1. Sums of squares of polynomials. (Proposed by John D'Angelo) Let $\Omega \subset \mathbf{C}^{n}$ be a strongly pseudoconvex domain with compact algebraic boundary. Let $R(z, \bar{z})$ be a real polynomial which is positive on the boundary of Ω. Does there exist a positive integer k and polynomials $p_{1}(z), p_{2}(z), \ldots, p_{k}(z)$ such that

$$
R(z, \bar{z})=\sum_{j=1}^{k}\left|p_{j}(z)\right|^{2}
$$

on Ω. The answer is known to be yes if Ω is the unit ball in \mathbf{C}^{n}. (See [CD].)
2. The radical of the set of squared norms of polynomial mappings. (Proposed by John D'Angelo and Dror Varolin) Let P denote the set of Hermitian symmetric polynomials $R(z, \bar{w})$, and let $S \subset P$ denote the set of squared norms of holomorphic polynomial mappings. For $R \in P$, give a necessary and sufficient condition for the existence of an integer N such that $R^{N} \in S$.

In other words, when do there exist an N and holomorphic polynomials p_{j} such that:

$$
R(z, \bar{z})^{N}=\sum_{j=1}^{k}\left|p_{j}(z)\right|^{2}
$$

It is known that, if $R^{N} \in S$, then R satisfies the inequality

$$
|R(z, \bar{w})|^{2} \leq R(z, \bar{z}) R(w, \bar{w}) .
$$

This inequality can hold without R being a squared norm.
The following is a necessary and sufficient condition for $R \in S$: For all choices of points $\left\{z_{j}\right\} \in \mathbf{C}^{n}$, and for all k, the k by k matrix with (i, j) entry equal to $R\left(z_{i}, \bar{z}_{j}\right)$ is nonnegative definite.

See [CD] and [DV] for related additional information.
Another necessary and sufficient condition in the case $N=1$: write $[A]=$ $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ where the A_{i} are $r \times r$ commuting matrices. Then R can be written as a sum of square norms of polynomials if and only if $R\left([A],\left[A^{*}\right]\right) \geq 0$ holds for all possible choices of such commuting $A_{j}^{\prime} s$. (Convention: write adjoints first in the calculation of $R\left([A],\left[A^{*}\right]\right)$.)
3. Finite mappings. (Proposed by Linda Rothschild) Suppose $f:\left(\mathbf{C}^{n}, 0\right) \rightarrow$ $\left(\mathbf{C}^{n}, 0\right)$ is a finite mapping, that V is a complex variety. Suppose that $f^{-1}(V)$ is a smooth manifold. Does this imply that V is a manifold?

The following counterexample in characteristic 2 shows that an "algebra-only" argument will not do. Let $k=3, f(x)=\left(z_{1}^{2}, z_{2}^{2}, z_{3}+z_{1} z_{2}\right)$ and $V=\left\{\left(w_{1}, w_{2}, w_{3}\right) \in\right.$ $\left.\mathbf{C}^{3}: w_{3}^{2}=w_{1} w_{2}\right\}$. Then $f^{-1}(V)=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbf{C}^{3}: z_{3}=0\right\} \cup\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbf{C}^{3}:\right.$ $\left.z_{3}+2 z_{1} z_{2}=0\right\}$ which is the complex hyperplane where $z_{3}=0$ in the event that $2=0$.

If the dimension of V is 1 then the answer is yes.
Some motivation for this: Given a (germ of a) real analytic submanifold $M \subset \mathbf{C}^{n}$ near 0 , and f as above. A natural question to ask is: when is $f(M)$ a manifold? See [ER].
4. Mappings between Riemann surfaces. (Proposed by Dror Varolin) Let X, Y be compact Riemann surfaces and $\left\{a_{j}\right\} \in X$ points considered to have finite multiplicity $m_{j}>0$. Does there exist $f: X \rightarrow Y$ so that near $a_{j}, f(z)=z^{m_{j}+1}$, and f has no other critical points?

Next, assume $\phi: X \rightarrow \mathbf{R}$ is $C^{\infty}, \Delta \phi \geq 0, \Delta \phi>0$ away from the a_{j} and

$$
\frac{\Delta \phi}{\left|z-a_{j}\right|^{2 m_{j}}}
$$

near the a_{j}. Then does there exist such an f ?
5. Holomorphic continuation of CR maps. (Proposed by Francine Meylan) Let $(M, p) \subset \mathbf{C}^{n}$ be a generic real analytic submanifold, and suppose $f: M \rightarrow \partial B_{N}$, $n \leq N$, is a CR and continuous mapping that extends as a meromorphic function in a neighborhood of p. Then when does f extend as a holomorphic function near p ? In particular, does f extend if M is minimal?

Comment. When M is of codimension 1, this is always true. (See [Ch].)
6. Determination by finite order jets. (Proposed by Bernhard Lamel) Let M be a generic real analytic manifold, holomorphically nondegenerate, of finite
type and connected. Then for all $p \in M$ there exists $k(p)$ such that

$$
\begin{aligned}
\text { Aut } M(p) & \rightarrow G^{k}\left(\mathbf{C}^{n}\right) \\
f & \mapsto j_{p}^{k} f
\end{aligned}
$$

where $k(p)$ is the least k such that the above mapping is injective. Does there exist an M in \mathbf{C}^{2} with a sequence $\left\{p_{j}\right\}$ in M such that $k\left(p_{j}\right) \rightarrow \infty$ as $j \rightarrow \infty$?

Comment. Such an M does exist in higher dimensions.
Next, if M is only generically of finite type, does there exist an M as above with the p_{j} converging to a point of M ?
7. Approximation of formal mappings with convergent mappings. (Proposed by Nordine Mir) Let $0 \in M \subset \mathbf{C}^{n}, 0 \in M^{\prime} \subset \mathbf{C}^{N}$ be real analytic manifolds with real analytic defining functions ρ, ρ^{\prime}. Suppose also that both are of (Bloom-Graham-Kohn) finite type, $f:\left(\mathbf{C}^{n}, 0\right) \rightarrow\left(\mathbf{C}^{N}, 0\right)$ a formal holomorphic mapping such that $f(M) \subset\left(M^{\prime}\right)$ formally. (This means that $f(z)=$ $\left(f_{1}[z], f_{2}[z], \ldots, f_{N}([z])\right)$ is an N-tuple of formal power series where for some formal power series $a(z, \bar{z}), \rho^{\prime}(f(z), \overline{f(z)})=a(z, \bar{z}) \rho(z, \bar{z})$ as formal power series.) Then the question is: does there exist an Artin-type approximation theorem, i.e., for each $\ell>0$ can we find a (convergent) holomorphic mapping $f^{\ell}:\left(\mathbf{C}^{n}, 0\right) \rightarrow\left(\mathbf{C}^{n}, 0\right)$ such that $f(M) \subset M^{\prime}$ and $j_{0}^{\ell} f^{\ell}=j_{0}^{\ell} f$?

If M^{\prime} is real algebraic, the answer is yes. (See [MMZ].)
Suppose that $0 \in A_{0} \subset \mathbf{C}^{n} \times \mathbf{C}^{N}$, the graph of f lies in A_{0} (formally?) and we let $c(f):=\operatorname{dim}\left(A_{0}\right)-N$ (the "complexity" of f). Then $c(f)=0$ if and only if f is convergent.
8. Rational mappings of balls. (Proposed by Han Peters) Let $R: B_{n} \rightarrow B_{N}$, $n \geq 3$ be a rational proper mapping: $R(z)=p(z) / q(z)$. Let $d=d^{0}(R)$ be the degree of R. Question 8a: is $d \leq \frac{N-1}{n-1}$? Question 8 b : Is $d \leq \frac{N-1}{n-1}$ if we also assume that $n \geq 2 d^{2}+2 d$? Characterize all $R(z)$ such that this inequality is sharp.

For monomials the answer to question 8 b is yes. (See [DLP].) For $n=2$ it is known for monomial maps that $d \leq 2 N-3$ and that this is sharp. (See [DKR].)

A further question: let $f: B_{n} \rightarrow B_{N}$ be proper, and suppose f is rational, polynomial or monomial with $d:=d^{0}(f)>1$. Does there exist a proper $g: B_{n} \rightarrow$ B_{N} which is rational, polynomial or monomial such that $d^{0}(g)=d^{0}(f)-1$?
9. Finite jet determination. (Proposed by Bernhard Lamel) Suppose that $R, \tilde{R}: B_{n} \rightarrow B_{N}$ are proper rational functions. Find the smallest integer r such that if $j_{0}^{r} R=j_{0}^{r} \tilde{R}$ then $R=\tilde{R}$. The same question could be asked if R, \tilde{R} are merely proper (and not rational.)
10. Deformation of varieties. (Proposed by Dmitri Zaitsev) Let $n \geq 3$ and suppose that $V \subset \mathbf{C}^{n}$ is a complex analytic subvariety of codimension 1. Assume that $0 \in V$ and that 0 is an isolated singularity of V. Suppose that ∂V is compact and smooth. Can V be 'deformed' into $B_{n-1} \subset \mathbf{C}^{n-1}$? A smooth deformation $\left(V_{t}, \partial V_{t}\right)$ of such varieties with t in an interval I is defined to satisfy:
(1) In a neighborhood of every $\left(p_{0}, t_{0}\right)$ with $t_{0} \in I, p_{0} \in V_{t_{0}}$, there exists a smooth complex function $F(p, t)$, holomorphic in p, such that $V_{t}=\{p: F(p, t)=0\}$.
(2) In a neighborhood of every $\left(p_{0}, t_{0}\right)$ with $t_{0} \in I, p_{0} \in \partial V_{t_{0}}$, there exists a smooth complex function $F(p, t)$ as above together with a smooth real function $r(p, t)$, such that $V_{t}=\{p: F(p, t)=0, r(p, t)<0\}$ and such that the partial derivative vectors $\partial F / \partial p$ and $\partial r / \partial p$ are linearly independent.
11. Solutions to $\bar{\partial}$. (Proposed by Mei-Chi Shaw) Let $\Omega \subset \mathbf{C P}^{n}$ be pseudoconvex with C^{∞} boundary. Let us solve $\bar{\partial} u=f$ in Ω. If f is a (p, q) form such that $\bar{\partial} f=0, f \in C^{\infty}(\bar{\Omega})$, then does there exist $u \in W^{1}(\Omega)$ such that $\bar{\partial} u=f ?$

It is known that there exists such a u in $L^{2}(\Omega)$, and also that there exists such a u in $W^{\epsilon}(\Omega)$ for some $\epsilon>0$, where ϵ depends on Ω. See [CSW].

The answer is not even known if $\partial \Omega$ is real analytic.
12. Transversality. (Proposed by Peter Ebenfelt) Suppose that $0 \in M \subset$ $\mathbf{C}^{n+1}, 0 \in M^{\prime} \subset \mathbf{C}^{N+1}$, where M, M^{\prime} are hypersurfaces (C^{∞} or real analytic), and $n \leq N$. Let $H:\left(\mathbf{C}^{n+1}, 0\right) \rightarrow\left(\mathbf{C}^{N+1}, 0\right)$ be holomorphic, and $H(M) \subset M^{\prime}$. Suppose that H does not map a full neighborhood of 0 in \mathbf{C}^{n+1} into M^{\prime}. Then give
conditions on M, M^{\prime} such that H is transversal at 0 to M^{\prime} for all such H.
The statement ' H is transversal to M^{\prime} at p ' means that

$$
d_{p} H\left[T_{p} \mathbf{C}^{n+1}\right]+T_{H(p)} M^{\prime}=T_{H(p)} \mathbf{C}^{N+1}
$$

In the case that $N=n$ and M or M^{\prime} is of finite type at 0 , then transversality holds under a finite map H.

If M and M^{\prime} are strictly pseudoconvex, H is transversal.
Example. Consider the mapping $H: \mathbf{C}^{2} \rightarrow \mathbf{C}^{3}$ given by

$$
H(z, w)=\left(z+z^{2}+\frac{i}{2} w, z-z^{2}-\frac{i}{2} w,-2 z w\right)
$$

Let $M=\left\{(z, w) \in \mathbf{C}^{2}: \operatorname{Im}(w)=|z|^{2}\right\}$ and

$$
M^{\prime}=\left\{\left(z_{1}, z_{2}, w\right) \in \mathbf{C}^{3}: \operatorname{Im}(w)=-\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right\}
$$

The H is transversal on $M \backslash\{(z, w): \operatorname{Re}(z)=0\}$.
13. Singularities of varieties. (Proposed by Xiaojun Huang) Let $M \subset \mathbf{C}^{N}$ be a compact real analytic spherical CR manifold of hypersurface type and suppose that M is the boundary of an analytic variety V. Then what kind of singularities can V have?

It is known that if M is algebraic then V has at most one isolated singular point. See [HJ]. See also a survey paper [H].

Example. Consider the mapping $f: B_{2} \rightarrow B_{3}$ given by $f\left(z_{1}, z_{2}\right)=\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right)$. Then the image of f is $\left\{\left(w_{1}, w_{2}, w_{3}\right) \in \mathbf{C}^{3}: Q\left(w_{1}, w_{2}, w_{3}\right) \equiv w_{2}^{2}-2 w_{1} w_{3}=0\right\}$. Let $M=f\left(\partial B_{2}\right)$ and $V=f\left(B_{2}\right)$. Then V and M satisfy the conditions above. Furthermore, M has exactly one singularity: $\left(\frac{\partial Q}{\partial w_{1}}, \frac{\partial Q}{\partial w_{2}}, \frac{\partial Q}{\partial w_{3}}\right)=\left(-2 w_{3}, 2 w_{2},-2 w_{1}\right)$, and this is zero only at the point $(0,0,0)$. This example shows that the result in [HJ] is sharp.

References

[CD] Catlin, David W. and John P. D'Angelo, A stabilization theorem for Hermitian forms and applications to holomorphic mappings, Math. Res. Lett. 3, no. 2 (1996), 149-166.
[Ch] Chiappari, Stephen A., Holomorphic extension of proper meromorphic mappings, Michigan Math. J. 38, no. 2 (1991), 167-174.
[CSW] Cao, Jianguo, Mei-Chi Shaw and Lihe Wang, Estimates for the $\bar{\partial}$-Neumann problem and nonexistence of C^{2} Levi-flat hypersurfaces in $\mathbf{C P}{ }^{n}$, Math. Z. 248, no. 1 (2004), 183-221.
[DLP] D'Angelo, John P., Jiri Lebl and Han Peters, Degree estimates for polynomials constant on a hyperplane, Preprint.
[DKR] D'Angelo, John P., Šimon Kos and Emily Riehl, A sharp bound for the degree of proper monomial mappings between balls, J. Geom. Anal. 13, no. 4 (2003), 581-593.
[ER] Ebenfelt, Peter and Linda P. Rothschild, Images of real submanifolds under finite mappings (2006).
[H] Huang, X., On some problems in several complex variables and CR geometry., First International Congress of Chinese Mathematicians (Beijing, 1998), AMS/IP Stud. Adv. Math., 20, Amer. Math. Soc., Providence, RI (2001), 383-396.
[HJ] Huang, Xiaojun and Shanyu Ji, Global holomorphic extension of a local map and a Riemann mapping theorem for algebraic domains, Math. Res. Lett. 5, no. 1-2 (1998), 247260.
[MMZ] Meylan, Francine, Nordine Mir and Dmitri Zaitsev, Approximation and convergence of formal CR-mappings., Int. Math. Res. Not. 4 (2003), 211-242.
[DV] D' Angelo, John P. and Dror Varolin, Positivity conditions for Hermitian symmetric functions, Asian J. Math. 8, no. 2 (2004), 215-231.

