PROBLEMS RELATED TO "EXTENSIONS OF HILBERT'S TENTH PROBLEM"

MODERATED BY B. POONEN AND T. SCANLON, NOTES BY J. DEMEYER

Question 1 (D'Aquino). Fermat's little theorem states that

$$
x^{p} \equiv x \quad \bmod p
$$

Proof 1: \mathbb{F}_{p}^{*} is cyclic using the fact that

$$
\#\{x \mid P(x)=0\} \leq \operatorname{deg}(P)
$$

Proof 2: List $R=\{1,2, \ldots, p-1\}$. Show that for $a \in R$, multiplication by a is a permuation. Then

$$
\prod_{i=1}^{p-1} i \equiv \prod_{i=1}^{p-1}(a i) \quad \bmod p
$$

From this follows that

$$
(p-1)!\equiv a^{p-1}(p-1)!\quad \bmod p
$$

Give a "simple" definition of $n!\bmod p$ (this is OK for exponentiation).
Proof 3: Use

$$
(x+y)^{p}=x^{p}+y^{p} \quad \bmod p
$$

Find other proofs.
Question 2 (D'Aquino). Is DPRM a theorem of $I \Delta_{0}$? This is Peano arithmetic with the induction axiom for every first order formula $\varphi(x)$ with bounded quantifiers

$$
I(\varphi):[\varphi(0) \wedge(\forall x)(\varphi(x) \rightarrow \varphi(x+1))] \rightarrow(\forall x)(\varphi(x))
$$

A positive answer would imply that NP is equal to co-NP.
Given a Σ_{1} formula $\psi(\vec{x})$, does there exist a polynomial $P(\vec{x}, \vec{y})$ such that

$$
I \Delta_{0} \vdash(\forall \vec{x})(\psi(\vec{x}) \leftrightarrow(\exists \vec{y})(P(\vec{x}, \vec{y})=0))
$$

Consider the language $L=\{+, \cdot, 0,1, \#, \leq\}$, where

$$
\#(x, y):=x^{\lfloor\log (y)\rfloor}
$$

Question 3 (Demeyer). Consider the ring $\mathbb{F}_{q}[W, Z]$. Does there exist a Diophantine predicate $\alpha(f, \vec{g})$ with $f \in \mathbb{F}_{q}[W, Z]$ and $\vec{g} \in \mathbb{F}_{q}[Z]^{n}$ such that
(1) For all $f \in \mathbb{F}_{q}[W, Z]$, there exists a $\vec{g} \in \mathbb{F}_{q}[Z]^{n}$ such that $\alpha(f, \vec{g})$ holds.
(2) For all $\vec{g} \in \mathbb{F}_{q}[Z]^{n}$, the set $\left\{f \in \mathbb{F}_{q}[W, Z] \mid \alpha(f, \vec{g})\right.$ holds $\}$ is finite.

This will imply that r.e. $=$ Diophantine for $\mathbb{F}_{q}[W, Z]$.
It is possible to give such a Diophantine predicate if " $\alpha(\cdots)$ holds" is replaced with " $\alpha(\cdots)$ does not hold".

Question 4 (Demeyer). Fix a prime p. Is there a Diophantine model of $\mathbb{F}_{q}[Z]$ over $\mathbb{F}_{p}[Z]$, when q is a power of p, uniformly in q ?

In other words, do there exist polynomials $f\left(t, \vec{x}, \overrightarrow{x^{\prime}}\right), g\left(t, \vec{y}, \overrightarrow{y^{\prime}}\right)$ and $h\left(t, \vec{z}, \overrightarrow{z^{\prime}}\right)$ such that:

- For every power q of $p, S_{q}:=\left\{\vec{x} \mid f\left(Z^{q}, \vec{x}, \overrightarrow{x^{\prime}}\right)=0\right\}$ is in bijection with $\mathbb{F}_{q}[Z]$.
- $\left\{\vec{y} \mid g\left(Z^{q}, \vec{y}, \overrightarrow{y^{\prime}}\right)=0\right\} \subseteq S_{q}^{3}$ corresponds to the graph of addition on $\mathbb{F}_{q}[Z]$.
- $\left\{\vec{z} \mid h\left(Z^{q}, \vec{z}, \overrightarrow{z^{\prime}}\right)=0\right\} \subseteq S_{q}^{3}$ corresponds to the graph of multiplication on $\mathbb{F}_{q}[Z]$.

Or with " Z^{q} " replaced by some other reasonable function $\{$ powers of $p\} \rightarrow \mathbb{F}_{p}[Z]$.
This might imply that r.e. $=$ Diophantine for $\mathbb{F}_{p}[Z]$.
Question 5 (Pheidas). An additive polynomial in $\mathbb{F}_{p}[Z]$ is a polynomial of the form

$$
F(Z)=\alpha_{0} Z+\alpha_{1} Z^{p}+\alpha_{2} Z^{p^{2}}+\cdots+\alpha_{n} Z^{p^{n}} \quad\left(\alpha_{i} \in \mathbb{F}_{p}\right)
$$

These are the polynomials that satisfy $f(A+B)=f(A)+f(B)$ for all $A, B \in \mathbb{F}_{p}[Z]$. Can we Diophantinely define the additive polynomials?
(Demeyer) The following suggestion by Pheidas does not work:

$$
\begin{aligned}
(\exists A, B, C, L, M, N & \left.\in \mathbb{F}_{p}[Z]\right)\left(\exists \alpha, \beta, \gamma, \lambda, \mu, \nu \in \mathbb{F}_{p}\right) \\
F & =\left(A^{p}-A\right)+\alpha Z \\
\wedge F^{2} & =\left(B^{p}-B\right)+\beta Z+\left(C^{p}-C\right) Z+\gamma Z^{2} \\
\wedge F^{3} & =\left(L^{p}-L\right)+\lambda Z+\left(M^{p}-M\right) Z+\mu Z^{2}+\left(N^{p}-N\right) Z^{2}+\nu Z^{3}
\end{aligned}
$$

Continue this up to some power F^{n}. All additive polynomials satisfy this predicate, but also the following non-additive polynomial satisfies, no matter how many equations you add:

$$
\sum_{i=0}^{p-1}\left(Z^{2 p}-Z^{p+1}\right)^{p^{i}}
$$

Fact 6 (Cornelissen). Here is an example of a non-commutative undecidable theory. Let L be any field of characteristic $p>0$. Let A_{L} denote the ring of additive polynomials with coefficients from L (a ring for addition and composition). Then $f \circ Z^{p}=Z^{p} \circ f$ is a Diophantine definition of $A_{\mathbb{F}_{p}} \cong \mathbb{F}_{p}[Z]$ in A_{L}.

The same works in the quotient skew field Q_{L} of A_{L}. Hence the Diophantine theory of A_{L} and Q_{L} in a ring language augmented by a symbol for Z is undecidable (since the theories of $\mathbb{F}_{q}[Z]$ and $\mathbb{F}_{q}(Z)$ are by Denef and Pheidas). If one can therefore give a Diophantine definition of A_{L} or Q_{L} in $L[Z]$ or $L(Z)$, the theory of the latter would be undecidable.

Question 5 of Pheidas tries to define the set A_{L}. For cognescenti: this works more generally if " $f \circ Z^{p}=Z^{p} \circ f$ " is replaced by $f \circ \rho_{T}=\rho_{T} \circ f$ for ρ a Drinfeld $\mathbb{F}_{q}[T]$-module over L.

Question 7 (Davis). Let \mathbb{H} be the quaternions over \mathbb{Q}, and

$$
\mathcal{O}=\mathbb{Z}+i \mathbb{Z}+j \mathbb{Z}+k \mathbb{Z}
$$

(1) Is there an algorithm to decide whether a noncommutative polynomial equation $f\left(x_{1}, \ldots, x_{n}\right)=$ 0 with coefficients in \mathbb{Q} has a solution in \mathbb{H} ?
(2) Is there an algorithm to decide whether a noncommutative polynomial equation $f\left(x_{1}, \ldots, x_{n}\right)=$ 0 with coefficients in \mathbb{Q} has a solution in \mathcal{O} ?
(3) Is there an algorithm to decide whether a noncommutative polynomial equation $f\left(x_{1}, \ldots, x_{n}\right)=$ 0 with coefficients in \mathbb{H} has a solution in \mathbb{H} ?
(4) Is there an algorithm to decide whether a noncommutative polynomial equation $f\left(x_{1}, \ldots, x_{n}\right)=$ 0 with coefficients in \mathbb{H} has a solution in \mathcal{O} ?
Is \mathbb{Z} existentially definable in \mathcal{O} ? This probably works:

$$
x \in \mathbb{Z} \Longleftrightarrow(\exists I, J, K)\left(I^{2}=-1 \wedge J^{2}=-1 \wedge I J=-J I \wedge x I=I x \wedge x J=J x\right)
$$

Very likely done by D. Tunc. This solves the problems 2 and 4.
In an analogous way, \mathbb{Q} should be Diophantine in \mathbb{H}. So, 1 and 3 are equivalent with Hilbert's Tenth Problem over \mathbb{Q}.

Same questions for the matrix rings $M_{n}(\mathbb{Z})$ and $M_{n}(\mathbb{Q})$.
Question 8 (Pheidas). Is the following problem decidable:
Given $P(\vec{x}) \in \mathbb{Z}[\vec{x}]$, do there exist $n_{1}, \ldots, n_{m} \in \mathbb{N}$ such that $P\left(2^{n_{1}}, \ldots, 2^{n_{m}}\right)=0$?
The answer is YES: this is related to the Mordell-Lang conjecture for tori.
Question 9 (Pheidas). Can we redo the proof of Hilbert's Tenth Problem over \mathbb{Z}, using elliptic curves instead of Pell equations?

Hopefully, this would lead to a lower number of variables and/or lower degree.
Can this give a finite-fold Diophantine definition of all r.e. sets?
Question 10 (Davis). Find a native proof of $D P R M$ in \mathbb{Z}, instead of referring to \mathbb{N}.
Prove DPRM for some class of rings abstractly, with no reference to \mathbb{N}.
Question 11 (Davis). A subset $S \subseteq \mathbb{N}$ is called simple if and only if:
(1) S is r.e.
(2) $\mathbb{N} \backslash S$ is infinite.
(3) If $T \subseteq \mathbb{N} \backslash S$ is r.e., then T is finite.

Take a simple set $S \subseteq \mathcal{O}_{K}$ and an embedding $f: \mathcal{O}_{K} \hookrightarrow R$, for some ring R. Let

$$
S=\left\{x \in \mathcal{O}_{K} \mid\left(\exists \vec{y} \in \mathcal{O}_{K}^{n}\right)(P(x, \vec{y})=0)\right\}
$$

and consider

$$
S^{\prime}=\left\{x \in \mathcal{O}_{K} \mid\left(\exists \vec{y} \in R^{n}\right)(P(x, \vec{y})=0)\right\}
$$

Clearly, $f(S) \subseteq S^{\prime}$. Either S^{\prime} is simple (hence not recursive) or its complement is finite. In particular, if $P(x, \vec{y}) \in \mathbb{Z}[x, \vec{y}]$ is such that

$$
\left\{x \in \mathbb{Z} \mid\left(\exists \vec{y} \in \mathbb{Z}^{n}\right)(P(x, \vec{y})=0)\right\}
$$

is simple and

$$
\mathbb{Z} \backslash\left\{x \in \mathbb{Z} \mid\left(\exists \vec{y} \in \mathbb{Q}^{n}\right)(P(x, \vec{y})=0)\right\}
$$

is infinite, then Hilbert's Tenth Problem for \mathbb{Q} has a negative answer.
Reference: Davis, Putnam, "Diophantine sets over polynomial rings".
Question 12 (Cornelissen). If \mathbb{Z} admits a Diophantine interpretation in \mathbb{Q} (that is, using an equivalence relation), does it follow that Mazur's conjecture is wrong?

See Cornelissen-Zahidi, Contemp. Math. 270 253-260.

Question 13 (Cornelissen). Solve in integers A, B, X, Y :

$$
\left(A^{2}+B^{2}\right)\left(A^{2}+11 B^{2}\right)=9 \cdot 25 \cdot\left(X^{2}-5 Y^{2}\right)^{2}
$$

This is related to defining the integers in the rational numbers by a Σ_{3}^{+}-formula, see Cornelissen-Zahidi, ArXiv:math.NT/0412473.
Question 14 (Cornelissen). Jeroen Demeyer has observed that the existence of a polynomial bijection $\mathbb{N}^{2} \rightarrow \mathbb{N}$ implies that any first order formula over \mathbb{N} in positive prenex form is equivalent to one in which every block of consecutive universal quantifiers is replaced by just one (and the number of existential quantifiers goes up). Such a polynomial bijection can be found in Davis, Math. Monthly 80, 236-237.

Does something similar work for \mathbb{Q}, in other words, can we find a Diophantine injection $\mathbb{Q}^{2} \hookrightarrow \mathbb{Q}$? There are some observations related to this in C.R.A.S. Paris 328, 3-8 (1999); for example, this would follow from the generalized abc-conjecture.
Question 15 (Rojas). What is the smallest n such that Hilbert's Tenth Problem over \mathbb{Z} restricted to one polynomial in n variables is undecidable?

Minimal n is known to be $2 \leq n \leq 22$ by Matijasevič, and probably $2 \leq n \leq 11$ by some Chinese. There is some evidence that $n=3$.

Question 16 (Rojas). Consider sequences in $\mathbb{Z}[x]$ of the form

$$
1, x, g_{1}, g_{2}, \ldots
$$

where each g_{i} is a sum, difference or product of 2 earlier terms in the sequence. Let

$$
\tau(f):=\min \left\{n \mid \text { there exists such a sequence with } g_{n}=f\right\}
$$

Conjecture: there exists a constant c such that the number of integer zeros of f is at most $(1+\tau(f))^{c}$, where f is not identically zero.

Question 17 (Rojas). Let $c_{j} \in \mathbb{Z}$ and consider polynomials of the form

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{j=1}^{n+1} c_{j} \vec{x}^{a_{j}}
$$

where $\overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{n+1}} \in \mathbb{N}^{n}$ are affinely independent.
Can we decide in polynomial time (for fixed p) whether there exists a $\vec{x} \in \mathbb{Q}_{p}^{n}$ such that $P(\vec{x})=0$?

Answer: NO, because the 0/1 knapsack problem can be encoded as a subproblem of this (Poonen). Over \mathbb{R} this is in NP, and probably in P (modulo some technicalities).

Can we decide whether there exists a $\vec{x} \in \mathbb{Q}^{n}$ such that $P(\vec{x})=0$?
This includes the unsolved problem of deciding whether a genus 1 curve of the form $a x^{3}+b y^{3}=1$ has a rational point, so it is probably very hard.
Question 18 (Rojas). Is there a computable bound (in function of f) on the size of the largest integer solution to $f(x, y)=0$, when there are finitely many solutions?

This is already done for genus 1 curves.
There exists an algorithm to decide finiteness of the set of solutions.
For rational points, there are papers by Minhyong Kim from Arizona:
"Relating decision and search algorithms for rational points on curves of higher genus", Arch. Math. Logic 42 (2003), no. 6, 563-568
"On relative computability for curves", ArXiv:math.NT/0502224
Question 19 (Jarden). Is there an algorithm to decide whether $f(x, y)=0$ has infinitely many \mathbb{Q}-rational solutions?

This seems to be very hard for genus 1 curves. It has been done in other cases.
Possible if \amalg is finite for all elliptic curves over \mathbb{Q}.
Question 20 (Shlapentokh). Let E be an elliptic curve over \mathbb{Q} of rank 2. Does there exist an existentially definable rank 1 subgroup?

Question 21 (Shlapentokh). Let E be an elliptic curve over \mathbb{Q} of rank 2. Can we find a subset S of (infinitely many) primes such that the subgroup generated by $E\left(\mathbb{Z}\left[S^{-1}\right]\right)$ has rank one?

If S is finite, the Siegel-Mahler theorem states that $E\left(\mathbb{Z}\left[S^{-1}\right]\right)$ is finite.
Suppose S is infinite, but of density 0 . Is $E\left(\mathbb{Z}\left[S^{-1}\right]\right)$ still "small"?
Question 22 (Zahidi). Look at the Denef curve

$$
\mathcal{E}: f(t) Y^{2}=f(X)
$$

where f is a cubic. If we choose the curve in a good way, then $\mathcal{E}(k(t))$ has rank 1 .
Define

$$
\mathcal{E}_{u}: f(u) Y^{2}=f(X)
$$

Try to give conditions on $u \in k(t)$ such that $\mathcal{E}_{u}(k(t))$ also has rank 1.
Question 23 (Pheidas). Consider the elliptic curve

$$
E: Y^{2}=X^{3}+a X+b
$$

The following statement is Diophantine: "End $(E) /(2 \operatorname{End}(E))$ has more than 2 elements". Because $\operatorname{End}(E)$ is a free finitely generated \mathbb{Z}-module, this is equivalent with $" \operatorname{End}(E) \neq \mathbb{Z}$ ".

So, we can existentially define the following set in $\mathbb{C}(Z)$:

$$
\{j \in \mathbb{C} \mid j \text { is the } j \text {-invariant of a CM elliptic curve }\}
$$

Can we do anything with this set?
Question 24 (Pheidas). If $x \in \mathbb{C}(Z)$, then

$$
\operatorname{ord}_{Z=0}\left(\frac{1+Z x^{2}}{1-Z x^{2}}\right)=\operatorname{ord}_{Z=\infty}\left(\frac{1+Z x^{2}}{1-Z x^{2}}\right)=0
$$

Can every $f \in \mathbb{C}(Z)$ with $\operatorname{ord}_{Z=0}(f)=\operatorname{ord}_{Z=\infty}(f)$ even be written as (obviously, the number 1000 can be changed to any other integer)

$$
f=u^{2} \prod_{i=1}^{1000} \frac{1+Z x_{i}^{2}}{1-Z x_{i}^{2}}
$$

Weaker version: is this true at least for $f \in \mathbb{Q}(Z)$, with $u, x_{i} \in \mathbb{C}(Z)$?
This would imply that the existential theory of $\mathbb{C}(Z)$ is undecidable.
Question 25 (Pheidas). Is $\left\{f \in \mathbb{C}(Z) \mid \operatorname{ord}_{Z=0}(f) \geq 0\right\}$ (existentially) definable in $\mathbb{C}(Z)$, where there is a symbol for Z in the language?

Question 26 (Moret-Bailly). Is there a nontrivial valuation ring

$$
R \subset \operatorname{Frac} \frac{\mathbb{R}[x, y]}{\left(x^{2}+y^{2}+1\right)}
$$

which is definable?
Same question for "semi-local ring" (finite intersection of valuation rings) instead of "valuation ring"? This is equivalent with the problem for valuation rings.
Question 27 (Shlapentokh). Can one find an algebraically closed field K and a nontrivial valuation ring $R \subset K(Z)$ (or a finite extension), which is definable in $K(Z)$?
Question 28 (Shlapentokh). Is there an algebraic extension K of \mathbb{Q} and a nontrivial valuation ring $R \subset K$, such that the residue field of R is algebraically closed and R is definable over K ?

Answer: YES. Inside $\mathbb{Q}_{p}^{\text {alg }}=\overline{\mathbb{Q}} \cap \mathbb{Q}_{p} \subseteq \overline{\mathbb{Q}_{p}}$, the ring $\mathbb{Z}_{p}^{\text {alg }}$ is definable.
Fact 29 (Pheidas). $\mathbb{C}[[Z]]$ is definable in $\mathbb{C}((Z))$:

$$
x \in \mathbb{C}[[Z]] \Longleftrightarrow(\exists y)\left(1+Z x^{2}=y^{2}\right)
$$

Proven using Hensel's lemma.
Question 30 (Shlapentokh). Let K be a number field and \mathcal{O}_{K} its ring of integers. Fix an embedding $K \hookrightarrow \mathbb{C}$, with $K \nsubseteq \mathbb{R}$. Is $\left\{\alpha \in \mathcal{O}_{K}| | \alpha \mid \leq 1\right\}$ Diophantine in \mathcal{O}_{K} ?

If this is true for all K, then Hilbert's Tenth Problem is undecidable for all \mathcal{O}_{K}.
Question 31 (Cornelissen). Let K be a number field and \mathcal{O}_{K} its ring of integers. A set $A \subseteq \mathcal{O}_{K}$ is said to be division-ample if

- It is Diophantine over \mathcal{O}_{K}.
- Any $x \in \mathcal{O}_{K}$ divides some $a \in A$.
- There exists a positive integer l such that for any $a \in A$, there exists $\tilde{a} \in \mathbb{Z}$ with $\tilde{a} \mid a$ and $N(a) \leq|\tilde{a}|^{l}$.
Observe that if $A \subseteq \mathbb{Z}$, then one can dispose of the last condition by choosing $\tilde{a}=a$ and $l=[K: \mathbb{Q}]$.

Question: give an example of such A where for any finite $S \subseteq \mathcal{O}_{K}, A$ is not a subset of $\mathcal{O}_{K}^{*} \cdot(\mathbb{Z} \cup S)$.

Cornelissen-Pheidas-Zahidi have shown that $\operatorname{HTP}\left(\mathcal{O}_{K}\right)$ has a negative answer if such A exists and there exists an elliptic curve of rank one over K.
Question 32 (Poonen). Is is true that for all number fields K, there exists a variety X (scheme of finite type) over \mathbb{Z} such that
(1) $X(\mathbb{Z})$ is infinite.
(2) $X\left(\mathcal{O}_{K}\right)=X(\mathbb{Z})$.

Question 33 (Videla). Let $K \subseteq \mathbb{Q}^{\text {tot. real }} \subseteq \overline{\mathbb{Q}}$. Define

$$
\begin{aligned}
& A_{K}:=\left\{s \in \mathbb{R}_{>0} \mid \text { There exist infinitely many } \alpha\right. \in \mathcal{O}_{K} \\
&\qquad \text { such that } \alpha \text { and its conjugates are all in }[0, s]\}
\end{aligned}
$$

Question of Julia Robinson: Is the infimum of A_{K} an element of A_{K} ? If so, the first order theory of \mathcal{O}_{K} is undecidable.

For $K=\mathbb{Q}^{\text {tot. real }}, \inf \left(A_{K}\right)=4 \in A_{K}$.

Question 34 (Zahidi). Let $\mathbb{R}^{\text {alg }}:=\overline{\mathbb{Q}} \cap \mathbb{R}$. It is known that $\mathbb{R}^{\text {alg }} \equiv \mathbb{R}$ (elementary equivalence), but that $\mathbb{R}^{\text {alg }}(t) \not \equiv \mathbb{R}(t)$. On the other hand, the existential theories of $\mathbb{R}^{\text {alg }}(t)$ and $\mathbb{R}(t)$ are the same. What is the minimal quantifier complexity for which $\mathbb{R}^{\text {alg }}(t)$ and $\mathbb{R}(t)$ have different theories?

Another question is the minimal number of variables one needs.
Question 35 (Pheidas). Let X be a variety over \mathbb{Q}. Call X hyperbolic iff there is no nonconstant holomorphic map $\mathbb{C} \rightarrow X(\mathbb{C})$. Is there an algorithm which can decide whether a variety X / \mathbb{Q} over hyperbolic?

Question 36 (Jarden). Given $f_{1}, \ldots, f_{n} \in \mathbb{C}\left[x_{1}, \ldots, x_{m}\right]$ which are homogeneous of degree d. Assume that the only common zero of the f_{i} is $(0, \ldots, 0)$. Prove that

$$
V\left(f_{1}(\vec{x})=b_{1}, \ldots, f_{n}(\vec{x})=b_{n}\right)
$$

is finite, for all $b_{1}, \ldots, b_{n} \in \mathbb{C}$.
Solution: If it were infinite, then the variety in \mathbb{P}^{m} defined by the homogenizations of the equations would be positive-dimensional, and then it would have to intersect the hyperplane at infinity, which would mean that the f_{i} have a common zero.

