Finitary abstract elementary classes

Meeri Kesälä
University of Helsinki
Joint work with Tapani Hyttinen

July 2006

A Finitary AEC $(\mathbb{K}, \preccurlyeq_{\mathbb{K}})$ is an abstract elementary class with

• amalgamation, joint embedding and arbitrarily large models

ullet LS(\mathbb{K}) = $leph_0$ and

• finite character.

We say that $(\mathbb{K}, \preceq_{\mathbb{K}})$ has **finite character**, if the following holds:

Let $\mathscr{A}, \mathscr{B} \in \mathbb{K}$, $\mathscr{A} \subset \mathscr{B}$ and for each finite $\bar{a} \in \mathscr{A}$

$$\mathsf{tp}^g(\bar{a}/\emptyset,\mathscr{A}) = \mathsf{tp}^g(\bar{a}/\emptyset,\mathscr{B}),$$

then $\mathscr{A} \preceq_{\mathbb{K}} \mathscr{B}$.

Corollary of finite character: Let $\mathscr{A} \preccurlyeq_{\mathbb{K}} \mathscr{B}$. An embedding $f: \mathscr{A} \to \mathscr{B}$ is a \mathbb{K} -embedding if and only if it is **type-preserving**, i.e. for each finite $\bar{a} \in \mathscr{A}$,

$$tp^g(\bar{a}/\emptyset,\mathscr{B}) = tp^g(f(\bar{a})/\emptyset,\mathscr{B}).$$

Remark: If $(\mathbb{K}, \preceq_{\mathbb{K}})$ is a class of structures and there is a logic L with

- finitely many free variables in one formula and
- ullet $\preccurlyeq_{\mathbb{K}}$ is the L-elementary substructure -relation,

then $(\mathbb{K}, \preceq_{\mathbb{K}})$ has finite character.

The main example: Excellent classes

Let \mathfrak{M} denote the **monster model**. We say that \mathscr{A} is a *model* if $\mathscr{A} \in \mathbb{K}$ and $\mathscr{A} \preccurlyeq_{\mathbb{K}} \mathfrak{M}$.

Recall Galois type:

$$\operatorname{tp}^g(\bar{a}/A) = \operatorname{tp}^g(\bar{b}/A)$$
 iff

there is $f \in Aut(\mathfrak{M}/A)$ such that $f(\bar{a}) = \bar{b}$.

We define weak type ("syntactic type") such that

$$\operatorname{tp}^w(\bar{a}/A) = \operatorname{tp}^w(\bar{b}/A)$$
 iff

 $\operatorname{tp}^g(\bar{a}/B) = \operatorname{tp}^g(\bar{b}/B)$ for each finite $B \subset A$.

Lemma 1 (ω -union of types) Assume that A_n , $n < \omega$ are increasing such that $\bigcup_{n < \omega} A_n \preccurlyeq_{\mathbb{K}} \mathfrak{M}$ and let \overline{a}_n , $n < \omega$ be such that

$$tp^g(\bar{a}_{n+1}/A_n) = tp^g(\bar{a}_n/A_n)$$

for each $n < \omega$. Then there is $\bar{a} \in \mathfrak{M}$ such that

$$tp^g(\bar{a}/A_n) = tp^g(\bar{a}_n/A_n)$$

for each $n < \omega$.

 \aleph_0 -stable finitary classes

We define \aleph_0 -stability respect to weak types.

We say that the type ${\rm tp}^w(\bar a/A)$ splits over finite $E\subset A$ if there are $\bar c,\bar d\in A$ such that

$$\operatorname{tp}^g(\bar{c}/E) = \operatorname{tp}^g(\bar{d}/E)$$
 but

$$tp^g(\bar{c}/E \cup \bar{a}) \neq tp^g(\bar{d}/E \cup \bar{a}).$$

We write that

$$\bar{a}\downarrow_A^s B$$

if there is finite $E \subset A$ such that $tp^w(\bar{a}/B)$ does not split over E.

Theorem 2 (Local character) Assume that $(\mathbb{K}, \preceq_{\mathbb{K}})$ is an \aleph_0 -stable finitary class. Let \mathscr{A} be a model and \bar{a} a tuple. There is finite $E \subset \mathscr{A}$ such that $\operatorname{tp}^w(\bar{a}/\mathscr{A})$ does not split over E.

Proof: A binary tree construction (with finite levels) and Lemma 1.

for an \aleph_0 -stable finitary class we get **several properties** for \downarrow^s over \aleph_0 -saturated models:

Invariance, monotonicity, finite character, transitivity, stationarity (for weak types) and \aleph_1 -extension.

Theorem 3 Let $(\mathbb{K}, \preceq_{\mathbb{K}})$ be finitary and \aleph_0 -stable. Let \mathscr{A} be a countable model $(\mathscr{A} \preceq_{\mathbb{K}} \mathfrak{M})$. Then

$$\operatorname{tp}^w(\bar{a}/\mathscr{A}) = \operatorname{tp}^w(\bar{b}/\mathscr{A})$$

if and only if

$$tp^g(\bar{a}/\mathscr{A}) = tp^g(\bar{b}/\mathscr{A}).$$

Proof is a "primary model" construction using Lemma 1, finite character and \aleph_0 -stability.

Recall: \aleph_0 -tameness says that Galois types over models are determined by Galois types over countable submodels.

Theorem 4 Let $(\mathbb{K}, \preceq_{\mathbb{K}})$ be finitary, \aleph_0 -stable and \aleph_0 -tame. Let \mathscr{A} be a model. Then

$$\operatorname{tp}^w(\bar{a}/\mathscr{A}) = \operatorname{tp}^w(\bar{b}/\mathscr{A})$$

if and only if

$$\operatorname{tp}^g(\bar{a}/\mathscr{A}) = \operatorname{tp}^g(\bar{b}/\mathscr{A}).$$

Assume that $(\mathbb{K}, \preceq_{\mathbb{K}})$ is an \aleph_0 -stable \aleph_0 -tame finitary class. Then

- 1. Then notion \downarrow^s has full extension and symmetry over \aleph_0 saturated models.
- 2. The class is Galois-stable in each cardinal.
- 3. In each cardinality there is a model, which is saturated respect to Galois types.
- 4. Unions of coherent types $\{\operatorname{tp}^g(\bar{a}_B/B): B\subset \mathscr{A} \text{ finite}\}$ are realized (\mathscr{A} a model).

Assume that $(\mathbb{K}, \preceq_{\mathbb{K}})$ is a finitary class, categorical above the Hanf number (hence also \aleph_0 -stable). Then

- 1. Then notion \downarrow^s has full extension and symmetry over \aleph_0 saturated models.
- 2. The class in weakly stable in each cardinal.
- 3. In each cardinality there is a model, which is saturated respect to weak types.

Question: Is there a finitary class which is \aleph_0 -stable but not \aleph_0 tame?

Lascar strong splitting and simplicity.

We say that a sequence $(\bar{a}_i)_{i<\alpha}$ is **strongly** E-indiscernible if

ullet for any ordinal eta we can extend the sequence to $(\bar{a}_i)_{i<\beta}$ such that

• any order-preserving partial $f: \beta \to \beta$ induces $F \in \operatorname{Aut}(\mathfrak{M}/E)$ mapping \bar{a}_i to $\bar{a}_{f(i)}$ for each $i \in \operatorname{dom}(f)$.

We say that $\operatorname{tp}^w(\bar{a}/A)$ Lascar splits over finite $E\subset \mathscr{A}$ if there is a strongly E-indiscernible sequence $(\bar{a}_i)_{i<\omega}$ such that $\bar{a}_0, \bar{a}_1\in A$ and

$$tp^g(\bar{a}_0/E \cup \bar{a}) \neq tp^g(\bar{a}_1/E \cup \bar{a}).$$

We write that

$$\bar{a}\downarrow_A B$$

if there is finite $E\subset A$ such that for each $D\supseteq B$ there is \overline{b} realizing $\operatorname{tp}^w(\overline{a}/A\cup B)$ such that $\operatorname{tp}^w(\overline{b}/D)$ does not Lascar split over E.

We say that $(\mathbb{K}, \preceq_{\mathbb{K}})$ is **simple** if for each tuple \bar{a} and *finite* A we have that

$$\bar{a}\downarrow_A A$$

.

Assume simplicity and \aleph_0 -stability. Then \downarrow has all the usual properties over **sets**:

Invariance, monotonicity, finite character, transitivity, stationarity (for weak types over \aleph_0 -saturated models), extension and symmetry.

Assume that $(\mathbb{K}, \preceq_{\mathbb{K}})$ is \aleph_0 -stable and \aleph_0 -tame (**or** categorical above the Hanf number). Then

• When \mathscr{A} is an \aleph_0 -saturated model,

$$\bar{a} \downarrow_{\mathscr{A}} B \text{ iff } \bar{a} \downarrow_{\mathscr{A}}^{s} B.$$

We can define U-rank and show that

if $(\mathbb{K}, \preceq_{\mathbb{K}})$ has finite U-rank, then it is simple.

Denote as \mathbb{K}^{ω} the ω -saturated models of $(\mathbb{K}, \preceq_{\mathbb{K}})$.

Theorem 5 (Categoricity transfer) Let $(\mathbb{K}, \preceq_{\mathbb{K}})$ be a tame simple finitary AEC, categorical in some uncountable κ . Then

- ullet $(\mathbb{K}^{\omega}, \preccurlyeq_{\mathbb{K}})$ is categorical in all uncountable cardinals and
- $(\mathbb{K}, \preceq_{\mathbb{K}})$ is categorical in every $\lambda \geq \max\{\kappa, \beth_{(2^{\aleph_0})^+}\}$.

Proof uses primary models and "saturation transfer".

We get "weak categoricity transfer" without tameness.

Theorem 6 Let $(\mathbb{K}, \preceq_{\mathbb{K}})$ be a simple finitary AEC. Let κ be uncountable such that all models of size κ are saturated respect to weak types. Then

- ullet all uncountable models of $(\mathbb{K}^\omega, \preccurlyeq_\mathbb{K})$ are saturated respect to weak types and
- all models of $(\mathbb{K}, \preceq_{\mathbb{K}})$ and of size λ are saturated respect to weak types, when $\lambda \geq \max\{\kappa, \beth_{(2^{\aleph_0})^+}\}$.

Superstability

We define a notion of superstability for **sim**-**ple**, **finitary AEC**.

Definition 7 (Superstability) We say that the class $(\mathbb{K}, \preceq_{\mathbb{K}})$ is superstable if it is weakly stable in some cardinal and the following holds.

Let A_n for $n < \omega$ be finite and increasing such that $\bigcup_{n < \omega} A_n$ is a model, and let \bar{a} be a tuple. Then there is $n < \omega$ such that $\bar{a} \downarrow_{A_n} A_{n+1}$.

We define Lascar strong type such that

$$Lstp(\bar{a}/A) = Lstp(\bar{b}/A)$$

if $E(\bar{a}, \bar{b})$ for each A-invariant equivalence relation E with a bounded number of classes.

We also define weak Lascar strong type such that

$$Lstp^{w}(\bar{a}/A) = Lstp^{w}(\bar{b}/A)$$

if $Lstp(\bar{a}/B) = Lstp(\bar{b}/B)$ for each finite subset $B \subset A$.

- Simple \aleph_0 -stable finitary classes are superstable.
- Let $(\mathbb{K}, \preceq_{\mathbb{K}})$ be simple, superstable and finitary. Then notion \downarrow has **local character** for models, i.e. for all tuples \bar{a} and models \mathscr{A} , we have that

$$\bar{a}\downarrow_{\mathscr{A}}\mathscr{A}.$$

- We also get the usual properties of ↓ over models and over finite sets (stationarity for weak Lascar strong types).
- Let $(\mathbb{K}, \preceq_{\mathbb{K}})$ be simple, superstable and finitary. There is a cardinal κ such that $(\mathbb{K}, \preceq_{\mathbb{K}})$ is weakly stable in all $\lambda \geq \kappa$.

We say that a model A is **a-saturated**, if all Lascar strong types over finite subsets are realized in \mathscr{A} .

We say that $(\mathbb{K}, \preceq_{\mathbb{K}})$ is **a-categorical** in κ , if there is only one a-saturated model of size κ .

Theorem 8 Assume that a simple finitary $(\mathbb{K}, \preceq_{\mathbb{K}})$ is a-categorical in $\kappa \geq Hanf$ with uncountable cofinality. Then it is superstable.

Let a **formula** ϕ be a set of Galois types $\operatorname{tp}^g(\bar{a}/\emptyset)$. We write that $\mathscr{B} \models \phi(\bar{b}),$

if $\operatorname{tp}^g(\bar{b}/\emptyset, \mathscr{B}) \in \phi$.

Let $\mathbb S$ be a set of formulas. We say that a set $A\subset \mathfrak M$ is $\mathbb S$ -saturated, if the following holds:

For any finite $\bar{a}\in\mathscr{A}$, $\bar{b}\in\mathfrak{M}$ and $\phi\in\mathbb{S}$, if $\mathfrak{M}\models\phi(\bar{a}\bar{b})$, there is $\bar{d}\in A$ such that $\mathfrak{M}\models\phi(\bar{a}\bar{d})$.

We say that the class $(\mathbb{K}, \preceq_{\mathbb{K}})$ has the **Tarski-Vaught property**, if there is a countable set \mathbb{S} such that each \mathbb{S} -saturated set is a model.

Assume that $(\mathbb{K}, \preceq_{\mathbb{K}})$ is simple finitary, superstable and has the Tarski-Vaught property. Then

- The notion \downarrow has the usual properties over **all sets** with Lstp^w as the notion of type.
- When A is a countable set, $Lstp^w(\bar{a}/A) = Lstp^w(\bar{b}/A)$ implies $tp^g(\bar{a}/A) = tp^g(\bar{b}/A)$.
- With \aleph_0 -tameness: When \mathscr{A} is an arbitrary model, Lstp $^w(\bar{a}/\mathscr{A}) = \operatorname{Lstp}^w(\bar{b}/\mathscr{A})$ implies $\operatorname{tp}^g(\bar{a}/\mathscr{A}) = \operatorname{tp}^g(\bar{b}/\mathscr{A})$.