Problems

August 24, 2006

0.1 " X-constants and free Poincare inequality" (Voiculescu)

Q: In a von Neumann algebra M with a faithful normal trace-state τ let $X=$ $X^{*} \in M$ and let $1 \in B \subset M$ be an infinite-dimensional von Neumann subalgebra so that B and X are free in the algebraic sense and $M=W^{*}(X, B)$.

Assume that $\partial_{X: B}$ is closable in $L^{2}(M, \tau)$ (this is the case for instantce if X is a free semicircular perturbation $X=X_{0}+\varepsilon S$, with S a semicircular free from X_{0} and B).

Under what conditions are the L^{2} solutions of

$$
\overline{\partial_{X: B}} u=0
$$

in $L^{2}(B, \tau)$?
A related question about a stronger condition: when does the free Poincare inequality

$$
C\left\|\partial_{X: B} \xi\right\|_{2} \geq\left\|\xi-E_{B} \xi\right\|_{2}
$$

hold for $\xi \in B\langle X\rangle$?

0.2 "Large Deviations", Guionnet, Hiai, Cabanal-Duvillard.

Q: Given a tracial state τ corresponding to a free stochastic process, does there exist a sequence of tracial states $\tau_{n} \rightarrow \tau$ with $\chi_{p}^{*}\left(\tau_{n}\right) \rightarrow \chi_{p}^{*}(\tau)$ where τ_{n} corresponds to the process $d A_{i}(t)=d S_{i}(t)+k_{t}\left(A_{1}(s), \ldots, A_{m}(s)\right)_{s \leq t} d t$ with k_{t} stepwise constant in s, and χ_{p}^{*} denotes the quantity χ^{*} defined for processes in the paper of Guionnet and Cabanal-Duvillard.

Q: In the one variable case, if $A(t)$ follows a process $d A(t)=d S(t)+$ $k_{t}(A(s))_{s \leq t}$ then replacing $A(t)$ with $A(t)+C_{\epsilon}$ (with C having Cauchy distribution and free from $A(t))$ then k_{t} is replaced by $k_{t}^{\epsilon}=\tau\left(k_{t} \mid A(t)+C_{\epsilon}\right)$. Thus, k_{t}^{ϵ} is smooth. Is there an analog of this smoothing in the several-variable case?

Q: We know that if $f: \mathbb{R} \rightarrow \mathbb{R}$ and A is an $n \times n$ Hermitian random matrix, then there exists a random matrix C_{ϵ} with Cauchy distribution such that $\mathbb{E} f\left(A+C_{\epsilon}\right)=P_{\epsilon} f(A)$ with $P_{\epsilon} f(x)=\int \frac{f(y)}{(y-x)^{2}+i \epsilon^{2}} d y$ the usual Cauchy (Poisson) kernel. Can this be done for several variables?

Q: Given $x_{1}, \ldots, x_{m} \in(\mathcal{A}, \tau)$ a tracial unital vN algebra, do the conjugate variables belong to the L^{2} closure of cyclic gradient space? i.e. do there exist $H_{k} \in \mathbb{C}\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle$ such that $\mathcal{J}\left(x_{i}\right)=\lim _{k} D_{i} H_{k}$ where $\partial_{x_{i}}: L^{2}(\mathcal{A}, \tau) \rightarrow$ $L^{2}(\mathcal{A}, \tau) \otimes L^{2}(\mathcal{A}, \tau)$ by $x_{j} \mapsto \delta_{i j} 1 \otimes 1$ as a densely defined operator, $\mathcal{J}\left(x_{i}\right)=$ $\partial_{x_{i}}^{*}(1 \otimes 1)$, and $D_{i}=m \circ \partial_{x_{i}}(m$ is the flip-multiplication $x \otimes y \mapsto y x)$.

Q: Does the change of variables formula for χ also hold for χ^{*} ?
Q: Is there a change of variables formula for processes? i.e. suppose that we start with random variables $x_{1}, \ldots, x_{m} \in(\mathcal{A}, \tau)$ which can be reached by a pro$\operatorname{cess} d A_{i}(t)=d S_{i}(t)+k_{t}\left(A_{1}(s), \ldots, A_{m}(s)\right)_{s \leq t}, \mu_{A_{1}(1), \ldots, A_{m}(1)}=\mu_{x_{1}, \ldots, x_{m}}$. We define new random variables via functional calculus $y_{1}=f_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, y_{m}=$ $f_{m}\left(x_{1}, \ldots, x_{m}\right)$. Can we apply a function P to k_{t} to get $d B_{i}(t)=d S_{i}(t)+$ $P\left(k_{t}\left(B_{1}(s), \ldots, B_{m}(s)\right)_{s \leq t}\right)$ such that $\mu_{B_{1}(1), \ldots, B_{m}(1)}=\mu_{y_{1}, \ldots, y_{m}}$.

Open Problem: Can we replace limsup with liminf in the microstates definition of the free entropy χ ?

Q Hiai introduced the free pressure $\pi_{R}(h)$ for a self-adjoint element (regarded as a free hamiltonian) h of the universal free product C^{*}-algebra $\mathcal{A}^{(n)}=$ $\star_{i=1}^{n} C([-R, R])$, and defined a free entropy-like quantity $\eta_{R}(\tau)$ of a tracial state $\tau \in T S\left(\mathcal{A}^{(n)}\right)$. The inequality $\eta_{R}(\tau) \geq \chi(\tau)$ holds. τ is called an equillibrium tracial state with respect to h if the variational equality $\eta_{R}(\tau)=\tau(h)+\pi_{R}(h)$ holds. Such a τ always exists for each h. For which h there is a unique equilibrium tracial state? A way to prove this is the free transportation inequality.

Q: It was recently shown by Guionnet and Maurel-Segala that for the vN algebra (\mathcal{A}, τ) generated by m free semicirculars,

$$
\sup _{\tau \in \mathcal{T} \mathcal{S}(\mathcal{A})}\left\{\chi(\tau)-\tau\left(\sum t_{i} q_{i}\right)\right\}=\sum_{p_{1}, \ldots, p_{m}} \prod_{k_{1}, \ldots, k_{m}} \frac{\left(t_{i}\right)^{p_{i}}}{k_{i}!} C\left(q, k_{1}, \ldots, k_{m}\right)
$$

where $C\left(q, k_{1}, \ldots, k_{m}\right)$ enumerated planar maps with colored edges and vertices of types q, k_{1}, \ldots, k_{m}. Is there a similar interpretation for the non-microstates analog

$$
\sup _{\tau \in \mathcal{T} \mathcal{S}(\mathcal{A})}\left\{\chi^{*}(\tau)-\tau\left(\sum t_{i} q_{i}\right)\right\} ?
$$

0.3 "Free von Neumann Algebras", Dykema, Ricard.

Q: Given A, B free group factors with a common diffuse subalgebra $D \subset A, B$, what conditions on A, B, D guarantee that $A \star_{D} B$ is a free group factor?

Q: for a regular weakly-rigid (in the sense of Popa) subalgebra of a von Neumann algebra, is the free entropy dimension ≤ 1 ?

Open Problem: for generators $\gamma_{1}, \ldots, \gamma_{n} \in \Gamma$ with the first L^{2}-Betti number $\beta_{1}(\Gamma)$ large, is the microstates free entropy dimension of this family of generators large? (This is known for the non-microstates free entropy dimension [work of Mineyev-Shlyakhtenko]).

Q: Consider $\Delta=\sum_{i=1}^{m} \partial_{x_{i}}^{*} \partial_{x_{i}}$ and the corresponding completely positive map $\varphi_{t}=\exp (-t \Delta)$, where $\left(x_{1}, \ldots, x_{m}\right)$ have finite Free Fisher Information. Can φ_{t} converge uniformly to the identity map on the unit ball of $W^{*}\left(x_{1}, \ldots, x_{m}\right)$? If no, it follows that the von Neumann algebra generated by $\left(x_{1}, \ldots, x_{m}\right)$ is not weakly rigid if it is non-hyperfinite.

Q: Let $\Gamma_{q, n}=W^{*}\left(s_{q}(g)=l(g)+l(g)^{*} \mid g \in \mathcal{H}_{\mathbb{R}}\right)$ with $n=\operatorname{dim} \mathcal{H}_{\mathbb{R}},-1<$ $q<1$ be the von Neumann algebra generated by fields operators acting on a q deformed Fock space. Does $\Gamma_{q, n}$ depend on q ? A way to approach this question could come from the following observation. In the free case, $q=0$, the natural orthormal basis of the Fock space consists of vectors $e_{\underline{i}}=e_{i_{1}}^{\otimes \alpha_{1}} \otimes \ldots \otimes e_{i_{k}}^{\otimes \alpha_{k}}$ with $i_{1} \neq \ldots \neq i_{k}$ and $\alpha_{1}>0$. This basis can be recoved from the algebra as $e_{\underline{i}}=T_{\alpha_{1}}\left(s_{0}\left(e_{1}\right)\right) \ldots T_{\alpha_{k}}\left(s_{0}\left(e_{q}\right)\right) \Omega$, where T_{k} are Chebytchev polynomials. It would be interesting to find an analogue for these formulas in the general case and to unterstand the underlying combinatorics.

The q-deformation leads to the commutation relations $l(e)^{*} l(f)=q l(f) l(e)^{*}+$ $\langle f, e\rangle I d$. Instead consider themore general relations $l\left(e_{i}\right)^{*} l\left(e_{j}\right)=\sum_{s, t} t_{i, j}^{s, t} l\left(e_{s}\right) l\left(e_{t}\right)^{*}+$ $\delta_{i, j} I d$. When does the C^{*}-algebra generated by these operators is an extension of a Cuntz algebra by compacts? When does the fields operators associated to them produce a type $I I_{1}$ factor ?

Consider the projection P_{k} from $\Gamma_{q, n}$ to its subspace consisting of x such that $x . \Omega$ has length at most k in the Fock space. Is $\left\|P_{k}\right\|_{c b}$ polynomially bounded in k ? This would prove the CBAP for the associated L_{p} spaces $(1<p<\infty)$ and the exactness of the C^{*}-algebra generated by q-gaussians.

Q: To prove the existence of an embedding $\Gamma_{q, n} \rightarrow \mathcal{R}^{\omega}$, one uses Speicher's central limit theorem. In this procedure, is it possible to find explictely uniformly bounded matrix whose mixed moments approach those of q-gaussians ? More precisely, let $c_{i, j}$ be unitary generators of the CAR-algebra (or -1gaussians), are the matrices $\frac{1}{\sqrt{n}}\left[c_{i, j}\right]_{i, j \leq n}$ uniformly bounded?

Q: For the random matrix model $\exp \left(-n \operatorname{Tr}\left(p\left(A_{1}, A_{1}^{*}, \ldots, A_{m}, A_{m}^{*}\right)\right)\right.$ we know that the conjugate variables satisfy $\mathcal{J}_{i}=\mathcal{D}_{i} P$. Is the operator $\exp \left(-t \sum \partial_{j}^{*} \partial_{j}\right)$ compact in the limit $n \rightarrow \infty$ (where ∂_{j} is Voiculescu's partial difference quotient on the limit algebra with respect to the limit of A_{j})? As a starting point, consider $P=\sum A_{i}^{2}+\sum t_{i} q_{i}\left(A_{1}, \ldots, A_{m}\right)$ where Guionnet and Maurel-Segala have shown convergence of the model.

0.4 Focus Group on Free Entropy (day 3)

Open Problem: Is $\delta^{*}=\delta^{\star}$? Here

$$
\delta^{*}=n-\limsup _{t \downarrow 0} \frac{\chi^{*}\left(x_{1}+\sqrt{t} s_{1}, \ldots, x_{n}+\sqrt{t} s_{m}\right)}{\log t^{1 / 2}}
$$

and

$$
\delta^{\star}=n-\limsup _{t \rightarrow 0} \sum_{i=1}^{n} t \Phi^{*}\left(x_{1}+\sqrt{t} s_{1}, \ldots x_{m}+\sqrt{t} s_{m}\right) .
$$

Q: What is the non-microstates analogue of free entropy in the presence, $\chi\left(x_{1}, \ldots, x_{n}: y_{1}, \ldots, y_{n}\right)$?

0.5 Focus Group on Operator Theory (day 3)

Q: What is the boundary behavior of the subordination functions which appear in free convolution of operator-valued random variables?

Q: What are examples/conditions for freely strongly unimodal variables, i.e. unimodal random variables that when freely convolved with a unimodal variables remain unimodal? (Unimodal means that the law of the random variable has a smooth density with a unique maximum; example: Gaussian law or the semicircle law).

Q: More specifically, if μ, ν are symmetric unimodal distribution, is $\mu \boxplus \nu$ unimodal?

0.6 "Invariant Subspaces for an Operator", Haagerup

Q: Let x, y be two free circular elements, and let S, T be two operators in a II_{1} factor, which is free from x, y. In the Haagerup-Schultz estimate

$$
(\star \star) \quad\left\|\left(S+x y^{-1}\right)^{-1}-\left(T+x y^{-1}\right)^{-1}\right\|_{p} \leq c(p)\|S-T\|_{p}<\infty
$$

with $0<p<\frac{2}{3}$, can one use x instead of $x y^{-1}$?

Q: (Brown measure of unbounded operators): As defined by (Haagerup and Schultz), $\Delta(T)$ makes sense for $T \in M^{\Delta}$ where $M^{\Delta}=\left\{T \in \tilde{M} \mid \int_{0}^{\infty} \log t d \mu_{T}(t)<\infty\right\}$. Then $\Delta(T)=\exp \left(\int_{0}^{\infty} \log t d \mu_{T}(t)\right) \in[0, \infty]$. Can one make sense of μ_{T} for such unbounded T ?

Q: Does the main result of (Haagerup and Schultz) hold for $T \in L^{p} M$ (some or all $p) ? T \in M^{\Delta} ? T \in \tilde{M}$?

0.7 "Free Group Factors", Ozawa

Conj: if \mathcal{H} an M - M bimodule $M=L \mathbb{F}_{n}$, and ${ }_{M} \mathcal{H}_{M} \preceq L^{2} M \otimes L^{2} M$, (weak containment) then

$$
\operatorname{Hom}\left({ }_{M} \mathcal{H} \underset{M}{\otimes \mathcal{H}} \underset{M}{\otimes} \mathcal{H}_{M}, L^{2} M \otimes L^{2} M\right) \neq 0 .
$$

Note that the assumption of weak containment is equivalent that the map

$$
x \otimes y \mapsto\left(\lambda(x) \rho(y): \mathcal{H}_{M} \ni h \mapsto x h y\right) \in B\left({ }_{M} \mathcal{H}_{M}\right)
$$

is continuous for the min-tensor product on $M \otimes M$. Examples of bimodules with this property come from the basic construction

$$
{ }_{M} \mathcal{H}_{M}=M \otimes_{A} M
$$

over a hyperfinite subalgebra $A \subset M$.

0.8 Focus Group on Combinatorics of Random Matrix Models (day 4)

Given random matrices A_{n} and B_{n} with corresponding measures $\mu_{A_{n}}$ and $\mu_{B_{n}}$ on $M_{n}(\mathbb{C})$, we define their Itzykson-Zuber integral as

$$
I Z\left(A_{n}, B_{n}\right)=\int \exp \left(-n T r\left(A U^{*} B U\right)\right) d \mu_{A_{n}}(A) d \mu_{B_{n}}(B) .
$$

Thm (Guionnet and Zeitouni): if $\left\|A_{n}\right\|<c,\left\|B_{n}\right\|<c$ then $I Z\left(A_{n}, B_{n}\right) \sim$ $\exp (-n \psi)$.

Q: There is another result that states that

$$
\left.\frac{\partial^{n}}{\partial t^{n}} \log I Z\left(t A_{n}, B_{n}\right)\right|_{t=0} \text { converges. }
$$

Does this expression match ψ above? Can we extend Guionnet and Zeitouni's result to complex parameters?

Q: Extend the model $\exp \left(-n \operatorname{Tr}\left(P\left(A_{1}, \ldots, A_{m}\right)+\frac{1}{2} \sum_{i=1}^{m} A_{i}^{2}\right)\right) d A_{1} \ldots d A_{m}$ of Guionnet and Maurel-Segala to non-selfadjoint P (i.e.polynomials with complex coefficients).

Q: Is there a combinatorial interpretation of free cumulants in terms of enumeration of maps and operations on maps?

Consider the spherical integrals

$$
I_{n}\left(z, E_{n}\right):=\int \exp \left\{n \operatorname{tr}\left(U D_{n} U^{*} E_{n}\right)\right\} d_{m_{n}}(U)
$$

where $D_{n}=\operatorname{diag}(\mathrm{z}, 0,0, \ldots, 0), z \in \mathbb{C}$, and E_{n} is a sequence of $n \times n$ selfadjoint (diagonal) matrices, with spectrum uniformly bounded in n, and converging in distribution to μ_{E}

The sequence of functions of z

$$
f_{n}(z)=\partial_{z} \frac{1}{n} \log I_{n}\left(z, E_{n}\right)
$$

has been shown by Guionnet and Maida to converge to $R_{\mu_{E}}(z)$ for $|z|$ small enough.

Questions: What is the largest domain in the complex plane on which this convergence takes place? If μ_{E} is \boxplus-infinitely divisible, is the convergence happening on all the upper half-plane? Is there any possible generalization to measures with noncompact support? (one could probably approach this problem by trying to study the normality of the family/sequence f_{n})

0.9 Focus Group on Invariant Subspaces (day 4)

If M is a II_{1} factor, $T_{1}, \ldots, T_{n} \in M,\left[T_{i}, T_{j}\right]=0$, then we have the "Brown Measure" defined as the unique measure on \mathbb{C}^{n} such that
$(\star) \quad \log \Delta\left(1-\sum \alpha_{i} T_{i}\right)=\int \log \left(1-\sum \alpha_{i} \zeta_{i}\right) d \mu_{T_{!}, \ldots, T_{n}}\left(\zeta_{1}, \ldots, \zeta_{n}\right)$.

Q: Is $\operatorname{supp} \mu_{T_{1}, \ldots, T_{n}} \subset \sigma\left(T_{1}, \ldots, T_{n}\right)$, the Taylor spectrum of T_{1}, \ldots, T_{n} ?
Q: Which functions on \mathbb{C}^{n} have an integral representation as in (\star)?
Q: M a II_{1} factor and $T \in M$. Define

$$
\begin{gathered}
K(T, r)=\left\{\xi \in \mathcal{H} \mid \exists \xi_{n} \in \mathcal{H} \text { s.t. }\left\|\xi_{n}-\xi\right\|_{2} \rightarrow 0 \text { and } \lim \sup \left\|T^{n} \xi_{n}\right\|^{1 / n} \rightarrow 0\right\}, \\
\text { and } E(T, r)=\left\{\xi \in \mathcal{H} \mid \limsup \left\|T^{n} \xi_{n}\right\|^{1 / n} \rightarrow 0\right\}
\end{gathered}
$$

Does $K(T, r)=E(T, r)$? The $D T$ quasinilpotent operator may be a counterexample.

Q: Let c be a circular element $(\sigma(c)=\overline{\mathbb{D}})$, and let $f \in C^{\infty}(\mathbb{C})$. Can we make sense of $f(c)$ as an (unbounded) operator affiliated with $\{c\}^{\prime \prime}$?

Q: Let (Γ, τ) be a II_{1} factor, $T \in \Gamma, \mu_{T}=\delta_{0}$. Does T have a non-trivial invariant subspace affiliated with Γ ?

Q: Let B_{c} be a band limited operator obtained from c a circular element, and let D be the band limited operator obtained from the identity. Then D is uniformly distributed on $[0,1]$ and \star-free from $\left\{B_{c}, B_{c}^{*}\right\}$. Is $D \in W^{*}\left(B_{c}\right)$? Or is $W^{*}\left(B_{c}\right)=L \mathbb{F}_{t}$ with $t=1+2 c\left(1-\frac{c}{2}\right)$?

0.10 "Infinite Divisibility", Nica.

Q: Given x_{1}, \ldots, x_{k} and y_{1}, \ldots, y_{k} in a vNa such that $\left\{x_{1}, \ldots, x_{k}\right\}$ is tensorindependent of $\left\{y_{1}, \ldots, y_{k}\right\}$ and such that $\mu_{x_{1}, \ldots, x_{k}}, \nu_{y_{1}, \ldots, y_{k}}$ are freely infinitely divisible, we can apply the Fourier transform to get the power-series of the classical convolution of $\mu_{x_{1}, \ldots, x_{k}}$ and $\nu_{y_{1}, \ldots, y_{k}}$. How do such power-series relate to the noncommutative power series obtained from free convolution? (In other words how does the set of classically obtainable power-series relate to the set of freely obtainable power-series?)

Q: Can we make sense of the R-transform for x_{1}, x_{2} unbounded (power-series are insufficient to encode all the information)? Easier question is for infinitely divisible unbounded operators.

Q: If c is unbounded R-diagonal, what is the R-transform of c, c^{*} ?

0.11 Focus Group on Dirichlet Forms, from Classical to Quantum (day 5)

Q: For the q-deformed semicircular, the analogue of $\partial^{*} \partial$ exists (it is the number operator). Describe explicitly the associated ∂ (which exists by the work of Sauvageot).

Q: More generally, given a negative definite function on a group Γ (i.e. a Dirichlet form), we know it gives a representation by affine actions on $L^{2} \Gamma$. When is it a multiple of the left regular representation? What conditions on the negative definite function guarantee this?

Q: What conditions on a Dirichlet form $\delta^{*} \delta$ guarantee that the bimodule associated to δ embeds into $\bigoplus L^{2} N \otimes L^{2} N$?

Q: What is the analogue of the Bakry-Emery criterion in the noncommutative case? i.e. what is Γ_{2} for noncommutative Dirichlet forms?

Q: Let $\partial: M \rightarrow L^{2}(M) \bar{\otimes} L^{2}\left(M^{o}\right)$ be a closable derivation, and let $\Delta=\partial^{*} \partial$, $S_{t}=\exp (-t \Delta)$. If the semigroup S_{t} converges uniformly to the identity in $\|\cdot\|_{2}$ on the unit ball, is the derivation inner when considered with values in the algebra of unbounded operators affiliated to $M \bar{\otimes} M^{o}$?

