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Chapter A: A Primer on Q-Curvature

by Michael Eastwood and Jan Slovák

Disclaimer: These are rough notes only, aimed at setting the scene and promoting
discussion at the American Institute of Mathematics Research Conference Center Work-
shop ‘Conformal Structure in Geometry, Analysis, and Physics,’ 12th–16th August 2003.
For simplicity, we have omitted all references. Curvature conventions are in an appendix.
Conversations with Tom Branson and Rod Gover have been extremely useful.

LetM be an oriented even-dimensional Riemannian n-manifold. Branson’sQ-curvature
is a canonically defined n-form on M . It is not conformally invariant but enjoys certain nat-
ural properties with respect to conformal transformations.

When n = 2, the Q-curvature is a multiple of the scalar curvature. With conventions
as in the appendix Q = − 1

2
R. Under conformal rescaling of the metric, gab 7→ ĝab = Ω2gab

we have
Q̂ = Q+∆ log Ω,

where ∆ = ∇a∇a is the Laplacian.

When n = 4, the Q-curvature is given by

Q = 1
6
R2 − 1

2
RabRab −

1
6
∆R. (1)

Under conformal rescaling,

Q̂ = Q+ P log Ω,

where P is the Paneitz operator

Pf = ∇a

[
∇a∇b + 2Rab − 2

3
Rgab

]
∇bf. (2)

For general even n, the Q-curvature transforms as follows:–

Q̂ = Q+ P log Ω, (3)

where P is a linear differential operator from functions to n-forms whose symbol is ∆n/2. It
follows from this transformation law that P is conformally invariant. To see this, suppose
that

ĝab = Ω2gab and ̂̂gab = e2f ĝab = (efΩ)2gab.

Then
̂̂
Q = Q̂+ P̂ log ef = Q+ P log Ω + P̂ f

but also
̂̂
Q = Q+ P log(efΩ) = Q+ Pf + P log Ω.

Therefore, P̂ f = Pf . With suitable normalisation, P is the celebrated Graham-Jenne-
Mason-Sparling operator. Thus, Q may be regarded as more primitive than P and, therefore,
is at least as mysterious.

Even when M is conformally flat, the existence of Q is quite subtle. We can reason
as follows. When M is actually flat then Q must vanish. Therefore, in the conformally flat
case, locally if we write gab = Ω2ηab where ηab is flat, then (3) implies that

Q = ∆n/2 log Ω, (4)

where ∆ is the ordinary Laplacian in Euclidean space with ηab as metric. An immediate
problem is to verify that this purported construction of Q is well-defined. The problem is
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that there is some freedom in writing gab as proportional to a flat metric. If also gab = Ω̂2η̂ab,
then we must show that

∆n/2 log Ω = ∆̂n/2 log Ω̂.

This easily reduces to two facts:–

fact 1:: ∆n/2 is conformally invariant on flat space.
fact 2:: if gab is itself flat, then ∆n/2 log Ω = 0.

The second of these is clearly necessary in order that (37) be well-defined. For n = 2 it is
immediate from (17). For n ≥ 4 it may be verified by direct calculation as follows. If gab
and ηab are both flat then

∇aΥb = ΥaΥb −
1
2
ΥcΥcgab, (5)

where Υa = ∇a log Ω. Therefore,

∇c(Υ
aΥa)

k = 2k(ΥaΥa)
k−1Υa∇cΥa = k(ΥaΥa)

kΥc

and
∇b∇c(Υ

aΥa)
k = k2(ΥaΥa)

kΥbΥc + k(ΥaΥa)
k(ΥbΥc −

1
2
ΥaΥagbc)

whence
∆(ΥaΥa)

k = k(k + 1− n
2
)(ΥaΥa)

k+1. (6)

Taking the trace of (5) gives

∆ log Ω = ∇aΥa = (1− n
2
)ΥaΥa

and now (6) gives, by induction,

∆k+1 log Ω = k!(1− n
2
)(2− n

2
) · · · (k + 1− n

2
)(ΥaΥa)

k+1.

In particular, ∆n/2 log Ω = 0, as advertised.

That ∆n/2 is conformally invariant on flat space is well-known. It may also be verified
directly by a rather similar calculation. For example, here is the calculation when n = 4.
For general conformally related metrics ĝab = Ω2gab in dimension 4,

∆̂2f = ∆2f + 2Υa∆∇af − 2Υa∇a∆f

+ 4(∇aΥb)∇a∇bf − 2(∇aΥa)∆f − 4ΥaΥb∇a∇bf

+ 2(∆Υa)∇af − 4(∇aΥb)Υa∇bf − 4(∇aΥa)Υ
b∇bf.

If gab is flat then the third order terms cancel leaving

∆̂2f = ∆2f + 4(∇aΥb)∇a∇bf − 2(∇aΥa)∆f − 4ΥaΥb∇a∇bf

+ 2(∆Υa)∇af − 4(∇aΥb)Υa∇bf − 4(∇aΥa)Υ
b∇bf.

If ĝab is also flat, then (5) implies

∇aΥb = ΥaΥb − 1
2
ΥcΥcg

ab and ∇aΥa = −Υ
aΥa

whence the second order terms cancel and the first order ones simplify:–

∆̂2f = ∆2f + 2(∆Υb)∇bf + 2ΥaΥaΥ
b∇bf.

But using (5) again,

∆Υb = ∇a(Υ
aΥb − 1

2
ΥcΥcg

ab)

= (∇aΥa)Υ
b + (∇aΥb)Υa − (∇bΥa)Υa = −Υ

aΥaΥ
b
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and the first order terms also cancel leaving ∆̂2f = ∆2f , as advertised.

Conundrum: Deduce fact 2 from fact 1 or vice versa. Both are consequences of (5). Alter-
natively, construct a Lie algebraic proof of fact 2. There is a Lie algebraic proof of fact 1. It
corresponds to the existence of a homomorphism between certain generalised Verma modules for
so(n+ 1, 1).

What about a formula for Q, even in the conformally flat case? We have a recipe for
Q, namely (37), but it is not a formula. We may proceed as follows.

If ĝab = Ωgab and gab is flat, then (16) implies that

∇aΥb = −P̂ab +ΥaΥb −
1
2
gabΥ

cΥc. (7)

Taking the trace yields

∆ log Ω = ∇aΥa = −P̂−
1
2
(n− 2)ΥaΥa. (8)

This identity is also valid when n = 2: it is (17). Dropping the hat gives Q = −P = 1
2
R.

This is the simplest of the desired formulae.

To proceed further we need two identities. If φ has conformal weight w, then as
described in the appendix,

∇̂aφ = ∇aφ+ wΥaφ,

which we rewrite as
∇aφ = ∇̂aφ− wΥaφ. (9)

Similarly, if φa has weight w, then

∇aφa = ∇̂
aφa − (n+ w − 2)Υaφa (10)

and, if φab is symmetric and has weight w, then

∇aφab = ∇̂
aφab − (n+ w − 2)Υaφab +Υbφ

a
a. (11)

The quantities in (8) have weight −2. Therefore, applying (9) gives

∇a∆ log Ω = −∇̂aP̂− 2ΥaP̂− (n− 2)Υb∇aΥb

wherein we may use (7) to replace ∇aΥb to obtain

∇a∆ logΩ = −∇̂aP̂− 2ΥaP̂ + (n− 2)ΥbP̂ab −
1
2
(n− 2)ΥaΥ

bΥb.

We may now apply ∇a, using (9), (10), and (11) to replace ∇a by ∇̂a on the right hand
side and (7) to replace derivatives of Υa. We obtain an expression involving only complete

contractions of P̂ab, its hatted derivatives, and Υa:–

∆2 log Ω = −∆̂P̂− (n− 2)P̂abP̂ab + 2P̂2

+ (n− 6)Υa∇̂aP̂ + (n− 2)Υa∇̂bP̂ab + 2(n− 4)ΥaΥaP̂

− (n− 2)(n− 4)ΥaΥbP̂ab +
1
4
(n− 2)(n− 4)ΥaΥaΥ

bΥb.

Using the Bianchi identity ∇̂bP̂ab = ∇̂aP̂, we may rewrite this as

∆2 log Ω = −∆̂P̂− (n− 2)P̂abP̂ab + 2P̂2

+ 2(n− 4)Υa∇̂aP̂ + 2(n− 4)ΥaΥaP̂

− (n− 2)(n− 4)ΥaΥbP̂ab +
1
4
(n− 2)(n− 4)ΥaΥaΥ

bΥb

(12)
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and, in particular, conclude that when n = 4,

Q = 2P2 − 2PabPab −∆P. (13)

Though it is only guaranteed that this formula is valid in the conformally flat case, in fact
it agrees with the general expression (1) in dimension 4.

Of course, we may continue in the vein, further differentiating (38) to obtain a formula

for ∆k log Ω expressed in terms of complete contractions of P̂ab, its hatted derivatives, and Υa.
With increasing k, this gets rapidly out of hand. Moreover, it is only guaranteed to give Q
in the conformally flat case. Indeed, when n = 6 this naive derivation of Q fails for a general
metric. Nevertheless, there are already some questions in the conformally flat case.

Conundrum: Find a formula for Q in the conformally flat case. Show that the procedure
outlined above produces a formula for Q.

In fact, there is a tractor formula for the conformally flat Q. This is not the place to
explain the tractor calculus but, for those who know it already:–

¤



n− 2
0
−P


 =




0
0
Q




where

¤ = DA · · ·DB(∆−
n− 2

4(n− 1)
R)DB · · ·DA
︸ ︷︷ ︸

(n−4)/2

.

Unfortunately, this formula hides a lot of detail and does not seem to be of much immediate
use. It is not valid in the curved case.

Recall that, like Q, the Pfaffian is an n-form canonically associated to a Riemannian
metric on an oriented manifold in even dimensions. It is defined as a complete contraction
of n/2 copies of the Riemann tensor with two copies of the volume form. For example, in
dimension four it is

E = εabpqεcdrsRabcdRpqrs,

where εabcd is the volume form normalised, for example, so that

εabcdεabcd = 4! = 24.

Therefore, in four dimensions,

E = 4Rab
abRcd

cd − 16Rab
acRcd

bd + 4Rab
cdRcd

ab

= 4R2 − 16Rb
cRc

b + 4CabcdC
abcd + 32PabPab + 16P2

= 144P2 − 16(4PabPab + 8P2) + 4CabcdC
abcd + 32PabPab + 16P2

= 32P2 − 32PabPab + 4CabcdC
abcd.

The integral of the Pfaffian on a compact manifold is a multiple of the Euler characteristic.
In dimension 4, for example, ∫

M

E = 128π2 χ(M).

Notice the simple relationship between Q and E in dimension 4:–

Q = 1
16
E − 1

4
CabcdCabcd −∆P.

Of course, it follows from (3) that
∫
M
Q is a conformal invariant. Also, in the conformally

flat case, it follows from a theorem of Branson, Gilkey, and Pohjanpelto that Q must be a
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multiple of the Pfaffian plus a divergence. However, the link between Q and the Pfaffian is
extremely mysterious.

Conundrum: Find a direct link between Q and the Pfaffian in the conformally flat case. Prove
directly that

∫
M Q is a topological invariant in this case.

Conundrum: Is it true that, on a general Riemannian manifold, Q may be written as a multiple
of the Pfaffian plus a local conformal invariant plus a divergence?

Recall the conventions for Weyl structures as in the appendix. In particular, a metric
in the conformal class determines a 1-form αa. In fact, a Weyl structure may be regarded as
a pair (gab, αa) subject to equivalence under the simultaneous replacements

gab 7→ ĝab = Ω2gab and αa 7→ α̂a = αa +Υa where Υa = ∇aΩ.

A Riemannian structure induces a Weyl structure by taking the equivalence class with αa = 0
but not all Weyl structures arise in this way. A Weyl structure gives rise to a conformal
structure by discarding αa. We may ask how Q-curvature is related to Weyl structures.
From the transformation property (3), it follows that Q may be defined for a Weyl

structure as follows. Since Q is a Riemannian invariant, the differential operator P is
necessarily of the form f 7→ Sa∇af for some Riemannian invariant linear differential operator
from 1-forms to n-forms. Now, if [gab, αa] is a Weyl structure, choose a representative metric
gab and consider the n-form

Q− Saαa,

where Q is the Riemannian Q-curvature associated to gab and αa is the 1-form associated
to gab. If ĝab = Ω2gab, then

Q̂− Ŝaα̂a = Q+ SaΥa − Ŝaαa − ŜaΥa

= Q+ P log Ω− Ŝaαa − P̂ log Ω

= Q− Ŝaαa.

(14)

In dimension 4 we can proceed further as follows. From (2) we see that

Saαa = ∇b

[
∇b∇a + 2Rab − 2

3
Rgab

]
αa = ∇b

[
∇b∇a + 4Pab − 2Pgab

]
αa

and so we may calculate

Ŝaαa = Saαa + 4∇a(Υb∇[aαb]).

In combination with (14) we obtain

Q̂− Ŝaα̂a = Q− Saαa − 4∇a(Υb∇[aαb]).

However,

∇̂a(α̂b∇̂[aα̂b]) = ∇
a(α̂b∇[aαb]) = ∇

a(αb∇[aαb]) +∇
a(Υb∇[aαb])

and, therefore,

Q = Q− Saαa + 4∇a(αb∇[aαb]) (15)

is an invariant of the Weyl structure that agrees with Q when the Weyl structure arises from
a Riemannian structure.

Conundrum: Can we find such a Q in general even dimensions? Presumably, this would
restrict the choice of Riemannian Q.
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Though Q given by (15) is an invariant of the Weyl structure, it is not manifestly so.
Better is to rewrite it as follows. Using conventions from the appendix, we may write the
Schouten tensor (18) of the Weyl structure in terms of the Schouten tensor of a representative
metric gab:–

Pab = Pab +∇aαb + αaαb −
1
2
αcαcgab.

In particular,

P = P +∇aαa − αaαa

PabPab = PabPab + (∇aαb)(∇aαb) + (αaαa)
2 + 2Pab∇aαb

+ 2Pabαaαb − Pαaαa + 2(∇aαb)αaαb − (∇aαa)α
bαb

DaDaP = Da(∇aP+ 2αaP) = ∇a(∇aP+ 2αaP)
= ∆P+ 2(∇aαa)P+ 2αa∇

aP
= ∆P+∆∇bαb − 2(∆αb)αb − 2(∇aαb)(∇aαb)

+ 2(∇aαa)P + 2(∇aαa)∇
bαb − 2(∇aαa)α

bαb

+ 2αa∇
aP + 2αa∇

a∇bαb − 4αa(∇
aαb)αb

P2 = P2 + (∇aαa)
2 + (αaαa)

2

+ 2P∇aαa − 2Pαaαa − 2(∇aαa)(α
bαb).

Therefore, recalling the formula (39) for Q in dimension 4,

Q = 2P2 − 2PabPab −DaDaP
+ 4Pab∇aαb + 4Pabαaαb +∆∇bαb − 2(∆αb)αb

+ 2αa∇
aP + 2αa∇

a∇bαb − 2P∇aαa + 2Pαaαa

whence, from (15),

Q = 2P2 − 2PabPab −DaDaP
+ 4Pab∇aαb + 4Pabαaαb +∆∇bαb − 2(∆αb)αb

+ 2αa∇
aP + 2αa∇

a∇bαb − 2P∇aαa + 2Pαaαa

−∇b

[
∇b∇a + 4Pab − 2Pgab

]
αa + 4∇a(αb∇[aαb])

= 2P2 − 2PabPab −DaDaP
+ 4Pabαaαb + 2αa(∇

a∇b −∇b∇a)αb + 2Pαaαa

+ 2(∇aαb)∇aαb − 2(∇aαb)∇bαa

= 2P2 − 2PabPab −DaDaP+ 2(∇aαb)∇aαb − 2(∇aαb)∇bαa.

However,
2(∇aαb)∇aαb − 2(∇aαb)∇bαa = 4(∇[aαb])∇[aαb] = 4PabP[ab]

and so
Q = 2P2 − 2PabPba −DaDaP

a manifest invariant of the Weyl structure, as required.

Conundrum: Did we really need to go through this detailed calculation? What are the impli-
cations, if any, for the operator S : 1-forms→ 4-forms?

Conundrum: Can we characterise the Riemannian Q by sufficiently many properties? Do Weyl
structures help in this regard?

Tom Branson has suggested that, for two metrics g and ĝ = Ω2g in the same conformal
class on a compact manifold M , one should consider the quantity

H[ĝ, g] =

∫

M

(log Ω)(Q̂+Q).
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That it is a cocycle,

H[̂̂g, ĝ] +H[ĝ, g] = H[̂̂g, g],
is easily seen to be equivalent to the GJMS operators P being self-adjoint.

Conundrum: Are there any deeper properties of Branson’s cocycle H[ĝ, g]?

One possible rôle for Q is in a curvature prescription problem:–

Conundrum: On a given manifold M , can one find a metric with specified Q?

One can also ask this question within a given conformal class or within the realm of
conformally flat metrics though, of course, if M is compact, then

∫
M
Q must be as specified

by the conformal class and the topology of M . There is also the question of uniqueness:–

Conundrum: When does Q determine the metric up to constant rescaling within a given
conformal class?

Since we know how Q changes under conformal rescaling (3), this question is equivalent
to

Conundrum: When does the equation Pf = 0 have only constant solutions?

On a compact manifold in two dimensions this is always true: harmonic functions are
constant. In four dimensions, though there are conditions under which Pf = 0 has only
constant solutions, there are also counterexamples, even on conformally flat manifolds. The
following counterexample is due to Michael Singer and the first author. Consider the metric
in local coördinates

dx2 + dy2

(x2 + y2 + 1)2
+

ds2 + dt2

(s2 + t2 − 1)2
.

It is easily verified that it is conformally flat, scalar flat, and has

Rab = 4
dx2 + dy2

(x2 + y2 + 1)2
− 4

ds2 + dt2

(s2 + t2 − 1)2
.

From (2) we see that if f is a function of (x, y) alone, then Pf = L(L+ 8)f , where L is the
Laplacian for the two-dimensional metric

dx2 + dy2

(x2 + y2 + 1)2
.

More specifically, in these local coördinates

L = (x2 + y2 + 1)2
(
∂2

∂x2
+

∂2

∂y2

)
.

It is easily verified that L+ 8 annihilates the following functions:–

x

x2 + y2 + 1
,

y

x2 + y2 + 1
,

x2 + y2 − 1

x2 + y2 + 1
.

In fact, (x, y) are stereographic coördinates on the sphere and these three functions extend
to the sphere to span the spherical harmonics of minimal non-zero energy. On then other
hand, the metric

ds2 + dt2

(s2 + t2 − 1)2

is the hyperbolic metric on the disc. We conclude that the Paneitz operator has at least a
4-dimensional kernel on S2 × H2. The same conclusion applies to S2 × Σ where Σ is any



10

Riemann surface of genus ≥ 2 equipped with constant curvature metric as a quotient of H 2.
(In fact, the dimension in this case is exactly 4.)

APPENDIX: Curvature Conventions

Firstly, our conventions for conformal weight. A density f of conformal weight w may
be identified as a function for any metric in the conformal class. At the risk of confusion,
we shall also write this function as f . If however, our choice of metric gab is replaced

by a conformally equivalent ĝab = Ω2gab, then the function f is replaced by f̂ = Ωwf .
Quantities that are not conformally invariant can still have a conformal weight with respect
to constant rescalings. For example, the scalar curvature has weight −2 in this respect.
Explicit conformal rescalings are generally suppressed.

The Riemann curvature is defined by

(∇a∇b −∇b∇a)ωc = Rabc
dωd.

The Ricci and scalar curvatures are

Rac = Rabc
b and R = Ra

a,

respectively. The Schouten tensor is

Pab =
1

n− 2

(
Rab −

R

2(n− 1)
gab

)

and transforms under conformal rescaling by

P̂ab = Pab −∇aΥb +ΥaΥb −
1
2
gabΥ

cΥc. (16)

In particular, if η̂ab = Ω2ηab are two flat metrics, then

∇aΥb = ΥaΥb −
1
2
gabΥ

cΥc,

a tensor version of the Riccati equation. When n = 2, the Schouten tensor itself is not
defined but its trace is well-defined:–

P = 1
2
R P̂ = P−∇aΥa = P−∆ log Ω (17)

and so, if η̂ab = Ω2ηab are two flat metrics, then ∆ log Ω = 0.

A Weyl structure is a conformal structure together with a choice of torsion-free con-
nection Dα preserving the conformal structure. In other words, if we choose a metric gab in
the conformal class, then

Dagbc = 2αagbc,

determining a smooth 1-form αa. Conversely, αa determines Da:

Daφb = ∇aφb + αaφb + αbφa − αcφcgab,

where ∇a is the Levi-Civita connection for the metric gab. Let Wab denote the Ricci
curvature of the connection Da:–

(DaDb −DbDa)V
c = Wab

c
dV

d Wab = Wca
c
b.
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We may compute these curvatures in terms of αa and∇a, for a chosen metric in the conformal
class:–

DaDbV
c = ∇a(∇bV

c − αbV
c + αcVb − αdV

dδb
c)

+ αa(∇bV
c − αbV

c + αcVb − αdV
dδb

c)
+ αb(∇aV

c − αaV
c + αcVa − αdV

dδa
c)

+ αe(∇eV
c − αeV

c + αcVe − αdV
dδe

c)gab
− αa(∇bV

c − αbV
c + αcVb − αdV

dδb
c)

+ αc(∇bVa − αbVa + αaVb − αdV
dgba)

− αe(∇bV
e − αbV

e + αeVb − αdV
dδb

e)δa
c

so
(DaDb −DbDa)V

c = (∇a∇b −∇b∇a)V
c

− (∇aαb)V
c + (∇aα

c)Vb − (∇aαd)V
dδb

c

+ (∇bαa)V
c − (∇bα

c)Va + (∇bαd)V
dδa

c

+ αcαaVb + αbδa
cαeV

e − αeα
eδa

cVb
− αcαbVa − αaδb

cαeV
e + αeα

eδb
cVa

whence
Wab

c
d = Rab

c
d − 2δcd∇[aαb] − 2gd[a∇b]α

c + 2δ[a
c∇b]αd

+ 2αcα[agb]d + 2δ[a
cαb]αd − 2αeα

eδ[a
cgb]d

and

Wab = Rab + (n− 1)∇aαb −∇bαa + gab∇
cαc + (n− 2)αaαb − (n− 2)αcαcgab

whose trace is
W = R + 2(n− 1)∇cαc − (n− 1)(n− 2)αcαc.

Therefore,

1

n− 2

(
Wab −

W

2(n− 1)
gab

)
= Pab +∇aαb + αaαb −

1
2
αcαcgab +

2
n−2
∇[aαb].

If two Weyl structures have the same underlying conformal structure, then we may, without
loss of generality, represent them as (gab, αa) and (gab, αa −Υa) for the same metric gab and
an arbitrary 1-form Υa. If we write hatted quantities to denote those computed with respect
to (gab, αa −Υa), then

for

Pab =
1

n− 2

(
Wab −

2

n
W[ab] −

W

2(n− 1)
gab

)
(18)

we have the convenient transformation law

P̂ab = Pab −DaΥb +ΥaΥb −
1
2
gabΥ

cΥc. (19)

Chapter B: Origins, applications, and generalizations of the Q-curvature

by Tom Branson and Rod Gover

Curvature prescription
Everything below will take place in the setting of Riemannian manifolds (or Riemannian

conformal manifolds) of even dimension n. Of course many statements will also be true for
odd-dimensional manifolds and/or pseudo-Riemannian (conformal) manifolds, but our main
intent is to make this blurb readable. There will be no reference list here, though there are
plans to compile a separate reading list (of real papers) on the topic.
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A touchstone in Differential Geometry is the Yamabe equation: for n > 2,
(
∆+

n− 2

4(n− 1)
K

)
u =

n− 2

4(n− 1)
K̂u

n+2
n−2 . (20)

This gives the conformal change law for the scalar curvature K. That is, if ω is a smooth
function and

ĝ = e2ωg, u := e
n−2

2
ω,

the K̂ given by (20) is the scalar curvature of ĝ.

Exercise 1. Show that (20) implies the conformal change law for the conformal Lapla-
cian

Y := ∆ +
n− 2

4(n− 1)
K,

namely

Ŷ = e−
n+2

2
ωY e

n−2
2

ω.

Here, and in such formulas below, the function on the very right is to be viewed as a
multiplication operator, so the relation really says that for all smooth functions f ,

Ŷ f = e−
n+2

2
ωY
(
e

n−2
2

ωf
)
.

When n = 2, the equation governing the conformal change ofK is qualitatively different
from a PDE standpoint:

∆ω +
1

2
K =

1

2
K̂e2ω. (21)

Like the Yamabe equation, this is quasilinear, but in contrast to Yamabe, it has an exponen-
tial (as opposed to power) nonlinearity, and it has an inhomogeneity (the 1

2
K term). (21) is

called the Gauss curvature prescription equation, the Gauss curvature in dimension 2 being
1
2
K.

There is a formal procedure of analytic continuation in dimension (which in fact can
be made rigorous) that allows one to guess (or prove) (21) given (20). The Yamabe equation
may be rewritten as

∆
(
e

n−2
2

ω − 1
)
+

n− 2

4(n− 1)
Ke

n−2
2

ω =
n− 2

4(n− 1)
K̂e

n+2
2

ω.

Note that we have slipped in an extra −∆1 = 0 on the left. The advantage of this is that,
as a power series in n−2

2
, all terms in the equation begin at the first power. Dividing by n−2

2

and then evaluating at n = 2, we get (21).

Exercise 2 (following C.R. Graham). Make the dimensional continuation argument
rigorous by looking at stabilisations of the manifoldM , i.e. the (n+p)-dimensional manifolds
M × T p, where T p is the standard p-torus.

There is a generalisation of this whole picture to higher order, in which the role of
the pair (Y, J) is played by a pair (Pm, Qm) consisting of an operator and a local scalar
invariant. The Pm are the celebrated Graham-Jenne-Mason-Sparling (GJMS) operators,
which by construction have the following properties.

• Pm exists for m even and m− n /∈ 2Z+.
• Pm = ∆m/2 + LOT. (Here and below, LOT=“lower order terms”.)
• Pm is formally self-adjoint.
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• Pm is conformally invariant in the sense that

P̂m = exp

(
−
n+m

2
ω

)
Pm exp

(
n−m

2
ω

)
.

• Pm has a polynomial expression in ∇ and R in which all coefficients are rational in
the dimension n.

• Pm has the form

δSmd+
n−m

2
Qm,

where Qm is a local scalar invariant, and Sm is an operator on 1-forms of the form

(dδ)m/2−1 + LOT or ∆m/2−1 + LOT.

In this last expression, d and δ are the usual de Rham operators and ∆ is the form Laplacian
δd + dδ. Note that Pm is unable to detect changes in the (dδ)m/2−1 term of the principal
part of Sm, sandwiched as it is between a δ and a d.

With these properties, conditions are right to generalise the Yamabe equation to(
Pm +

n−m

2
Qm

)
u =

n−m

2
Q̂mu

n+m
n−m , m /∈ {n, n+ 2, n+ 4, . . .}, (22)

where
u := e

n−m
2

ω.

Analytic continuation in dimension then yields the following analogue of the Gauss curvature
prescription equation. If we denote Pn and Qn simply by P and Q, then

Pω +Q = Q̂enω. (23)

Though there is much more to be said about the Q-curvature, this is probably the central
formula of the theory.

Exercise 3. Show that if we have a local invariant B satisfying a conformal change
law like (23), Aω + B = B̂enω, with A a natural differential operator, then necessarily A is

conformally invariant in the sense Â = e−nωA.

The fact that Pm has an expression with rational dependence on the dimension is
crucial to making the analytic continuation rigorous, whether one does it by stablilisation
(generalising Exercise 2), or by an algebraic argument using R(n)-linear combinations in a
dimension-stable basis of invariants.

Very explicit formulas for Pm and Qm are known up to m = 8. The m = 4 case,
which was already being discussed in the early 1980’s, is particularly appealing as a source
of intuition, since the formulas there are still quite manageable. Let r be the Ricci tensor
and let

P :=
r − Jg

n− 2
.

The Paneitz operator is

P4 := δS4d+
n− 4

2
Q4,

where
Q4 := −2|P|2 +

n

2
J2 +∆J,

and
S4 := dδ + (n− 2)J− 4P · .
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Here P· is the natural action of a symmetric 2-tensor on 1-forms.

The transition from m = 2 to m = 4 already points up the fact that the (Pm, Qm)
are not uniquely determined: if C is the Weyl conformal curvature tensor, we could add
a suitable multiple of |C|2 to P4 without destroying any of its defining properties. (The
coefficient should be rational in n, should have a zero at n = 4, and should not have poles
that create new “bad” dimensions.)

The m = 4 situation is also already big enough to show that the study of Q is not
just a disguised study of the conformal properties of the Pfaffian Pff. One of the salient
properties of the Pfaffian is that it can be written as a polynomial in R, without any explicit
occurrences of ∇. For example, in dimension 4,

32π2Pff4 = |C|2 − 8|P|2 + 8J2.

But the ∆J term in Q4 is an absolutely essential aspect, and it generalises: see Exercise 6
below.

All the conformal change laws we’ve mentioned are good in odd dimensions, and that
for P4 in dimension 3 shows that very strange nonlinearities can occur:

(
δ(dδ + J− 4P·)d−

1

2
Q4

)
u = −

1

2
Q̂4u

−7,

where u = eω/2.

Back to the general case, a celebrated property of Q is the conformal invariance of its
integral on compact manifolds:

∫
Qdvg is conformally invariant.

Indeed, since dvĝ = enωdvg, ∫
Q̂ dvĝ =

∫
(Q+ Pω)dvg.

But Pω is an exact divergence, by the δ · · · d property of P , and thus it integrates to 0,
showing invariance. This has an immediate generalisation. If u is a smooth function,

∫
Q̂u dvĝ =

∫
(Q+ Pω)u dvg.

Since P is formally self-adjoint, we may move it over to u in the very last term under the
integral. If it happens that u ∈ N (P ), there is no contribution from this term. Thus

u ∈ N (P ) ⊂ N (d) ⇒

∫
Qudvg is conformally invariant.

Relativistic considerations
The Einstein equations are obtained by taking the Einstein-Hilbert action

∫
K dv in

dimension 4, and taking the total metric variation. This means we take a compactly sup-
ported symmetric tensor h and a curve of metrics gε with (d/dε)|ε=0gε = h, and compute
that

(d/dε)|ε=0

(∫

K

K dv

)
=

∫
〈h, r − 1

2
Kg〉dv,
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where K is any compact set containing supp(h). Here we may view 〈·, ·〉 as the pairing
of a covariant with a contravariant symmetric tensor, or as the metric (g0) pairing of two
covariant tensors.

Weyl relativity is one proposal for replacing the Einstein-Hilbert action with an action
that is invariant under multiplication of the metric by a positive constant: under the variation
above,

(d/dε)|ε=0

∫

K

|C|2dv =

∫
〈h,B〉dv,

where B is the Bach tensor, a trace-free symmetric 2-tensor with the property (when viewed
as a contravariant tensor) that under the usual conformal variation,

B̂ = e−2ωB.

One aspect of B is that the nonlinear differential operator

g 7→ Bg, (24)

carrying a metric to its Bach tensor, is fourth-order quasilinear. Its linearisation is an
interesting fourth-order conformally invariant linear differential operator.

In attempting to generalise this to higher dimensions, it’s clear that
∫
Pff won’t help

– its total metric variation is 0, since it’s a topological invariant. Choices like
∫
|C|n/2 for

n = 8, 12, . . . are uninteresting because the linearisations of the analogues of the operators
(24) have order lower than one might hope for – less than n. In fact these linearisations will
even vanish when we vary at a conformally flat metric.

Coming to the rescue of the situation is Q:

(d/dε)|ε=0

∫

K

Qdv =

∫
〈h,A〉dv,

where A is the Fefferman-Graham tensor, a symmetric contravariant 2-tensor with the con-
formal invariance law Â = e(2−n)ωA. The linearisation D of the map g 7→ Ag has order n.

The operator D is conformally invariant in the sense that D̂ = e−(n+2)ωDe−2ω when acting
on trace-free symmetric contravariant 2-tensors.

Exercise 4. Show that if
∫
S dv is conformally invariant, then its total metric variation

tensor C is conformally invariant. Show that if T is any conformally invariant tensor, then
the linearisation of the map g 7→ Tg is conformally invariant on trace-free perturbations of g
(and 0 on pure trace perturbations).

Quantum considerations
Let A be a natural differential operator with positive definite leading symbol, and

suppose A is a positive power of a conformally invariant operator. For example, A could
be one of the GJMS operators, or it could be the square of the Dirac operator. Then in
dimensions 2,4,6, and conjecturally in higher even dimensions,

− log
det Â

detA
= α

{
1

2

∫
ωPω dv +

∫
ωQdv

}
+

∫ (
F dv − F dv

)
+H, (25)

where α is a constant, F is a local scalar invariant, and H is a term depending on the
null space of A. In particular, if the conformally invariant condition N (A) = 0 is satisfied,
then H = 0. The determinant involved is the zeta-regularised functional determinant of a
positively elliptic operator.
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Such formulas are the finite variational formulas corresponding to Polyakov formulas,
which are infinitesimal variational formulas for the determinant; these take the form

(− log detA)• =

∫
ω(L+ h) (26)

where L is a local invariant and h depends on the null space of A, and the superscripted
bullet denotes the variation (d/dε)|ε=0. Here the curve along which we vary can be any
curve of conformal metrics with g• = 2ωg; it is particularly convenient to consider curves
gε = e2εωg0 for given g0 and ω. As part of the package producing the Polyakov formula, one
gets the conformal index property, that

∫
Ldv is conformally invariant.

In fact, getting from (26) to (40) may be viewed as a process of finding conformal
primitives. We say that a functional F on the conformal class [g0] is a conformal primitive
for a local invariant L if (d/dε)|ε=0F =

∫
ωL. Of course this should happen at all possible

choices of background metric g0, and all directions of variation ω. This can be said in a
more invariant way, following a suggestion of Mike Eastwood. Putting the “running” metric
g and the background metric on the same footing in a two-metric functional F(ĝ, g) on the
conformal class, we require of a conformal primitive that it be

• alternating and in the ĝ and g arguments;
• cocyclic in the sense that

F(ˆ̂g, g) = F(ˆ̂g, ĝ) + F(ĝ, g); (27)

• having variation L in the sense above when varied in ĝ for fixed g.

That the
∫
(F dv − F dv) term in (40) should be this way is obvious; for the term involving

P and Q, it is a subtle point.

Some local invariants have other local invariants as conformal primitives. For example,
since

J• = −2ωJ+∆ω,

we have

(Jn/2)• = −nωJ+
n

2
Jn/2−1∆ω,

so (∫
Jn/2dv

)•

=
n

2

∫
ω∆(Jn/2−1).

This makes 2Jn/2/n a conformal primitive for ∆(Jn/2−1). Q is an example of a local invariant
that does not have such a local conformal primitive.

In order to handle these objects more cleanly, let’s view P and Q as being density-
valued objects P and Q, so that a “weight term” involving the conformal factor does not
appear explicitly. In other words, replace Pf by Pf = Pf dvg, and Q by Q = Qdvg. (For
readers unfamiliar with densities, not much is lost conceptually in assuming our manifold is
oriented and talking about n-forms instead of scalar densities.) Then

Q̂ = Q+Pω,

∫
Q̂ =

∫
Q. (28)
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Let’s also take all the local invariants we consider to be density valued. A local primitive for
L will be a functional F with F • =

∫
ωL. The right side of (40) (ignoring the term H, which

may be shown to have a conformal primitive, or which may be eliminated by redefining the
determinant) goes over to

α

{
1

2

∫
ωPω +

∫
ωQ

}
+

∫ (
F̂− F

)
. (29)

Recall that when we wrote this, we were thinking about a background metric g0 and a
perturbed metric gω. But there is an interesting way of rewriting the first term, as

1

2
α

∫
ω(Qω +Q0). (30)

To eliminate the appearance of a choice (of g0) being made, we define c(ĝ, g) := ω for two
conformally related metrics ĝ = e2ωg. The two-metric functional c is alternating and cocyclic
as above. From this viewpoint, (30) is (α times) a two-point functional

G(ĝ, g) :=
1

2

∫
c(ĝ, g)(Qĝ +Qg),

and clearly

G(ĝ, g) = −G(g, ĝ).

The functional (29) is

αG(ĝ, g) +

∫
(Fĝ − Fg). (31)

Since the log-determinant functional will obviously satisfy the cocycle condition (27),
and since the second functional in (31) satisfies such a condition, we expect G to behave
similarly. One way to see that this expectation is fulfilled is to use the conformal primitive
property: for fixed g and ĝ, with G for F above, the two sides of (27) have the same conformal

variation (of ˆ̂g), and the same value at ˆ̂g = g.

Exercise 5. Show that if g0, gω = e2ωg0, gζ = e2ωg0, and gη = e2ηg0 are 4 conformally
related metrics, then

∫
ω(Qζ −Qη) +

∫
ζ(Qη −Qω) +

∫
η(Qω −Qζ) = 0.

The following conjecture would be enough to prove the conjecture mentioned at the
beginning of the section on the form of the determinant quotient.

Conjecture 1. If S is a natural n-form and
∫
S is conformally invariant, then

S = const ·Q+ L+G,

where L is a local conformal invariant and G has a local conformal primitive. That is, there
is a local invariant F for which the conformal variation of

∫
F is

∫
ωG.

The point of separating these 3 kinds of terms is that
∫
ωL will have a very banal

conformal primitive, namely itself, or (to write it in a way that makes the properties of a
conformal primitive more apparent),

1

2

∫
c(ĝ, g)(Lĝ + Lg).
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Q has an interesting conformal primitive, as discussed above. Q is not uniquely defined, but
the The Q in the statement of the conjecture could be anyone’s favorite version of Q. In
fact, Q is well-defined up to addition of an L.

Then there are the following related conjectures:

Conjecture 2. Any S as above may be written

const ·Q+ L+V,

where V is an exact divergence.

Conjecture 3. Any S as above may be written

const · Pff + L+V.

There are at least 2 filtrations of the local invariants of this type that should be relevant.
First, any invariant can be written as a sum of monomial expressions in R and ∇ with
k∇ + 2kR = n, where k∇ (resp. kR) is the number of occurrences of ∇ (resp. R) in the
monomial. If an invariant T can be written with k∇ ≤ p for each monomial term, let’s say
T ∈ Pp. Then

P0 ⊂ P2 ⊂ · · · ⊂ Pn−2, Podd = 0.

Pff is in the most elite space, P0. The exact divergences inject into P2/P0.

Exercise 6. Use the conformal change law for Q to show that the class of Q in
Pn−2/Pn−4 is nontrivial, and agrees with the class of (∆(n−2)/2J)dvg. This establishes that
Pff and Q are “at opposite ends” of the P-filtration.

The other filtration is by the degree of the conformal change law. If

T̂ = T+T1(dω) + · · ·+Tn(dω),

with Ti of homogeneity i with respect to scalar multiples of ω, then say T ∈ Lp if Tq = 0
for q > p. Then local conformal invariants are in L0, and Q is in L1. Pff on the other hand
does not look so great in this filtration.

Other routes to Q and its variants
There is an alternative definition of Q which avoids dimensional continuation. We write

E for the space of smooth functions, E1 for space of smooth 1-forms and define the special
section

Ig :=




2− n
0
J




of the direct sum bundle E ⊕ E1 ⊕ E . Let us first set the dimension to be 4, simply present
the some results and then explain how this works. Then we get

¤Ig =




0
0
Q4


 ,

where ¤ is the coupled conformal Laplacian operator. More precisely ¤ = −∇a∇a + (n −
2)K/(4n − 4), which appears to be the usual formula for the conformal Laplacian (cf. Y
above), but now ∇ is a connection which couples the usual metric connection with the
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connection

∇a




σ
µ
τ


 =




∇σ − µ
∇µ+ gτ + Pσ
∇τ − µ−| P


 .

on the sum bundle T := E ⊕E1⊕E . This bundle T is called the standard tractor bundle and
this connection is usually termed the (normal conformal) tractor connection. It is equivalent
to a principal bundle structure known as the (normal conformal) Cartan connection. For
those who know about Cartan connections we can say that the tractor bundle and connection
is an associated bundle and connection for the Cartan bundle. We have used a metric
g to express these objects in terms of a Riemannian structure but in fact the bundle and
connection are conformally invariant and so descend to well defined structures on a conformal
manifold. In fact, to be more accurate, the decomposition of the standard tractor bundle T
is really T = E [1]⊕ E1 ⊗ E [1]⊕ E [−1] where E [w] indicates the space of conformal densities
of weight w. The field Ig is a section of T ⊗ E [−1]. In this section and the next we are
allowing tensors and tractor fields to be density valued, to simplify the notation, but partially
suppressing the details of weights involved.

This construction generalises. In each even dimension n there is a conformally invariant
differential operator ¤n−2 so that for any metric g we have

¤n−2I
g =




0
0
Qn


 . (32)

Here Ig is as above, while ¤n−2 has the form ∆n/2−1 + LOT. The tractor field Ig is not
conformally invariant, but it does have an interesting conformal transformation. If ĝ is a
metric related to g conformally according to ĝ = e2ωg (ω a smooth function) then

I ĝ = Ig +Dω, (33)

whereD is a well known second order conformally invariant linear differential operator known
as the tractor D operator. From this and (41) it follows that the Q-curvature Q̂n, for ĝ,
differs from Qn by a linear conformally invariant operator acting on ω. In fact it follows
easily from the definition of ¤n−2 that

¤n−2Dω =




0
0

Pnω




where Pn is the GJMS operator of order n. So we have recovered the now famous property
Q̂n = Qn + Pnω (cf. (28)).

As a final comment on the above story we should clarify the origins of the tractor field
Ig defined and used above. For those who are familiar with tractors a more enlightening
alternative definition is

IgA := −
1

n
DAσ−1DABσ.

Here DA is the tractor D operator and DAB is the so-called fundamental D operator. 0 6=
σ ∈ ΓE [1] is the conformal scale corresponding to the metric g. The point is that these
operators are both conformally invariant and under g 7→ ĝ = e2ωg we have σ 7→ eωσ.
Since DAB satisfies a Leibniz rule and σ−1DABσ is a “logarithmic derivative” the conformal
transformation law of Ig is no surprise.
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The main results above are derived via the ambient metric construction of Fefferman
and Graham. Explaining this construction would be a significant detour at this point.
Suffice to say that this construction geometrically associates to an n-dimensional conformal
manifold M an (n+ 2)-dimensional pseudo-Riemannian manifold M̃ . The GJMS operators
P2` arise from powers of the Laplacian ∆̃`, of M̃ , acting on suitably homogeneous functions.
The operators ¤2` arise in a similar way from ∆̃` on appropriately homogeneous sections
of the tangent bundle TM̃ . Such homogeneous sections correspond to tractor fields on the
conformal manifold M . The results above are given by an easy calculation on the ambient
manifold. Thus we can take (41) as a definition of the Q-curvature; it is simply the natural
scalar field that turns up on the right hand side.

While this definition avoids dimensional continuation, there is still the issue of getting a
formula for Qn. There is an effective algorithm for re-expressing the ambient results in terms
of tractors which then expand easily into formulae in terms of the underlying Riemannian
curvature and its covariant derivatives. This solves the problem for small n. For example

Q6 = 8Pij |kP
ij
|
k + 16PijP

ij
|k
k − 32PijP

i
kP

jk − 16PijP
ijJ+

8J3 − 8J|k
kJ+ J|j

j
k
k + 16PijPklC

ikj l.

While such formulae shed some light on the nature of the Q-curvature it would clearly be
ideal to give a general formula or simple inductive formula. From the angle discussed here
the missing information is a general formula for the operators ¤n−2.

Problem 1: Give general formulae or inductive formulae for the operators ¤2`.

This seems to be a difficult problem. In another direction there is another exercise
to which we already have some answers. One of the features of the Q-curvature is that it
“transforms by a linear operator” within a conformal class. More precisely, it is an example
of a natural Riemannian tensor-density field with a transformation law

N ĝ = N g + Lω, (34)

L being some universal linear differential operator. (Here ω has the usual meaning; ĝ = e2ωg.)

Problem 2: Construct other natural tensor-densities which transform according to (43).
(Note that any solution yields a conformally invariant natural operator L.)

From the transformation law for Ig above, we can evidently manufacture solutions to
this problem. We have observed already that Ig is a section of the bundle T [−1] := T ⊗E [−1].
If P is any scalar (or rather density) valued natural conformally invariant differential operator
which acts on T [−1] then P can act on Ig, and PIg has a conformal transformation of the the
form (43). Using the calculus naturally associated to tractor bundles (or equally effectively,
using the ambient metric) it is in fact a simple matter to write down examples, and the
possibilities increase with dimension. This is most interesting when the resulting scalar field
gives a possible modification to the original Q-curvature. For those familiar with densities
this means that P should take values in densities of weight −n; this is the weight at which
densities that can be integrated on a conformal manifold. For example, in any dimension
we may take P to be ι(D)|C|2 where ι(D) indicates a contracted action of the tractor D
operator and the square of the Weyl curvature is here viewed as a multiplication operator.
In dimension 6 this takes values in E [−6] and we have

ι(D)|C|2Ig = 4∆|C|2
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and

ι(D)|C|2I ĝ = 4∆|C|2 − 16δ|C|2dω.

Note that in this example the conformally invariant “L-operator” δ|C|2d is formally self-
adjoint. So for any constant α, Q6 + αι(D)|C|2Ig is another scalar field with almost the
same properties as Q6. It is not so closely related to the GJMS operator P6, but it is related
instead to a modification of P6 by δ|C|2d. It is clear that solutions to Problem 2 have a role
to play in the problem of characterising the Q-curvature and the GJMS operators.

A generalisation: maps like Q
So far we have viewed the Q-curvature as a natural scalar field. It turns out that if

instead we view it as an operator then it fits naturally into a bigger picture. To simplify
matters suppose we are working with a compact, oriented, but not necessarily connected,
manifold of even dimension n. We fix n and so omit n in the notation for Q. We can view Q
as a multiplication operator from the closed 0-forms C0 (i.e. the locally constant functions)
into the space of n-forms En (which we identify with E [−n] via the conformal Hodge ?).
With the observations above we have the following properties:

A. Q : C0 → En is not conformally invariant but Q̂ = Q + Pnω, where Pn is a formally
self-adjoint operator from 0-forms to n-forms. Pn has the form dMd which implies
the next properties.

B. Q : C0 → Hn(M) is conformally invariant and non-trivial in general.
C. If c ∈ C0 and u ∈ N (Pn) then

∫
uQc is conformally invariant.

D. (See the discussion immediately below.) In each choice of metric Q : E 0 → E [−n] is
formally self-adjoint.

E. (See the discussion immediately below.) Q1 is the Q-curvature.

The last properties are trivial since the operator is multiplication by a scalar field and by
definition Q1 = Q. However we should note that we can add to Q any differential operator
that annihilates constants, and properties 1–3 will be unaffected. Property 4 is suggesting
that if we do that, then we should insist that the result is formally self-adjoint.

The idea now is to look for analogous operators on other forms. We write Ck for the
space of closed k-forms. Consider the operator

M g = dδ + 2J− 4P] : En/2−1 → En/2−1[−2]. (35)

(Note that by the conformal Hodge star En/2−1[−2] ∼= En/2+1, so we can also view this as an
operator into (n/2 + 1)-forms.) Then:

Exercise 7. On Cn/2−1 we have

M ĝ = M g + βδdω,

where β is some nonzero constant, ĝ = e2ωg, and in the display ω is viewed as a multiplication
operator.

Note that the conformal variation term δd is the Maxwell operator and is formally
self-adjoint. So M g satisfies the analogue of property 1 above. The analogue of property 3
is an immediate consequence, i.e.,

∫
〈u,Mc〉 is conformally invariant where now c is a closed

(n/2−1)-form and u ∈ N (δd) (so in fact by compactness u, c are both closed). Next observe,
by inspection, that M g is formally self-adjoint. So we have analogues for 1,3,4. There is also
a bonus property, which is clear from the transformation law displayed:
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δM gd : En/2−2 → En/2−2[−4]

is a non-trivial conformally invariant operator. In dimension 4 this is the Paneitz operator.

So finally we need an analogue for property 2. It is clear that M g is conformally
invariant as a map Cn/2−1 → En/2−1[−2]/R(δ), so this is an analogue. But we can do more.
There is no reason to suppose the image is co-closed. On the other hand note that δM g is
conformally invariant on Cn/2−1 and so we have the following:

M g : Hn/2−1 → Hn/2+1(M) with
Hn/2−1 := N (δM : Cn/2−1 → En/2−2[−4])

(36)

is conformally invariant. The space Hn/2−1 may be viewed as the space of “conformal har-
monics”. Evidently dim(Hn/2−1) is not always the same as the Betti number bn/2−1, but the
elliptic coercivity of the pair (d, δM) gives it a good chance of returning the Betti number
off a set of conformal structures that is somehow small. One should also check that the map
(36) is non-trivial.

Fact: Let M = Sp × Sq, where p = n/2 − 1, q = n/2 + 1, with the standard Riemannian
structure. Then φ ∈ Hp if and only if φ is harmonic. Furthermore, the map (36) is non-
trivial.

In some recent work the authors have used the ambient metric, and its relationship to
tractors, to show that the above construction generalises along the following lines: There
are operators M g

k : Ek → En−k (k ≤ n/2 − 1), given by a uniform construction, with the
following properties:

A. M g
k : Ck → En−k has the conformal transformation law M ĝ

k = M g
k + Lkω, where Lk

is a formally self-adjoint operator from k-forms to (n − k)-forms, and is a constant
multiple of dM g

k+1d.

B. Hk := N (dM g
k : Ck → En−k+1) is a conformally invariant subspace of Ck and Mk :

Hk → Hn−k(M) is conformally invariant. There are conformal manifolds on which
Mk is non-trivial.

C. If c ∈ Ck and u ∈ N (Lk) then
∫
〈u,M g

k c〉

is conformally invariant.
D. For each choice of metric g, M g

k : Ek → En−k is formally self-adjoint.
E. M g

0 1 is the Q-curvature.

From the uniqueness of the Maxwell operator at leading order (as a conformally invariant
operator En/2−1 → En/2−1[−2]), and the explicit formula (44) it is clear M g

n/2−1 is not the

difference between any conformally invariant differential operator and a divergence (even as
an operator on closed forms). A similar argument applies to the Mk generally. Thus, from
the point of view that the Q-curvature is a non-conformally invariant object that in a deep
sense cannot be made conformally invariant, but one which nevertheless determines a global
conformal invariant, the operators M g

k give a genuine generalisation of the Q-curvature to
an operator on closed forms.
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Problems k: There are analogues for the operators M g
k of most of the conundrums and

problems for the Q-curvature.

Chapter C: Open problems

Conformal Structure in Geometry, Analysis, and Physics

August 12 to 16, 2003 at the

American Institute of Mathematics, Palo Alto, California

I. Problems suggested by the participants

Thomas Branson. Anti-conformal perturbations.

Problem 1a: Given any functional of the metric that is well understood conformally, is
there information that can arise going across conformal classes?

If the functional is the integral of a local invariant we can obtain information by computing its
anti-conformal variation. If the functional is a nonlocal spectral invariant, like the functional
determinant, then it is even a challenge to compute the anti-conformal deformation.

Problem 1b: How to obtain the information that arises going across conformal classes?

Problem 1c: Study variational problems arising from conformally invariant problems.

Michael Eastwood.

Problem 2: Find an explicit relation between Q and Pff(R) in the conformally flat case.

Problem 3: Is there a global ambient metric construction?

Problem 4: Can we explicitly write Q in dimension 6 uniquely as constant times Pff(R)
plus local conformally invariant plus divergence?

Answer to problem 4: Robin Graham reports the answer to be YES.

Alice Chang. General problems in conformal geometry:

Problem 5a: How to decide which curvature invariants have a conformal primitive? For
example on manifold M, we have ∆(Jn/2−1) has 2

n
Jn/2 as a conformal primitive, i.e.

(∫
2

n
Jn/2

)•

(ω) = ∆(Jn/2−1)

for all smooth function ω on M, see “Origins, applications and generalizations of the Q-
curvature” by T. Branson and R. Gover. Available through http://www.aimath.org.

Problem 5b: What characterizes such curvature invariants?

A related problem is posed by T. Branson:

On Mn, Q curvature is a local invariant (of density weight −n) which does not have a
conformal primitive. The local invariants that have conformal primitives form a vector
subspace, say L′, of the space of local invariants L. Thus the quotient space L/L′ is the
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space which measures “how many things” do not have a conformal primitive. There are also
local conformal invariants, L′′ say.

Problem 6: Is L/(L′ + L′′) one-dimensional and generated by the class of Q?

Problem 7: On M 4, Gursky (“The principal eigenvalue of a conformally invariant dif-
ferential operator, with an application to semilinear elliptic PDE.” Comm. Math. Phys.,
207(1):131-143, 1999.) proved that if Sc > 0, and if

∫
Q > 0, then the Paneitz operator

P4 is positive with its kernel consisting of constants. The original proof given by Gursky
depends on estimates of solution of some non-linear PDE. Can one also see this fact from
the construction method of the general GJMS operators?

Claude LeBrun.

Problem 8: Explicitly expess the Gauss-Bonnet integrand as a sum of σn/2(P) plus terms in-
volving the Weyl curvature, and then use this to explicitly understand relationships between
Q and topology.

Problem 9: Given a compact manifold of even dimension > 2, show that there exists a
sequence of metrics such that

∫
Q→ +∞.

Robin Graham

Problem 10: If n ≥ 4 is even, is there a nonzero scalar conformal invariant of weight −n
which is expressible as a linear combination of complete contractions of the tensors ∇lP,
l ≥ 0?

If the answer to this question is no, then the Q-curvature defined via the ambient metric
construction is uniquely determined by its transformation law in terms of the GJMS operator
Pn and the fact that it can be written just in terms of P and its derivatives. The answer is no
if n = 4. It is worth pointing out that there are scalar conformal invariants of more negative
weight which can be so expressed: the norm squared of the Bach tensor is of this form if
n = 4, as is the norm squared of the ambient obstruction tensor in higher even dimensions.

Problem 11: If n ≥ 4 is even, is the GJMS operator Pn the only natural differential operator
with principal part ∆n/2 whose coefficients can be expressed purely in terms of the tensors
∇lP, l ≥ 0, and which is conformally invariant from E(0) to E(−n)?

If the answer is yes, then this gives a characterization of the GJMS operator Pn. Combined
with a negative answer to Problem 11, this would provide a unique specification of Q.

Rod Gover Alice Chang and Jie Qing have an order 3 operator P3, on 3-manifolds (boundary
of a 4-dimensional manifold, or embedded in a 4-dimensional manifold). There is a version
of Q3 associated to this P3.

Problem 12: What sort of information is encoded by Q3 and/or
∫
Q3?
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Helga Baum On a spin manifold (M, g) with spin bundle S, we have two conformally
covariant operators. The Dirac operator Dg and the twistor operator Pg. If ∇

S represents
the spin connection then,

∇S : Γ(S)→ Γ(T ∗M ⊗ S) ∼= Γ(S)⊕ Γ(Tw)

and we define Dg = pr1∇
S and Pg = pr2∇

S, with pri the projection on the i-th factor.
Let h(g) be the dimension of ker(Dg) (harmonic spinors) and let t(g) be the dimension of
ker(Pg) (twistor spinors/conformal Killing spinors). Both numbers are conformal invariants.
In case of Riemannian conformal structures these invariants are rather well studied. In the
Lorentzian case much less is known.

Problem 13: Find all Lorentzian conformal structures (M, [g]) with t(g) > 0 or h(g) > 0.

Problem 14: How t(g) and h(g) relate to other conformal invariants?

Problem 15: Relate t(g) to the holonomy of conformal Cartan connections.

Problem 16: Relate h(g) to the dynamic of null geodesics.

Problem 17: Describe conformally flat Lorentzian manifolds with h(g) > 0 or t(g) > 0.

II. Problems extracted from the document “A Primer on Q-curvature” by M.
Eastwood and J. Slovàck. 1

In the conformally flat case, locally by setting gab = Ω2ηab where ηab is flat, then

Q = ∆n/2 log Ω, (37)

where ∆ is the ordinary Laplacian in Euclidean space with ηab as metric. For this construction

of Q to be well-defined it is necessary that, if also gab = Ω̂2η̂ab, then

∆n/2 log Ω = ∆̂n/2 log Ω̂.

This reduces to two facts:–

fact 1:: ∆n/2 is conformally invariant on flat space.
fact 2:: if gab is itself flat, then ∆n/2 log Ω = 0.

The second of these is necessary in order that (37) be well-defined. There is a Lie alge-
braic proof of fact 1. It corresponds to the existence of a homomorphism between certain
generalized Verma modules for so(n+ 1, 1).

Problem 18: Deduce fact 2 from fact 1 or vice versa. Alternatively, construct a Lie
algebraic proof of fact 2.

About a formula for Q, Eastwood and Slováck have deduce:

∆2 log Ω = −∆̂P̂− (n− 2)P̂abP̂ab + 2P̂2

+ 2(n− 4)Υa∇̂aP̂ + 2(n− 4)ΥaΥaP̂

− (n− 2)(n− 4)ΥaΥbP̂ab +
1
4
(n− 2)(n− 4)ΥaΥaΥ

bΥb.

(38)

1This section is the recompilation of the conundra in that document. Refer to the original for more details.
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Though it is only guaranteed that this formula is valid in the conformally flat case, in fact
it agrees with the general expression in dimension 4,

Q = 2P2 − 2PabPab −∆P. (39)

It is possible, by further differentiating (38), to obtain a formula for ∆k log Ω expressed in

terms of complete contractions of P̂ab, its hatted derivatives, and Υa. With increasing k,
this gets rapidly out of hand. Moreover, it is only guaranteed to give Q in the conformally
flat case. Indeed, when n = 6 this naive derivation of Q fails for a general metric.

Problem 19: Find a formula for Q in the conformally flat case. Show that the procedure
outlined by Eastwood and Slováck produces a formula for Q.

In the conformally flat case, it follows from a theorem of Branson, Gilkey, and Pohjan-
pelto that Q must be a multiple of the Pfaffian plus a divergence.

Problem 20: Find a direct link between Q and the Pfaffian in the conformally flat case.
Prove directly that

∫
M
Q is a topological invariant in this case.

Problem 21: Is it true that, on a general Riemannian manifold, Q may be written as a
multiple of the Pfaffian plus a local conformal invariant plus a divergence?

See Problem 4 for the 6 dimensional case. Also, T. Branson has appointed that if it is true
that any local invariant L of density weight −n has the form

constantLPff + divergenceL + (local conformal invariant)L

where L signals the dependence on L then, in this decomposition for Q, we have constantQ 6=
0. In fact we know constantQ exactly, since we know (the constant values of) Q and Pff on
the sphere.

How is Q-curvature related to Weyl structures? Qmay be defined for a Weyl structure
as follows. Since Q is a Riemannian invariant, the differential operator P is necessarily of the
form f 7→ Sa∇af for some Riemannian invariant linear differential operator from 1-forms to
n-forms. Now, if [gab, αa] is a Weyl structure, choose a representative metric gab and consider
the n-form

Q− Saαa,

where Q is the Riemannian Q-curvature associated to gab and αa is the 1-form associated
to gab. If ĝab = Ω2gab, then

Q̂− Ŝaα̂a = Q− Ŝaαa.

In dimension 4, Eastwood and Slováck have appointed that

Q− Saαa + 4∇a(αb∇[aαb])

is an invariant of the Weyl structure that agrees with Q when the Weyl structure arises from
a Riemannian structure.

Problem 22: Can we find such a Q in general even dimensions? Presumably, this would
restrict the choice of Riemannian Q.
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Though Q is an invariant of the Weyl structure, it is not manifestly so. With a detailed
calculation, Eastwood and Slov‘ack have shown that in dimension 4:

Q = 2P2 − 2PabPba −DaDaP

a manifest invariant of the Weyl structure.

Problem 23: Did we really need to go through that detailed calculation? What are the
implications, if any, for the operator S : 1-forms→ 4-forms?

Problem 24 a: Can we characterise the Riemannian Q by sufficiently many properties?

Problem 24 b: Do Weyl structures help in this regard?

Tom Branson has suggested that, for two metrics g and ĝ = Ω2g in the same conformal class
on a compact manifold M , one should consider the quantity

H[ĝ, g] =

∫

M

(log Ω)(Q̂+Q).

That it is a cocycle,

H[̂̂g, ĝ] +H[ĝ, g] = H[̂̂g, g],
is easily seen to be equivalent to the GJMS operators P being self-adjoint.

Problem 25: Are there any deeper properties of Branson’s cocycle H[ĝ, g]?

One possible rôle for Q is in a curvature prescription problem:

Problem 26: On a given manifold M , can one find a metric with specified Q?

One can also ask this question within a given conformal class or within the realm of confor-
mally flat metrics though, of course, if M is compact, then

∫
M
Q must be as specified by the

conformal class and the topology of M .

Problem 27: When does Q determine the metric up to constant rescaling within a given
conformal class?

Since we know how Q changes under conformal rescaling:

Q̂ = Q+ P log Ω,

where P is a linear differential operator from functions to n-forms whose symbol is ∆n/2 this
question is equivalent to

Problem 28: When does the equation Pf = 0 have only constant solutions?

On a compact manifold in two dimensions this is always true: harmonic functions are con-
stant. In four dimensions, though there are conditions under which Pf = 0 has only constant
solutions, there are also counterexamples, even on conformally flat manifolds.
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III. Problems extracted from the document “Origins, applications, and general-
izations of the Q-curvature” by T. Branson and R. Gover. 2

Let A be a natural differential operator with positive definite leading symbol, and suppose
A is a positive power of a conformally invariant operator. For example, A could be one of
the GJMS operators, or it could be the square of the Dirac operator. Then in dimensions
2,4,6,

− log
det Â

detA
= α

{
1

2

∫
ωPω dv +

∫
ωQdv

}
+

∫ (
F dv − F dv

)
+H, (40)

where α is a constant, F is a local scalar invariant, and H is a term depending on the
null space of A. In particular, if the conformally invariant condition N (A) = 0 is satisfied,
then H = 0. The determinant involved is the zeta-regularized functional determinant of a
positively elliptic operator.

Problem 29: 3 Is (40) true in higher even dimensions?

The following conjecture would be enough to answer the previous problem.

Problem 30: If S is a natural n-form and
∫
S is conformally invariant, then

S = const ·Q+ L+G,

where L is a local conformal invariant and G has a local conformal primitive. That is, there
is a local invariant F for which the conformal variation of

∫
F is

∫
ωG.

Problem 31: Is it possible to write any S, as in Problem 30, in the form

const ·Q+ L+V,

where V is an exact divergence?

Problem 32: Is it possible to write any S, as in Problem 30, in the form

const · Pff + L+V?

Other routes to Q. There is an alternative definition of Q which avoids dimensional con-
tinuation. Let E be the space of smooth functions, let E 1 be space of smooth 1-forms and
define the special section

Ig :=




2− n
0
J




of the direct sum bundle E ⊕ E1 ⊕ E . In dimension 4:

¤Ig =




0
0
Q4


 ,

2This section is the recompilation of the problems and conjectures in that document. We strongly suggest
its lecture for a better understanding of the following problems.

3Problems 29 – 32 are actually conjectures that T. Branson and R Gover address in their document.
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where

¤ = −∇a∇a + (n− 2)K/(4n− 4),

which appears to be the usual formula for the conformal Laplacian, but now∇ is a connection
which couples the usual metric connection with the connection

∇a




σ
µ
τ


 =




∇σ − µ
∇µ+ gτ + V σ
∇τ − µ−|P




on the sum bundle T := E⊕E1⊕E . In any even dimension n, there is a conformally invariant
differential operator ¤n−2 so that for any metric g :

¤n−2I
g =




0
0
Qn


 . (41)

Here Ig is as above, while ¤n−2 has the form ∆n/2−1 + lot (with lot = “lower order terms”).
If ĝ is a metric related to g conformally according to ĝ = e2ωg (ω a smooth function) then

I ĝ = Ig +Dω, (42)

where D is a well known second order conformally invariant linear differential operator (the

tractor D operator). From this and (41) it follows that the Q-curvature Q̂n, for ĝ, differs
from Qn by a linear conformally invariant operator acting on ω. In fact

¤n−2Dω =




0
0

Pnω




where Pn is the GJMS operator of order n, recovering the property Q̂n = Qn + Pnω.

While this definition avoids dimensional continuation, there is still the issue of getting a
formula for Qn. There is an effective algorithm for re-expressing the ambient results in terms
of tractors which then expand easily into formulae in terms of the underlying Riemannian
curvature and its covariant derivatives, solving the problem for small n.

Problem 33: Give general formulae or inductive formulae for the operators ¤2`.

In another direction there is another exercise to which already are some answers. One of the
features of the Q-curvature is that it “transforms by a linear operator” within a conformal
class. More precisely, it is an example of a natural Riemannian tensor-density field with a
transformation law

N ĝ = N g + Lω, (43)

L being some universal linear differential operator. (Here ω has the usual meaning; ĝ = e2ωg.)

Problem 34: Construct other natural tensor-densities which transform according to (43).
(Note that any solution yields a conformally invariant natural operator L.)

Solutions to Problem 34 have a role to play in the problem of characterizing the Q-curvature
and the GJMS operators.
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Generalizations of Q. In a compact, oriented, but not necessarily connected, manifold of
even dimension n, Q can be seen as a multiplication operator from the closed 0-forms C0

(i.e. the locally constant functions) into the space of n-forms En (identified with E [−n] via
the conformal Hodge ?). This operator has the following properties:

A. Q : C0 → En is not conformally invariant but Q̂ = Q + Pnω, where Pn is a formally
self-adjoint operator from 0-forms to n-forms. Pn has the form dMd which implies
the next properties.

B. Q : C0 → Hn(M) is conformally invariant and non-trivial in general.
C. If c ∈ C0 and u ∈ N (Pn) then

∫
uQc is conformally invariant.

D. In each choice of metric Q : E0 → E [−n] is formally self-adjoint.
E. Q1 is the Q-curvature.

The idea now is to look for analogous operators on other forms. T. Branson and R. Gover (see
math.DG/0309085) have used the ambient metric, and its relationship to tractors, to show
that the previous generalizes along the following lines: There are operators M g

k : Ek → En−k

(k ≤ n/2− 1), given by a uniform construction, with the following properties:

A. M g
k : Ck → En−k has the conformal transformation law M ĝ

k = M g
k + Lkω, where Lk

is a formally self-adjoint operator from k-forms to (n − k)-forms, and is a constant
multiple of dM g

k+1d. Here C
k is the space of closed k-forms,

B. Hk := N (dM g
k : Ck → En−k+1) is a conformally invariant subspace of Ck and Mk :

Hk → Hn−k(M) is conformally invariant. There are conformal manifolds on which
Mk is non-trivial.

C. If c ∈ Ck and u ∈ N (Lk) then ∫
〈u,M g

k c〉

is conformally invariant.
D. For each choice of metric g, M g

k : Ek → En−k is formally self-adjoint.
E. M g

0 1 is the Q-curvature.

From the uniqueness of the Maxwell operator at leading order (as a conformally invariant
operator En/2−1 → En/2−1[−2]), and the explicit formula

M g = dδ + 2J − 4P] : En/2−1 → En/2−1[−2], (44)

it is clearM g
n/2−1 is not the difference between any conformally invariant differential operator

and a divergence (even as an operator on closed forms). A similar argument applies to theMk

generally. Thus, from the point of view that the Q-curvature is a non-conformally invariant
object that in a deep sense cannot be made conformally invariant, but one which nevertheless
determines a global conformal invariant, the operators M g

k give a genuine generalization of
the Q-curvature to an operator on closed forms.

Problem 35: There are analogues for the operatorsM g
k of most of the Problems in Sections

II. and III. for the Q-curvature.
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