda^+$, let
\[(A_0 = A_0, A_1, \ldots, A_l = A_0 - \lambda)\]
be a shortest sequence of adjacent alcoves (alcove path).

Let $F_i \subset H_{\beta_i,k_i}$: common wall of A_{i-1} and A_i, where $\beta_i \in \Phi^+$. Let $\hat{r}_i := s_{\beta_i,k_i}$.

λ-chain (of roots): $\Gamma = (\beta_1, \ldots, \beta_l)$.

Indexing set $\mathcal{A}(\lambda) = \mathcal{A}(\lambda, \Gamma)$ for a basis of V_λ; consists of subsets $J = \{j_1 < j_2 < \ldots < j_s\} \subseteq \{1, \ldots, l\}$ such that we have the following path in the Bruhat graph:
\[1 \xrightarrow{\beta_{j_1}} w_1 \xrightarrow{\beta_{j_2}} w_2 \ldots \xrightarrow{\beta_{j_s}} w_s =: \kappa(J) \text{ (key)}.\]

Such subsets will be called admissible subsets.
Given \(\lambda \in \Lambda^+ \), let

\[
(A_\circ = A_0, A_1, \ldots, A_l = A_\circ - \lambda)
\]

be a shortest sequence of adjacent alcoves (alcove path).

Let \(F_i \subset H_{\beta_i,k_i} \): common wall of \(A_{i-1} \) and \(A_i \), where \(\beta_i \in \Phi^+ \).

Let \(\widehat{r}_i := s_{\beta_i,k_i} \).

\(\lambda \)-chain (of roots): \(\Gamma = (\beta_1, \ldots, \beta_l) \).

Indexing set \(A(\lambda) = A(\lambda, \Gamma) \) for a basis of \(V_\lambda \); consists of subsets \(J = \{j_1 < j_2 < \ldots < j_s\} \subseteq \{1, \ldots, l\} \) such that we have the following path in the Bruhat graph:

\[
1 \xrightarrow{\beta_{j_1}} w_1 \xrightarrow{\beta_{j_2}} w_2 \ldots \xrightarrow{\beta_{j_s}} w_s =: \kappa(J) \text{ (key)}.
\]

Such subsets will be called admissible subsets.

Weight of an admissible subset:

\[
\mu(J) := -\widehat{r}_{j_1} \ldots \widehat{r}_{j_s} (-\lambda).
\]
Example. Type A_2, $\lambda = 3\varepsilon_1 + \varepsilon_2$.

\[J = \{3, 6\}, \text{saturated chain}
\]

\[e = 123 < t_23 = 132 < t_{23} = 231. \]

\[\hat{r}_6 = s\alpha_{13}, -2 \]

\[\hat{r}_3 = s\alpha_{23}, 0 \]
Example. Type A_2, $\lambda = 3\varepsilon_1 + \varepsilon_2$.

$J = \{3, 6\}$, saturated chain $e = 123 < t_{23} = 132 < t_{23}t_{13} = 231$.
Example. Type A_2, $\lambda = 3\varepsilon_1 + \varepsilon_2$.

$J = \{3, 6\}$, saturated chain $e = 123 < t_{23} = 132 < t_{23}t_{13} = 231$.

$J = \{6\}$ not admissible: $e < t_{13} = 321$.
Theorem. (L. and Postnikov) The irreducible character $ch(V_{\lambda})$ of \mathfrak{g} can be expressed as

$$ch(V_{\lambda}) = \sum_{J \in A(\lambda)} e^{\mu(J)}.$$
Theorem. (L. and Postnikov) The irreducible character \(ch(V_\lambda) \) of \(\mathfrak{g} \) can be expressed as

\[
ch(V_\lambda) = \sum_{J \in \mathcal{A}(\lambda)} e^{\mu(J)}.
\]

Remark. There is a similar Demazure character formula.
Crystal graphs

Theorem. (L. and Postnikov) The crystal graph structure corresponding to V_λ can be defined combinatorially on $\mathcal{A}(\lambda)$ by directed edges

$$J \mapsto (J \setminus \{m\}) \cup \{k\}.$$
Theorem. (L. and Postnikov) The crystal graph structure corresponding to V_λ can be defined combinatorially on $A(\lambda)$ by directed edges

$$J \mapsto (J \setminus \{m\}) \cup \{k\}.$$

There is a corresponding poset structure on $A(\lambda)$. Minimum $J_{\text{min}} = \emptyset$ and maximum J_{max}.
$B_3: \Lambda_2 + \Lambda_1$
Fact. (Lusztig) $A(\lambda)$ is a self-dual poset, i.e. there is a bijection $\eta : A(\lambda) \to A(\lambda)$ such that

\[J \leq J' \iff \eta(J) \geq \eta(J') . \]

In particular, $\eta : J_{\min} \leftrightarrow J_{\max}$.

Fact. (Lusztig) $A(\lambda)$ is a self-dual poset, i.e. there is a bijection $\eta : A(\lambda) \to A(\lambda)$ such that

$$J \leq J' \iff \eta(J) \geq \eta(J').$$

In particular, $\eta : J_{\text{min}} \leftrightarrow J_{\text{max}}$.

The map η is given by the action of w_\circ (longest element of W) on the canonical basis, so

$$\mu(\eta(J)) = w_\circ(\mu(J)).$$
Fact. (Lusztig) $A(\lambda)$ is a self-dual poset, i.e. there is a bijection
$\eta : A(\lambda) \rightarrow A(\lambda)$ such that

$$J \leq J' \iff \eta(J) \geq \eta(J').$$

In particular, $\eta : J_{\text{min}} \leftrightarrow J_{\text{max}}$.

The map η is given by the action of w_\circ (longest element of W) on
the canonical basis, so

$$\mu(\eta(J)) = w_\circ(\mu(J)).$$

Goal: describe η explicitly.
Fact. (Lusztig) \(\mathcal{A}(\lambda) \) is a self-dual poset, i.e. there is a bijection \(\eta : \mathcal{A}(\lambda) \to \mathcal{A}(\lambda) \) such that

\[
J \leq J' \iff \eta(J) \geq \eta(J').
\]

In particular, \(\eta : J_{\min} \leftrightarrow J_{\max} \).

The map \(\eta \) is given by the action of \(w_\circ \) (longest element of \(W \)) on the canonical basis, so

\[
\mu(\eta(J)) = w_\circ(\mu(J)).
\]

Goal: describe \(\eta \) explicitly.

In type \(A \), it is given by Schützenberger’s evacuation on semistandard Young tableaux (Berenstein and Zelevinsky).
Schützenberger’s evacuation

\[
\begin{array}{cccc}
1 & 1 & 2 & 3 \\
2 & 3 & 3 & \\
4 & 5 & & \\
\end{array}
\quad \xrightarrow{\text{REVERSE}} \quad
\begin{array}{ccc}
5 & 4 & \\
3 & 3 & 2 \\
3 & 2 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 2 & & \\
3 & 3 & 3 & 4 \\
4 & 5 & 5 & \\
\end{array}
\quad \xrightarrow{\text{SLIDE}} \quad
\begin{array}{ccc}
1 & 2 & \\
3 & 3 & 4 \\
3 & 4 & 5 & 5 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 2 & 4 & \\
3 & 3 & 3 & \\
4 & 5 & 5 & \\
\end{array}
\quad \xrightarrow{\text{SLIDE}} \quad
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 3 & 5 & \\
4 & 5 & & \\
\end{array}
\]
Generalizing Schützenberger’s evacuation

Assume that \(\lambda \) is regular, for simplicity (i.e., \(\langle \lambda, \alpha^\vee \rangle > 0 \) for all \(\alpha \in \Phi^+ \)).
Generalizing Schützenberger’s evacuation

Assume that λ is regular, for simplicity (i.e., $\langle \lambda, \alpha^\vee \rangle > 0$ for all $\alpha \in \Phi^+$).

Consider the λ-chain

$$\Gamma := (\beta_1, \ldots, \beta_m, \beta_1, \ldots, \beta_l),$$

where $\{\beta_1, \ldots, \beta_m\} = \Phi^+$.

Fact: $\Gamma^\text{rev} := (\beta_1, \ldots, \beta_m, \beta_l, \beta_l - 1, \ldots, \beta_1)$ is also a λ-chain.

STEP 1 (REVERSE-COMPLEMENT)

Define a bijection $J \in A(\lambda, \Gamma) \mapsto J^\text{rev} \in A(\lambda, \Gamma^\text{rev})$, such that $\mu(J^\text{rev}) = w \circ \mu(J)$.

Generalizing Schützenberger’s evacuation

Assume that λ is regular, for simplicity (i.e., $\langle \lambda, \alpha \rangle > 0$ for all $\alpha \in \Phi^+$).

Consider the λ-chain

$$\Gamma := (\beta_1, \ldots, \beta_m, \beta_1, \ldots, \beta_l),$$

where $\{\beta_1, \ldots, \beta_m\} = \Phi^+$.

Fact:

$$\Gamma^{\text{rev}} := (\beta_1, \ldots, \beta_m, \beta_l, \beta_{l-1}, \ldots, \beta_1)$$

is also a λ-chain.
Generalizing Schützenberger’s evacuation

Assume that \(\lambda \) is regular, for simplicity (i.e., \(\langle \lambda, \alpha^\vee \rangle > 0 \) for all \(\alpha \in \Phi^+ \)).

Consider the \(\lambda \)-chain

\[
\Gamma := (\beta_{\overline{m}}, \ldots, \beta_m, \beta_l, \ldots, \beta_{\overline{1}}),
\]

where \(\{\beta_{\overline{1}}, \ldots, \beta_m\} = \Phi^+ \).

Fact:

\[
\Gamma^{\text{rev}} := (\beta_{\overline{1}}, \ldots, \beta_m, \beta_l, \beta_{l-1}, \ldots, \beta_{\overline{1}})
\]

is also a \(\lambda \)-chain.

STEP 1 (REVERSE-COMPLEMENT)

Define a bijection

\[
J \in \mathcal{A}(\lambda, \Gamma) \mapsto J^{\text{rev}} \in \mathcal{A}(\lambda, \Gamma^{\text{rev}}),
\]

such that

\[
\mu(J^{\text{rev}}) = w_\circ(\mu(J)).
\]
Example.

Type A_2, $\lambda = 4\varepsilon_1 + 2\varepsilon_2$, $J = \{2, 4\}$,

$$\Gamma = (\alpha_{12}, \alpha_{13}, \alpha_{23}, \alpha_{13}, \underline{\alpha_{12}}, \alpha_{13}, \underline{\alpha_{23}}, \alpha_{13})$$
Example.

Type A_2, $\lambda = 4\varepsilon_1 + 2\varepsilon_2$, $J = \{2, 4\}$,

$$
\Gamma = (\alpha_{12}, \alpha_{13}, \alpha_{23}, \alpha_{13}, \alpha_{12}, \alpha_{13}, \alpha_{23}, \alpha_{13})
$$

$$
\Gamma^{\text{rev}} = (\alpha_{12}, \alpha_{13}, \alpha_{23}, \alpha_{13}, \alpha_{23}, \alpha_{13}, \alpha_{12}, \alpha_{13})
$$
Example.

Type A_2, $\lambda = 4\varepsilon_1 + 2\varepsilon_2$, $J = \{2, 4\}$,

\[
\Gamma = (\alpha_{12}, \alpha_{13}, \alpha_{23}, \alpha_{13}, \alpha_{12}, \alpha_{13}, \alpha_{23}, \alpha_{13})
\]

\[
\Gamma^{\text{rev}} = (\underline{\alpha_{12}}, \alpha_{13}, \alpha_{23}, \underline{\alpha_{13}}, \underline{\alpha_{23}}, \alpha_{13}, \underline{\alpha_{12}}, \alpha_{13})
\]

\[
J^{\text{rev}} = \{\underline{1}, 2, 4\}
\]
STEP 2 (SLIDE)
Yang-Baxter moves. Let Γ, Γ' be λ-chains related as follows:

\[
\begin{align*}
\Gamma &= (\beta_1, \ldots, (\beta_i, \beta_{i+1}, \ldots, \beta_j), \ldots \beta_l) \\
\Gamma' &= (\beta_1, \ldots, (\beta_j, \beta_{j-1}, \ldots, \beta_i), \ldots \beta_l),
\end{align*}
\]

where $\{\beta_i, \beta_{i+1}, \ldots, \beta_j\} = \Phi^+$ of rank 2.
STEP 2 (SLIDE)
Yang-Baxter moves. Let Γ, Γ' be λ-chains related as follows:

$$\Gamma = (\beta_1, \ldots, (\beta_i, \beta_{i+1}, \ldots, \beta_j), \ldots \beta_l) \mapsto$$

$$\Gamma' = (\beta_1, \ldots, (\beta_j, \beta_{j-1}, \ldots, \beta_i), \ldots \beta_l),$$

where $\{\beta_i, \beta_{i+1}, \ldots, \beta_j\} = \Phi^+$ of rank 2.

Theorem. (L.) There is a bijection

$$J \in A(\lambda, \Gamma) \mapsto J' \in A(\lambda, \Gamma')$$

such that $J \setminus [i, j] = J' \setminus [i, j]$, $\kappa(J) = \kappa(J')$, $\mu(J) = \mu(J')$.

Let $\Gamma_{\text{rev}} = \Gamma_1, \Gamma_2, \ldots, \Gamma_k = \Gamma$ be related as above. We have

$$J \in A(\lambda, \Gamma) \mapsto J_{\text{rev}} = J_1 \in A(\lambda, \Gamma_1) \mapsto \cdots \mapsto J_k = J_{\ast} \in A(\lambda, \Gamma).$$

Theorem. (L.) We have $J_{\ast} = \eta(J)$.
STEP 2 (SLIDE)

Yang-Baxter moves. Let Γ, Γ' be λ-chains related as follows:

\[
\Gamma = (\beta_1, \ldots, (\beta_i, \beta_{i+1}, \ldots, \beta_j), \ldots \beta_l) \mapsto \Gamma' = (\beta_1, \ldots, (\beta_j, \beta_{j-1}, \ldots, \beta_i), \ldots \beta_l),
\]

where $\{\beta_i, \beta_{i+1}, \ldots, \beta_j\} = \Phi^+$ of rank 2.

Theorem. (L.) There is a bijection\

\[
J \in A(\lambda, \Gamma) \overset{YB}{\mapsto} J' \in A(\lambda, \Gamma')
\]

such that $J \setminus [i, j] = J' \setminus [i, j], \quad \kappa(J) = \kappa(J'), \quad \mu(J) = \mu(J').$

Let $\Gamma^{rev} = \Gamma_1, \Gamma_2, \ldots, \Gamma_k = \Gamma$ be related as above. We have

\[
J \in A(\lambda, \Gamma) \mapsto J^{rev} = J_1 \in A(\lambda, \Gamma_1) \overset{YB}{\mapsto} \\
\overset{YB}{\mapsto} J_2 \in A(\lambda, \Gamma_2) \overset{YB}{\mapsto} \ldots \overset{YB}{\mapsto} J_k = J^* \in A(\lambda, \Gamma).
\]
STEP 2 (SLIDE)

Yang-Baxter moves. Let Γ, Γ' be λ-chains related as follows:

$$
\begin{align*}
\Gamma &= (\beta_1, \ldots, (\beta_i, \beta_{i+1}, \ldots, \beta_j), \ldots \beta_l) \mapsto \\
\Gamma' &= (\beta_1, \ldots, (\beta_j, \beta_{j-1}, \ldots, \beta_i), \ldots \beta_l),
\end{align*}
$$

where $\{\beta_i, \beta_{i+1}, \ldots, \beta_j\} = \Phi^+$ of rank 2.

Theorem. (L.) There is a bijection

$$
J \in \mathcal{A}(\lambda, \Gamma) \xrightarrow{\text{YB}} J' \in \mathcal{A}(\lambda, \Gamma')
$$

such that $J \setminus [i, j] = J' \setminus [i, j]$, $\kappa(J) = \kappa(J')$, $\mu(J) = \mu(J')$.

Let $\Gamma^{\text{rev}} = \Gamma_1, \Gamma_2, \ldots, \Gamma_k = \Gamma$ be related as above. We have

$$
J \in \mathcal{A}(\lambda, \Gamma) \mapsto J^{\text{rev}} = J_1 \in \mathcal{A}(\lambda, \Gamma_1) \xrightarrow{\text{YB}} \\
\xrightarrow{\text{YB}} J_2 \in \mathcal{A}(\lambda, \Gamma_2) \xrightarrow{\text{YB}} \ldots \xrightarrow{\text{YB}} J_k = J^* \in \mathcal{A}(\lambda, \Gamma).
$$

Theorem. (L.) We have $J^* = \eta(J)$.

Example.
\[J^{\text{rev}} = \{1, 2, 4\} \]
\[
\begin{array}{ccccccc}
\bar{1} & \bar{2} & \bar{3} & 1 & 2 & 3 & 4 & 5 \\
\Gamma^{\text{rev}} = (\bar{\alpha}_{12}, \bar{\alpha}_{13}, \bar{\alpha}_{23}, \bar{\alpha}_{13}, (\alpha_{23}, \alpha_{13}, \alpha_{12}), \alpha_{13}) \\
\end{array}
\]
\[
\begin{array}{ccccccc}
\bar{1} & \bar{2} & \bar{3} & 1 & 2 & 3 & 4 & 5 \\
\Gamma = (\bar{\alpha}_{12}, \bar{\alpha}_{13}, \bar{\alpha}_{23}, \bar{\alpha}_{13}, (\alpha_{12}, \alpha_{13}, \alpha_{23}), \alpha_{13}) \\
\end{array}
\]
Example.

\[J^{\text{rev}} = \{ \bar{1}, 2, 4 \} \]

\[\Gamma^{\text{rev}} = (\alpha_{12}, \alpha_{13}, \alpha_{23}, \alpha_{13}, (\alpha_{23}, \alpha_{13}, \bar{\alpha}_{12}), \alpha_{13}) \]

\[\Gamma = (\alpha_{12}, \alpha_{13}, \alpha_{23}, \alpha_{13}, (\alpha_{12}, \alpha_{13}, \alpha_{23}), \alpha_{13}) \]
Example.

\[J^\text{rev} = \{1, 2, 4\} \]

\[\Gamma^\text{rev} = (\alpha_{12}, \alpha_{13}, \alpha_{23}, \alpha_{13}, (\alpha_{23}, \alpha_{13}, \alpha_{12}), \alpha_{13}) \]

\[\Gamma = (\alpha_{12}, \alpha_{13}, \alpha_{23}, \alpha_{13}, (\alpha_{12}, \alpha_{13}, \alpha_{23}), \alpha_{13}) \]

\[J = \{2, 4\} \iff J^* = \{1, 3, 4\} \]
Example.

$J^{\text{rev}} = \{1, 2, 4\}$

$\Gamma^{\text{rev}} = (\alpha_{12}, \alpha_{13}, \alpha_{23}, \alpha_{13}, (\alpha_{23}, \alpha_{13}, \alpha_{12}), \alpha_{13})$

$\Gamma = (\alpha_{12}, \alpha_{13}, \alpha_{23}, \alpha_{13}, (\alpha_{12}, \alpha_{13}, \alpha_{23}), \alpha_{13})$

$J = \{2, 4\} \mapsto J^* = \{1, 3, 4\}$

Idea of proof: Show that the map $J \mapsto J^*$ commutes with the directed edges of the crystal graphs as required.