Theorem 3.1. (Aschbacher–Scott, 1985 [4]) The determination (up to conjugacy) of all pairs (G, M), G a finite group and $M \leq G$ a maximal subgroup, reduces modulo "smaller or easier" problems to the following:

1. G is almost simple (and M is maximal in G)

2. G = H.V a semidirect product of a quasisimple finite group H and one of its irreducible modules V over \mathbb{F}_p , and M is a complement to V. In this case, the conjugacy classes in G of such maximal subgroups M correspond bijectively to elements of the cohomology group $H^1(H,V)$.

- **Theorem 3.2** (Aschbacher, 1984 [3]). Let G be a finite classical group associated to a vector space V, and $M \leq G$ a maximal subgroup. Then one of the following holds:

 1. M belongs to a natural list subgroups of G (suspected maximal subgroups, constructed
- in relatively obvious ways), or to a small list of non-natural cases.
 2. M is the normalizer in G of a quasisimple subgroup H ≤ GL(V) acting irreducibly on the vector space V.

Returning to $\overline{G} = \operatorname{SL}(6, \overline{F}_q)$, we will let $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5$ denote the fundamental weights assoicated to the underlying root system.

Proposition 3 (McDowell) Write Kazhdan-Lusztig polynomials as above, using representative weights in p-alcoves for p=7. (Thus $P_{y,w}$ is written $P_{\mu,\lambda}$ for $\mu=y.-2\rho,\lambda=w-2\rho$.) Then there is an affine Weyl group element w with $w.-2\rho=\lambda=4\lambda_1+5\lambda_2+4\lambda_3+5\lambda_4+4\lambda_5$. If $\mu=0$ (= $w_0.-2\rho$), we have

$$P_{\mu,\lambda}(t^2) = 1 + 8t^2 + 25t^4 + 51t^6 + 80t^8 + 87t^{10} + 70t^{12} + 38t^{14} + 14t^{16} + 3t^{18},$$

where t^2 is indeterminate (the usual "q"). The length $\ell(\lambda) = \ell(w) - \ell(w_0)$ defined above is 19.

Corollary 4 Assume p is large enough for the Lusztig conjecture to hold for $\overline{G} = SL(6, \overline{F}_q)$. Put $V = L(w. - 2\rho)$ with w as above. For all sufficiently large powers q of p, we have

$$\dim H^1(\overline{G}(q), V) \ge 3,$$

Moreover, the center Z(q) of $\overline{G}(q)$ acts trivially on V, and the dimension of $H^1(\overline{G}(q)/Z(q),V)$ is the same as that of $H^1(\overline{G}(q),V)$. The module V is a faithful irreducible module for the group $G=\overline{G}(q)/Z(q)$.

The following proposition is the r=1 case of a result of Lin [28, Thm. 2.7]. It shows that the Δ^{red} - and ∇_{red} -construction behaves well with respect to tensor products. (The proof we give would also work for r > 1, and seems similar to Lin's proof which does not explicitly use Lemma 1.5, or its r>1 analogue.) Let $\mathfrak{g}_{\mathbb{C}}$ be the complex semisimple Lie algebra of the same type as G. There is a surjective "Frobenius morphism" Fr: $U_{\zeta} \to U(\mathfrak{g}_{\mathbb{C}})$, where $U(\mathfrak{g}_{\sigma})$ is the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$. Given any $\mathfrak{g}_{\mathbb{C}}$ -module M, Fr^*M denotes the pull-back of M to $U_{\mathcal{C}}$. For $\lambda \in X^+$, $\operatorname{Fr}^* L_{\mathbb{C}}(\lambda) \cong L_{\mathcal{C}}(p\lambda)$, if $L_{\mathbb{C}}(\lambda)$ is the irreducible $\mathfrak{g}_{\mathbb{C}}$ -module of high weight λ . **Proposition 1.6.** Suppose $\lambda = \lambda_0 + p\lambda_1$ where $\lambda_0 \in X_1^+$ and $\lambda_1 \in X^+$. Then $\Delta^{\text{red}}(\lambda) =$ $\Delta^{\text{red}}(\lambda_0) \otimes \Delta(\lambda_1)^{(1)}$ and $\nabla_{\text{red}}(\lambda) = \nabla_{\text{red}}(\lambda_0) \otimes \nabla(\lambda_1)^{(1)}$.

1.4. Character formulas. Let $\lambda \in X^+$ and write $\lambda = w \cdot \lambda^-$, where $\lambda^- \in \overline{C_{\mathbb{Z}}^-}$ and w has minimal length among all elements $w' \in W_p$ which satisfy $w' \cdot \lambda^- = \lambda$. Because the isotropy subgroup of λ^- in W_p has the form W_J for some $J \subset S_p$, w is uniquely determined as a distinguished left coset representative of W_J in W. For $y, w \in W_p$, let $P_{y,w} \in \mathbb{Z}[t]$ be the associated Kazhdan-Lusztig polynomial. Define²

(1.2.1)
$$\chi_{\mathrm{KL}}(\lambda) = \sum_{y \in W_p, y : \lambda^- \in X^+} (-1)^{l(w) - l(y)} P_{y, w}(-1) \chi(y \cdot \lambda^-).$$

The following result is proved by Kato for $p \ge h$, but the argument works for all p. (In Kato's argument, replace the weight λ in the interior of an alcove by a weight in its closure.)

Lemma 1.3. (Kato [25]) Let $\lambda \in X^+$ have expansion $\lambda = \lambda_0 + p\lambda_1$ where $\lambda_0 \in X_1^+$ and $\lambda_1 \in X^+$. Then

$$\chi_{\mathrm{KL}}(\lambda) = \chi_{\mathrm{KL}}(\lambda_0)\chi(\lambda_1)^{(1)}.$$

Following [32], we say that $\lambda \in X^+$ satisfies the Lusztig character formula (LCF) provided that ch $L(\lambda) = \chi_{\text{KL}}(\lambda)$. Also, we say that $\lambda = w \cdot \lambda^-$ satisfies the homological LCF (hLCF) provided that

$$(1.3.1) t^{l(w)-l(y)}\overline{P}_{y,w} = p_{y\cdot\lambda^-,L(w\cdot\lambda^-)} = \sum_{n=0}^{\infty} \dim \operatorname{Ext}_G^n(L(w\cdot\lambda^-),\nabla(y\cdot\lambda^-))t^n,$$

Recall that $P_{y,w}$ is a polynomial in $q := t^2$. We prefer to regard $P_{y,w}$ as a polynomial in t, albeit one which is a polynomial also in t^2 . Unless $y \le w$, $P_{y,w} = 0$. If y = w, then $P_{y,w} = 1$. If y < w, $P_{y,w}$ has degree (in t) $\le \ell(w) - \ell(y) - 1$. If y < w, let $\mu(y, w)$ be the coefficient of $t^{\ell(w) - \ell(y) - 1}$; otherwise, put $\mu(y, w) = 0$.

²Let F be the unique facet containing λ . Then, using [23, 6.11], F lies in the upper closure of a unique alcove C. If C' is a second alcove satisfying $F \subseteq \overline{C'}$, then $C \uparrow C'$. If $w \in W_p$ satisfies $w \cdot C^- = C$, then w is the shortest element in W_p satisfying $w \cdot \lambda^- = \lambda$. In the expression below, given $\mu \in X^+$, there may well exist several $y \leq w$ such that $y \cdot \lambda^- = \mu$.

The following result should hold for p = h. The third author and a University of Virginia undergraduate, Mark Rawls, have checked this result empirically for the case p = h = 7. The verification was obtained in the course of a general program to implement the proposition and the proof of Theorem 6.7 as a new algorithm for calculating the Kazhdan-Lusztig polynomials (for affine Weyl groups) appearing in the LCF.

Proposition 4.2. Assume that p > h and that $\lambda, \mu \in X^+$. Then $p_{\mu,\Delta(\lambda)^{(1)}} = 0$ unless $\mu=w\cdot 0+p\xi,\,w\in W,\,\xi\in X.\ \ In\ this\ case,\,p_{\mu,\Delta(\lambda)^{(1)}}=\textstyle\sum_{n=0}^{\infty}\sum_{x\in W}(-1)^{l(x)}\mathfrak{p}_{\frac{n-l(w)}{2}}(x\cdot\lambda-\xi)t^n$

where the sum is restricted to those integers n such that $n \equiv l(w) \mod 2$.

Corollary 5.2. Assume that
$$p > h$$
. For $\lambda \in X^+$, write $p\lambda = x \cdot \tau^-$, $x \in W_p$ and $\tau^- \in C_{\mathbb{Z}}^-$.
Then $\Delta(\lambda)^{(1)}$ satisfies the hLCF condition, in the sense that

$$(\lambda)^{(1)}$$
 satisfies the BLCF condition, in the sense that

 $t^{l(x)-l(y)}\overline{P}_{y,x} = \sum \dim \operatorname{Ext}_G^n(\Delta(\lambda)^{(1)}, \nabla(y \cdot \tau^-))t^n$

n=0

(5.2.1)

for any $y \in W_p$ such that $y \cdot \tau^- \in X^+$. In addition, we have $\mu(y,x) = \dim \operatorname{Ext}_G^1(\Delta(\lambda)^{(1)}, \nabla(y \cdot \tau^-)) \le 1,$ where $\mu(y,x)$ is the coefficient of $t^{l(x)-l(y)}$ in $P_{u,x}$ (cf. footnote 1).

(5.2.2)

Suppose λ, μ are regular dominant weights. Then $\dim \operatorname{Ext}_C^n(\Delta^{\operatorname{red}}(\lambda), \nabla_{\operatorname{red}}(\mu))$

Theorem 5.4. Assume that p > h and the LCF holds for all regular restricted weights.

$$= \sum_{m=0}^{n} \sum_{\nu} \dim \operatorname{Ext}_{G}^{m}(\Delta^{\operatorname{red}}(\lambda), \nabla(\nu)) \cdot \dim \operatorname{Ext}_{G}^{n-m}(\Delta(\nu), \nabla_{\operatorname{red}}(\mu)).$$

Furthermore, if $\lambda = x \cdot \lambda^-$, where $\lambda^- \in C_{\mathbb{Z}}$, then

$$t^{l(x)-l(y)}\overline{P}_{y,x} = \sum_{n=0}^{\infty} \dim \operatorname{Ext}_{G}^{n}(\Delta^{\operatorname{red}}(\lambda), \nabla(y \cdot \lambda^{-}))t^{n}$$
$$= \sum_{n=0}^{\infty} \dim \operatorname{Ext}_{G}^{n}(\Delta(y \cdot \lambda^{-}), \nabla_{\operatorname{red}}(\lambda))t^{n}.$$

In particular,
$$n=0$$

 $\dim Ext^n(\Delta^{red}(\lambda), \nabla_{red}(\mu)) = \dim Ext^n_{\mathcal{C}_{\varsigma}}(L_{\varsigma}(\lambda), L_{\varsigma}(\mu)),$

(7.2.1)
$$E(\Phi) = \max \mu(y, w),$$
 where the max ranges over all $y, w \in W_p$ with $l(y) = l(w_0) + l(w_0y), l(w) = l(w_0) + l(w_0w).$
(See (1.4.2) It does not seem obvious from a Coyoter group viewpoint that $E(\Phi)$ is finite.

(See (1.4.3.) It does not seem obvious from a Coxeter group viewpoint that $E(\Phi)$ is finite, though Lemma 7.6 shows this is the case. The precise value of $E(\Phi)$ is unknown, as is the value of a related constant $E_0(\Phi)$, which we define as

(7.2.2)
$$E_0(\Phi) = \max \mu(w_0, w),$$

where max ranges over all $w \in W_p$ with $l(w) = l(w_0) + l(w_0w)$. That is, $E_0(\Phi)$ is defined like $E(\Phi)$, except with y fixed, as $y = w_0$. Thus, $y \cdot (-2\rho) = 0$, and $E_0(\Phi)$ is a bound, for p > h, on dim $\operatorname{Ext}^1_{\mathcal{C}_{\zeta}}(L_{\zeta}(\lambda), L_{\zeta}(\mu))$ when $\lambda = 0$, the 1-cohomology case.

Theorem 7.3. There is a constant $C = C(\Phi)$, depending only on Φ , such that if G is a semisimple, simply connected algebraic group over an algebraically closed field k with root system Φ , then dim $H^1(G, L(\mu)) \leq C$, $\forall \mu \in X^+$. Also, if we consider only characteristics p > h for which the LCF holds for all regular weights in X_1^+) then dim $H^1(G, L(\mu)) \leq E_0(\Phi)$, $\forall \mu \in X^+$.

Theorem 7.4. The number dim $H^1_{\text{gen}}(G,L)$ is, for all irreducible rational G-modules L, bounded by a constant depending only on Φ , and not on p and L.

these groups to quantum analogues. Given $\lambda \in X^+$, write $\lambda = \sum_{i=0}^{\infty} p^i \lambda_i$, where $\lambda_i \in X_1^+$. We make no assumption on p, except those explicitly noted below. Put $\lambda^{(i)} = \sum p^{j-i} \lambda_j$.

Theorem 7.2. Assume that p > h and that the LCF holds for all regular weights in X_1^+ . Let $\lambda, \mu \in X^+$ be distinct weights with $\lambda > \mu$ and let j minimal so that $\lambda_i \neq \mu_i$. Suppose that $\lambda^{(j)} \in X_{\text{reg}}^+$. Then⁷ dim $\operatorname{Ext}_G^1(L(\lambda), L(\mu)) = \operatorname{dim} \operatorname{Ext}_G^1(L(\lambda^{(j)}), L(\mu^{(j)})) < 0$ $\dim \operatorname{Ext}^1_{\mathcal{C}_{\zeta}}(L_{\zeta}(\lambda^{(j)}), L_{\zeta}(\mu^{(j)})).$

Theorem 7.7. There is a constant $\widehat{C} = \widehat{C}(\Phi)$ such that depending only on the root system Φ with the following property: Let G is a semisimple, simply connected algebraic group over an algebraically closed field k of characteristic p>0. If $\lambda\in X^+$ with λ_i regular for each index $j \geq 0$, then dim $\operatorname{Ext}_G^1(L(\lambda), L(\mu)) \leq \widehat{C} \ \forall \mu \in X^+$. If p > h is such that LCF holds for all regular weights in X_1^+ , we may take $\widehat{C} = E(\Phi)$ (defined in terms of Kazhdan-Lusztig

polynomials in (7.2.1)).

Theorem 7.9. There is a constant $\widehat{C} = \widehat{C}(\Phi)$, depending only on Φ , such that, for any Gover an algebraically closed field k of characteristic p > h having root system Φ , we have $\dim \operatorname{Ext}_{G,\operatorname{gen}}^1(L(\lambda),L(\mu)) := H^1_{\operatorname{gen}}(G,\operatorname{Hom}_k(L(\lambda),L(\mu)) \leq \widehat{C} \text{ for } \lambda,\mu \in X^+ \text{ such that } \lambda_i \text{ is }$

may take $\widehat{C} = E(\Phi)$. We conclude this paper with the following result and a remark. **Theorem 7.10.** Assume that p > h. Let $\lambda = \tau + p\nu \in X^+$, with $0 \neq \tau \in X_1^+$ and $\nu \in X^+$.

Suppose that dim $H^1(G, L(\lambda)) > 1$. Then $\tau > p\nu^*$, where $\nu^* = -w_0(\nu) \in X^+$ (the image of

 ν under the opposition involution).

regular for each j. If p > h is such that the LCF holds for all regular weights in X_1^+ , we