Problems from the AIM Workshop on Algorithmic Convex Geometry

Problems compiled by Navin Goyal

Problem 1 (Santosh Vempala) Let $K \subset \mathbb{R}^n$ be a convex body. How many uniformly randomly chosen points from K are needed to estimate the volume of K within a factor of 2.

Problem 2 (Santosh Vempala) Let $S \in \mathbb{R}^n$ be compact, and let $C \in \operatorname{argmin}_{C \in \mathcal{K}} \operatorname{vol}(\Delta(S, C))$ be a convex body closest to S (\mathcal{K} stands for the set of compact convex sets with nonempty interior, and the empty set, and $\Delta(\cdot, \cdot)$ stands for the symmetric difference). We say that S is ϵ -convex if $\operatorname{vol}(\Delta(S, C)) \leq \epsilon \operatorname{vol}(S)$. Assume that the center of gravity of S is at the origin. For a pair of points $x, y \neq 0 \in \mathbb{R}^n$, let the subspace spanned by them be H(x, y) and define $P(x, y) := S \cap H(x, y)$.

Let μ be the distribution on 2-dimensional sections P(x,y) obtained by picking x and y uniformly at random from S. If

$$\Pr_{\mu}(P(x, y) \text{is convex}) \ge 1 - \epsilon,$$

then S is $O(n\epsilon)$ -convex.

Problem 3 (Van Vu) Let $K \subset \mathbb{R}^d$ (d fixed dimension) be a convex body. Let x_1, \ldots, x_n be uniformly random points from K, and let $X := \text{vol}(\text{conv}(x_1, \ldots, x_n))$. Does X satisfy the central limit theorem?

Remark. The answer is known in the affirmative for the case when K is a smooth body or a polytope. The problem is open for general K even for d = 2.

Problem 4 (Ryan O'Donnnell) Let $K \subset \mathbb{R}^n$ be a convex set, and let X be Gaussian random variable conditioned to lie in K. Does $Var(X_{\theta}) = 1$ imply that K is a cylinder in direction θ ? If $Var(X_{\theta}) = 1 - \epsilon$ then does it mean that K has a small symmetric difference with a cylinder in direction θ ?

Remarks. K is not necessarily symmetric; when it is symmetric, the solution is given by Sidak's lemma. It is known that $Var(X_{\theta}) \leq 1$ in every direction θ , where X_{θ} is the projection of X in direction θ . This can be proved in a number of ways, e.g., using Brascamp-Lieb inequality.

Problem 5 (David Jerison) For a symmetric convex body K, let S be a least area surface that divides the volume of K into two halves (or any other fixed proportion). Is the surface a graph? (The surface in question may not be a hyperplane in general.)

Remarks. Simons' cone in \mathbb{R}^n is defined by

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = x_5^2 + x_6^2 + x_7^2 + x_8^2$$
.

Simons' cone has the minimum volume among the surfaces that meet the ball in the same boundary, it's not a graph, and the bisecting plane has smaller area. As $n \to \infty$, the area tends to that of the bisecting plane. This is very strange:

Since in the Gaussian space this ties (as $n \to \infty$) with the half-spaces, does it mean that Borell's theorem (for finite n, half-spaces are unique minimizers) does not hold in the limit?

Problem 6 (Mokshay Madiman) Let X_1, X_2, X_3 be real-valued independent random variables with densities. Is the following inequality true?

$$e^{2H(X_1+X_2+X_3)} + e^{2H(X_2)} \stackrel{?}{\geq} e^{2H(X_1+X_2)} + e^{2H(X_2+X_3)}.$$
 (1)

Remarks. One gets an equality if X_i are Gaussians even with different variances. If true, (1) implies the following:

$$e^{2\mathrm{H}(X_1+\ldots+X_n)} \ge \sum_{S \subseteq [n]} \beta_S \ e^{2\mathrm{H}(X_S)},$$

where $\{\beta_S\}$ is a fractional covering of $[n] := \{1, \dots, n\}$; that is, for all $i \in [n]$ we have $\sum_{S:i \in S} \beta_S \ge 1$, and $\beta_S \ge 0$ for all $S \subseteq [n]$.

The above inequality is known to be true when the underlying hypergraph given by sets S consists of all (n-1)-subsets of [n] [Artstein, Ball, Naor]. It was generalized to regular hypergraphs (hypergraphs for which $|\{S: i \in S\}|$ is the same for all $i \in [n]$) [Barron, Madiman].

Problem 7 (Grigoris Paouris) Which bodies are ψ_2 -bodies? Are zonoids ψ_2 -bodies? Are projections of ψ_2 -bodies ψ_2 -bodies?

Remark. It is known that the B_n^p for $p \geq 2$ is ψ_2 .

Problem 8 (Grigoris Paouris) Is it true that every compact set is anti- ψ_2 in some direction?

Problem 9 (Yuval Peres) Consider lazy random walks on graphs or reversible Markov chains. Define the mixing time $\tau_{\text{TV}}(1/2)$ as minimum t such that the total variation distance between $p^t(x,\cdot)$ and μ (stationary distribution) is at most 1/2.

Does there exist c > 0 such that

$$\tau_{\text{TV}}(1/2) \le c \max_{x, A: \mu(A) \ge 1/2} \mathbb{E} \ T_{A, x},$$

where $T_{A,x}$ is the hitting time for hitting A starting from x.

Remark. It was proved by Aldous that there exists a c such that

$$\tau_{\text{TV}}(1/2) \le c\mu(A) \max_{x,A} \mathbb{E}T_{A,x},$$

Problem 10 (Yuval Peres) Consider random walks on undirected graphs where each node v is given a positive weight W_v (the probability of going from node u to node v is given by $\frac{W_v}{\sum_{w \in N(u)} W_w}$, where N(u) is the set of neighbors of u in the graph). If we change the weights by a bounded factor, does the mixing time also change by a bounded factor?

Remark. This is true if the mixing time is replaced by spetral gap.

Problem 11 (Ryan O'Donnell) Is it true that every ellipsoid has Gaussian surface area bounded by a universal constant?

Remark. Keith Ball has shown that for a general convex body the answer is $O(n^{1/4})$; this bound is attained by intersection of random half-spaces.