Computing the BHV metric
David Epstein and Jon Ingram
Mathematics Institute
University of Warwick
dbae@maths.warwick.ac.uk
jingram@maths.warwick.ac.uk
Chris Dowson, Warwick microbiologist.
28 strains 5 sites; each about 450 nucleotides.
Fix site, find ”most likely” 28-leaved tree.
5 sites → 5 trees.
Picture of 1 tree out of 5.
5 trees in cluster tree, “average” = concatenated. BHV-metric = ℓ^2-pathmetric metric on 5 sites + concatenated site.
Computation could be done with ℓ^1-pathmetric.
IN: S, T weighted trees with same leaves. OUT BHV-geodesic.
(internal) edge \equiv split of set of leaves into disjoint subsets (each with ≥ 2 elts).
Step 1 (BHV): find common edges and cut along them. S, T have no edges in common.

Moral: Need to work with large irreducible trees.
Two internal edges
Two internal edges

6-a
Two internal edges
The wrong permutation
Edges in upper tree:

\[(ab|cdef), \ (abc|def), \ (abcd|ef).\]

Edges in lower tree:

\[(bd, acef), \ (bdf|ace), \ (abdf|ce).\]
Theorem. (Billera, Holmes, Vogtmann) *Label the positive axes in \(\mathbb{R}^n \) by the edges of \(T \) and the negative axes by the edges of \(S \). Let \(t \in \mathbb{R}^n \) (all coordinates positive) represent \(T \), \(s \) (all coordinates negative) represent \(S \). By choosing appropriate permutations of the \(n \) positive axes, the geodesic from \(T \) to \(S \) goes through part of tree space in \(\mathbb{R}^n \).*

Theorem. (BHV) and, independently, (Epstein, Ingram). *One can find in time \(O(n^2) \) a permutation of the axes, such that each tree using ANY of the edges of \(T \) and/or ANY of the edges of \(S \) is represented by a point of \(\mathbb{R}^n \). As a corollary, ANY geodesic in tree space from ANY tree with the topology of \(T \) to ANY tree with the topology of \(S \) lies in \(\mathbb{R}^n \).*
Heart of the algorithm. (Unsuccessful attempt at) divide-and-conquer gives an algorithm which seems fast in practice for computing approximate distance. Approximation improves as program runs.

Conjecture: IN: weighted trees S and T. OUT: BHV-geodesic is NP-hard.