
PROBLEMS RELATED TO

“EXTENSIONS OF HILBERT’S TENTH PROBLEM”

MODERATED BY B. POONEN AND T. SCANLON, NOTES BY J. DEMEYER

Question 1 (D’Aquino). Fermat’s little theorem states that

xp ≡ x mod p

Proof 1: F∗p is cyclic using the fact that

#{x | P (x) = 0} ≤ deg(P )

Proof 2: List R = {1, 2, . . . , p − 1}. Show that for a ∈ R, multiplication by a is a
permuation. Then

p−1
∏

i=1

i ≡

p−1
∏

i=1

(ai) mod p

From this follows that
(p− 1)! ≡ ap−1(p− 1)! mod p

Give a “simple” definition of n! mod p (this is OK for exponentiation).

Proof 3: Use
(x+ y)p = xp + yp mod p

Find other proofs.

Question 2 (D’Aquino). Is DPRM a theorem of I∆0? This is Peano arithmetic with the
induction axiom for every first order formula ϕ(x) with bounded quantifiers

I(ϕ) :
[

ϕ(0) ∧ (∀x)
(

ϕ(x) → ϕ(x+ 1)
)

]

→ (∀x)
(

ϕ(x)
)

A positive answer would imply that NP is equal to co-NP.

Given a Σ1 formula ψ(~x), does there exist a polynomial P (~x, ~y) such that

I∆0 ` (∀~x)
(

ψ(~x) ↔ (∃~y)
(

P (~x, ~y) = 0
)

)

Consider the language L = {+, ·, 0, 1,#,≤}, where

#(x, y) := xblog(y)c

Question 3 (Demeyer). Consider the ring Fq[W,Z]. Does there exist a Diophantine predicate
α(f,~g) with f ∈ Fq[W,Z] and ~g ∈ Fq[Z]n such that

(1) For all f ∈ Fq[W,Z], there exists a ~g ∈ Fq[Z]n such that α(f,~g) holds.
(2) For all ~g ∈ Fq[Z]n, the set {f ∈ Fq[W,Z] | α(f,~g) holds} is finite.

This will imply that r.e. = Diophantine for Fq[W,Z].

It is possible to give such a Diophantine predicate if “α(· · · ) holds” is replaced with
“α(· · · ) does not hold”.
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Question 4 (Demeyer). Fix a prime p. Is there a Diophantine model of Fq[Z] over Fp[Z],
when q is a power of p, uniformly in q?

In other words, do there exist polynomials f(t, ~x, ~x′), g(t, ~y, ~y′) and h(t, ~z, ~z′) such that:

• For every power q of p, Sq := {~x | f(Zq, ~x, ~x′) = 0} is in bijection with Fq[Z].

• {~y | g(Zq, ~y, ~y′) = 0} ⊆ S3
q corresponds to the graph of addition on Fq[Z].

• {~z | h(Zq, ~z, ~z′) = 0} ⊆ S3
q corresponds to the graph of multiplication on Fq[Z].

Or with “Zq” replaced by some other reasonable function {powers of p} → Fp[Z].

This might imply that r.e. = Diophantine for Fp[Z].

Question 5 (Pheidas). An additive polynomial in Fp[Z] is a polynomial of the form

F (Z) = α0Z + α1Z
p + α2Z

p2

+ · · · + αnZ
pn

(αi ∈ Fp)

These are the polynomials that satisfy f(A + B) = f(A) + f(B) for all A,B ∈ Fp[Z]. Can
we Diophantinely define the additive polynomials?

(Demeyer) The following suggestion by Pheidas does not work:

(∃A,B,C, L,M,N ∈ Fp[Z])(∃α, β, γ, λ, µ, ν ∈ Fp)

F = (Ap − A) + αZ

∧ F 2 = (Bp −B) + βZ + (Cp − C)Z + γZ2

∧ F 3 = (Lp − L) + λZ + (M p −M)Z + µZ2 + (Np −N)Z2 + νZ3

...

Continue this up to some power F n. All additive polynomials satisfy this predicate, but also
the following non-additive polynomial satisfies, no matter how many equations you add:

p−1
∑

i=0

(

Z2p − Zp+1
)pi

Fact 6 (Cornelissen). Here is an example of a non-commutative undecidable theory. Let
L be any field of characteristic p > 0. Let AL denote the ring of additive polynomials
with coefficients from L (a ring for addition and composition). Then f ◦ Zp = Zp ◦ f is a
Diophantine definition of AFp

∼= Fp[Z] in AL.

The same works in the quotient skew field QL of AL. Hence the Diophantine theory of
AL and QL in a ring language augmented by a symbol for Z is undecidable (since the theories
of Fq[Z] and Fq(Z) are by Denef and Pheidas). If one can therefore give a Diophantine
definition of AL or QL in L[Z] or L(Z), the theory of the latter would be undecidable.

Question 5 of Pheidas tries to define the set AL. For cognescenti: this works more
generally if “f ◦ Zp = Zp ◦ f” is replaced by f ◦ ρT = ρT ◦ f for ρ a Drinfeld Fq[T ]-module
over L.

Question 7 (Davis). Let H be the quaternions over Q, and

O = Z + iZ + jZ + kZ

(1) Is there an algorithm to decide whether a noncommutative polynomial equation f(x1, . . . , xn) =
0 with coefficients in Q has a solution in H?

(2) Is there an algorithm to decide whether a noncommutative polynomial equation f(x1, . . . , xn) =
0 with coefficients in Q has a solution in O?
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(3) Is there an algorithm to decide whether a noncommutative polynomial equation f(x1, . . . , xn) =
0 with coefficients in H has a solution in H?

(4) Is there an algorithm to decide whether a noncommutative polynomial equation f(x1, . . . , xn) =
0 with coefficients in H has a solution in O?

Is Z existentially definable in O? This probably works:

x ∈ Z ⇐⇒ (∃I, J,K)(I2 = −1 ∧ J2 = −1 ∧ IJ = −JI ∧ xI = Ix ∧ xJ = Jx)

Very likely done by D. Tunc. This solves the problems 2 and 4.

In an analogous way, Q should be Diophantine in H. So, 1 and 3 are equivalent with
Hilbert’s Tenth Problem over Q.

Same questions for the matrix rings Mn(Z) and Mn(Q).

Question 8 (Pheidas). Is the following problem decidable:

Given P (~x) ∈ Z[~x], do there exist n1, . . . , nm ∈ N such that P (2n1 , . . . , 2nm) = 0?

The answer is YES: this is related to the Mordell–Lang conjecture for tori.

Question 9 (Pheidas). Can we redo the proof of Hilbert’s Tenth Problem over Z, using
elliptic curves instead of Pell equations?

Hopefully, this would lead to a lower number of variables and/or lower degree.

Can this give a finite-fold Diophantine definition of all r.e. sets?

Question 10 (Davis). Find a native proof of DPRM in Z, instead of referring to N.

Prove DPRM for some class of rings abstractly, with no reference to N.

Question 11 (Davis). A subset S ⊆ N is called simple if and only if:

(1) S is r.e.
(2) N \ S is infinite.
(3) If T ⊆ N \ S is r.e., then T is finite.

Take a simple set S ⊆ OK and an embedding f : OK ↪→ R, for some ring R. Let

S = {x ∈ OK | (∃~y ∈ On
K)(P (x, ~y) = 0)}

and consider

S ′ = {x ∈ OK | (∃~y ∈ Rn)(P (x, ~y) = 0)}

Clearly, f(S) ⊆ S ′. Either S ′ is simple (hence not recursive) or its complement is finite. In
particular, if P (x, ~y) ∈ Z[x, ~y] is such that

{x ∈ Z | (∃~y ∈ Zn)(P (x, ~y) = 0)}

is simple and

Z \ {x ∈ Z | (∃~y ∈ Qn)(P (x, ~y) = 0)}

is infinite, then Hilbert’s Tenth Problem for Q has a negative answer.

Reference: Davis, Putnam, “Diophantine sets over polynomial rings”.

Question 12 (Cornelissen). If Z admits a Diophantine interpretation in Q (that is, using
an equivalence relation), does it follow that Mazur’s conjecture is wrong?

See Cornelissen–Zahidi, Contemp. Math. 270 253–260.
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Question 13 (Cornelissen). Solve in integers A,B,X, Y :

(A2 +B2)(A2 + 11B2) = 9 · 25 · (X2 − 5Y 2)2

This is related to defining the integers in the rational numbers by a Σ+
3 -formula, see

Cornelissen–Zahidi, ArXiv:math.NT/0412473.

Question 14 (Cornelissen). Jeroen Demeyer has observed that the existence of a polynomial
bijection N2 → N implies that any first order formula over N in positive prenex form is
equivalent to one in which every block of consecutive universal quantifiers is replaced by just
one (and the number of existential quantifiers goes up). Such a polynomial bijection can be
found in Davis, Math. Monthly 80, 236–237.

Does something similar work for Q, in other words, can we find a Diophantine injection
Q2 ↪→ Q? There are some observations related to this in C.R.A.S. Paris 328, 3–8 (1999);
for example, this would follow from the generalized abc-conjecture.

Question 15 (Rojas). What is the smallest n such that Hilbert’s Tenth Problem over Z

restricted to one polynomial in n variables is undecidable?

Minimal n is known to be 2 ≤ n ≤ 22 by Matijasevič, and probably 2 ≤ n ≤ 11 by some
Chinese. There is some evidence that n = 3.

Question 16 (Rojas). Consider sequences in Z[x] of the form

1, x, g1, g2, . . .

where each gi is a sum, difference or product of 2 earlier terms in the sequence. Let

τ(f) := min{n | there exists such a sequence with gn = f}

Conjecture: there exists a constant c such that the number of integer zeros of f is at most
(

1 + τ(f)
)c

, where f is not identically zero.

Question 17 (Rojas). Let cj ∈ Z and consider polynomials of the form

P (x1, . . . , xn) =
n+1
∏

j=1

cj~x
~aj

where ~a1, . . . , ~an+1 ∈ Nn are affinely independent.

Can we decide in polynomial time (for fixed p) whether there exists a ~x ∈ Qn
p such that

P (~x) = 0?

Answer: NO, because the 0/1 knapsack problem can be encoded as a subproblem of this
(Poonen). Over R this is in NP, and probably in P (modulo some technicalities).

Can we decide whether there exists a ~x ∈ Qn such that P (~x) = 0?

This includes the unsolved problem of deciding whether a genus 1 curve of the form
ax3 + by3 = 1 has a rational point, so it is probably very hard.

Question 18 (Rojas). Is there a computable bound (in function of f) on the size of the
largest integer solution to f(x, y) = 0, when there are finitely many solutions?

This is already done for genus 1 curves.

There exists an algorithm to decide finiteness of the set of solutions.

For rational points, there are papers by Minhyong Kim from Arizona:

“Relating decision and search algorithms for rational points on curves of higher genus”,
Arch. Math. Logic 42 (2003), no. 6, 563–568
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“On relative computability for curves”, ArXiv:math.NT/0502224

Question 19 (Jarden). Is there an algorithm to decide whether f(x, y) = 0 has infinitely
many Q-rational solutions?

This seems to be very hard for genus 1 curves. It has been done in other cases.

Possible if X is finite for all elliptic curves over Q.

Question 20 (Shlapentokh). Let E be an elliptic curve over Q of rank 2. Does there exist
an existentially definable rank 1 subgroup?

Question 21 (Shlapentokh). Let E be an elliptic curve over Q of rank 2. Can we find a
subset S of (infinitely many) primes such that the subgroup generated by E(Z[S−1]) has rank
one?

If S is finite, the Siegel–Mahler theorem states that E(Z[S−1]) is finite.

Suppose S is infinite, but of density 0. Is E(Z[S−1]) still “small”?

Question 22 (Zahidi). Look at the Denef curve

E : f(t)Y 2 = f(X)

where f is a cubic. If we choose the curve in a good way, then E(k(t)) has rank 1.

Define

Eu : f(u)Y 2 = f(X)

Try to give conditions on u ∈ k(t) such that Eu(k(t)) also has rank 1.

Question 23 (Pheidas). Consider the elliptic curve

E : Y 2 = X3 + aX + b

The following statement is Diophantine: “End(E)/(2 End(E)) has more than 2 elements”.
Because End(E) is a free finitely generated Z-module, this is equivalent with “End(E) 6= Z”.

So, we can existentially define the following set in C(Z):

{j ∈ C | j is the j-invariant of a CM elliptic curve}

Can we do anything with this set?

Question 24 (Pheidas). If x ∈ C(Z), then

ordZ=0

(

1 + Zx2

1 − Zx2

)

= ordZ=∞

(

1 + Zx2

1 − Zx2

)

= 0

Can every f ∈ C(Z) with ordZ=0(f) = ordZ=∞(f) even be written as (obviously, the
number 1000 can be changed to any other integer)

f = u2

1000
∏

i=1

1 + Zx2
i

1 − Zx2
i

Weaker version: is this true at least for f ∈ Q(Z), with u, xi ∈ C(Z)?

This would imply that the existential theory of C(Z) is undecidable.

Question 25 (Pheidas). Is {f ∈ C(Z) | ordZ=0(f) ≥ 0} (existentially) definable in C(Z),
where there is a symbol for Z in the language?
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Question 26 (Moret-Bailly). Is there a nontrivial valuation ring

R ⊂ Frac
R[x, y]

(x2 + y2 + 1)

which is definable?

Same question for “semi-local ring” (finite intersection of valuation rings) instead of
“valuation ring”? This is equivalent with the problem for valuation rings.

Question 27 (Shlapentokh). Can one find an algebraically closed field K and a nontrivial
valuation ring R ⊂ K(Z) (or a finite extension), which is definable in K(Z)?

Question 28 (Shlapentokh). Is there an algebraic extension K of Q and a nontrivial valu-
ation ring R ⊂ K, such that the residue field of R is algebraically closed and R is definable
over K?

Answer: YES. Inside Qalg
p = Q ∩ Qp ⊆ Qp, the ring Zalg

p is definable.

Fact 29 (Pheidas). C[[Z]] is definable in C((Z)):

x ∈ C[[Z]] ⇐⇒ (∃y)(1 + Zx2 = y2)

Proven using Hensel’s lemma.

Question 30 (Shlapentokh). Let K be a number field and OK its ring of integers. Fix an
embedding K ↪→ C, with K 6⊆ R. Is {α ∈ OK | |α| ≤ 1} Diophantine in OK?

If this is true for all K, then Hilbert’s Tenth Problem is undecidable for all OK.

Question 31 (Cornelissen). Let K be a number field and OK its ring of integers. A set
A ⊆ OK is said to be division-ample if

• It is Diophantine over OK.
• Any x ∈ OK divides some a ∈ A.
• There exists a positive integer l such that for any a ∈ A, there exists ã ∈ Z with ã|a

and N(a) ≤ |ã|l.

Observe that if A ⊆ Z, then one can dispose of the last condition by choosing ã = a
and l = [K : Q].

Question: give an example of such A where for any finite S ⊆ OK, A is not a subset
of O∗

K · (Z ∪ S).

Cornelissen–Pheidas–Zahidi have shown that HTP(OK) has a negative answer if such
A exists and there exists an elliptic curve of rank one over K.

Question 32 (Poonen). Is is true that for all number fields K, there exists a variety X
(scheme of finite type) over Z such that

(1) X(Z) is infinite.
(2) X(OK) = X(Z).

Question 33 (Videla). Let K ⊆ Qtot. real ⊆ Q. Define

AK := {s ∈ R>0 | There exist infinitely many α ∈ OK

such that α and its conjugates are all in [0, s]}

Question of Julia Robinson: Is the infimum of AK an element of AK? If so, the first order
theory of OK is undecidable.

For K = Qtot. real, inf(AK) = 4 ∈ AK.
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Question 34 (Zahidi). Let Ralg := Q ∩ R. It is known that Ralg ≡ R (elementary equiv-
alence), but that Ralg(t) 6≡ R(t). On the other hand, the existential theories of Ralg(t) and
R(t) are the same. What is the minimal quantifier complexity for which Ralg(t) and R(t)
have different theories?

Another question is the minimal number of variables one needs.

Question 35 (Pheidas). Let X be a variety over Q. Call X hyperbolic iff there is no
nonconstant holomorphic map C → X(C). Is there an algorithm which can decide whether
a variety X/Q over hyperbolic?

Question 36 (Jarden). Given f1, . . . , fn ∈ C[x1, . . . , xm] which are homogeneous of degree
d. Assume that the only common zero of the fi is (0, . . . , 0). Prove that

V (f1(~x) = b1, . . . , fn(~x) = bn)

is finite, for all b1, . . . , bn ∈ C.

Solution: If it were infinite, then the variety in Pm defined by the homogenizations of the
equations would be positive-dimensional, and then it would have to intersect the hyperplane
at infinity, which would mean that the fi have a common zero.


