PROBLEMS RELATED TO

“EXTENSIONS OF HILBERT’S TENTH PROBLEM”

MODERATED BY B. POONEN AND T. SCANLON, NOTES BY J. DEMEYER

Question 1 (D’Aquino). Fermat’s little theorem states that

\[x^p \equiv x \mod p \]

Proof 1: \(\mathbb{F}_p \) is cyclic using the fact that

\[\#\{x \mid P(x) = 0\} \leq \deg(P) \]

Proof 2: List \(R = \{1, 2, \ldots, p-1\} \). Show that for \(a \in R \), multiplication by \(a \) is a permutation. Then

\[\prod_{i=1}^{p-1} i \equiv \prod_{i=1}^{p-1} (ai) \mod p \]

From this follows that

\[(p-1)! \equiv a^{p-1}(p-1)! \mod p \]

Give a “simple” definition of \(n! \mod p \) (this is OK for exponentiation).

Proof 3: Use

\[(x + y)^p = x^p + y^p \mod p \]

Find other proofs.

Question 2 (D’Aquino). Is DPRM a theorem of \(I\Delta_0 \)? This is Peano arithmetic with the induction axiom for every first order formula \(\varphi(x) \) with bounded quantifiers

\[I(\varphi) : \left(\varphi(0) \land (\forall x)(\varphi(x) \rightarrow \varphi(x + 1)) \right) \rightarrow (\forall x)(\varphi(x)) \]

A positive answer would imply that \(NP \) is equal to \(co-NP \).

Given a \(\Sigma_1 \) formula \(\psi(\bar{x}) \), does there exist a polynomial \(P(\bar{x}, \bar{y}) \) such that

\[I\Delta_0 \vdash (\forall \bar{x}) \left(\psi(\bar{x}) \leftrightarrow (\exists \bar{y})(P(\bar{x}, \bar{y}) = 0) \right) \]

Consider the language \(L = \{+,-,0,1,\#,\leq\} \), where

\[\#(x,y) := x^{\log(y)} \]

Question 3 (Demeyer). Consider the ring \(\mathbb{F}_q[W,Z] \). Does there exist a Diophantine predicate \(\alpha(f, \bar{g}) \) with \(f \in \mathbb{F}_q[W,Z] \) and \(\bar{g} \in \mathbb{F}_q[Z]^n \) such that

1. For all \(f \in \mathbb{F}_q[W,Z] \), there exists a \(\bar{g} \in \mathbb{F}_q[Z]^n \) such that \(\alpha(f, \bar{g}) \) holds.
2. For all \(\bar{g} \in \mathbb{F}_q[Z]^n \), the set \(\{ f \in \mathbb{F}_q[W,Z] \mid \alpha(f, \bar{g}) \text{ holds} \} \) is finite.

This will imply that \(r.e. = \text{Diophantine for} \ \mathbb{F}_q[W,Z] \).

It is possible to give such a Diophantine predicate if “\(\alpha(\cdots) \) holds” is replaced with “\(\alpha(\cdots) \) does not hold”.

1
Question 4 (Demeyer). Fix a prime \(p \). Is there a Diophantine model of \(\mathbb{F}_q[Z] \) over \(\mathbb{F}_p[Z] \), when \(q \) is a power of \(p \), uniformly in \(q \)?

In other words, do there exist polynomials \(f(t,\bar{x},\bar{x}') \), \(g(t,\bar{y},\bar{y}') \) and \(h(t,\bar{z},\bar{z}') \) such that:

- For every power \(q \) of \(p \), \(S_q := \{ \bar{x} \mid f(Z^q,\bar{x},\bar{x}') = 0 \} \) is in bijection with \(\mathbb{F}_q[Z] \).
- \(\{ \bar{y} \mid g(Z^q,\bar{y},\bar{y}') = 0 \} \subseteq S_q^3 \) corresponds to the graph of addition on \(\mathbb{F}_q[Z] \).
- \(\{ \bar{z} \mid h(Z^q,\bar{z},\bar{z}') = 0 \} \subseteq S_q^3 \) corresponds to the graph of multiplication on \(\mathbb{F}_q[Z] \).

Or with \(\text{“}Z^q\text{”} \) replaced by some other reasonable function \(\{ \text{powers of } p \} \to \mathbb{F}_p[Z] \).

This might imply that \(\text{r.e.} = \text{Diophantine for } \mathbb{F}_p[Z] \).

Question 5 (Pheidas). An additive polynomial in \(\mathbb{F}_p[Z] \) is a polynomial of the form

\[
F(Z) = \alpha_0 Z + \alpha_1 Z^p + \alpha_2 Z^{p^2} + \cdots + \alpha_n Z^{p^n} \quad (\alpha_i \in \mathbb{F}_p)
\]

These are the polynomials that satisfy \(f(A + B) = f(A) + f(B) \) for all \(A, B \in \mathbb{F}_p[Z] \). Can we Diophantinely define the additive polynomials?

(Demeyer) The following suggestion by Pheidas does not work:

\[
(\exists A, B, C, L, M, N \in \mathbb{F}_p[Z])(\exists \alpha, \beta, \gamma, \lambda, \mu, \nu \in \mathbb{F}_p)
\]

\[
F = (A^p - A) + \alpha Z
\]

\[
\land F^2 = (B^p - B) + \beta Z + (C^p - C)Z + \gamma Z^2
\]

\[
\land F^3 = (L^p - L) + \lambda Z + (M^p - M)Z + \mu Z^2 + (N^p - N)Z^2 + \nu Z^3
\]

Continue this up to some power \(F^n \). All additive polynomials satisfy this predicate, but also the following non-additive polynomial satisfies, no matter how many equations you add:

\[
\sum_{i=0}^{p-1} (Z^{2i} - Z^{p+1})^p
\]

Fact 6 (Cornelissen). Here is an example of a non-commutative undecidable theory. Let \(L \) be any field of characteristic \(p > 0 \). Let \(A_L \) denote the ring of additive polynomials with coefficients from \(L \) (a ring for addition and composition). Then \(f \circ Z^p = Z^p \circ f \) is a Diophantine definition of \(A_{\mathbb{F}_p} \cong \mathbb{F}_p[Z] \) in \(A_L \).

The same works in the quotient skew field \(Q_L \) of \(A_L \). Hence the Diophantine theory of \(A_L \) and \(Q_L \) in a ring language augmented by a symbol for \(Z \) is undecidable (since the theories of \(\mathbb{F}_q[Z] \) and \(\mathbb{F}_q(Z) \) are by Denef and Pheidas). If one can therefore give a Diophantine definition of \(A_L \) or \(Q_L \) in \(L[Z] \) or \(L(Z) \), the theory of the latter would be undecidable.

Question 5 of Pheidas tries to define the set \(A_L \). For cognescenti: this works more generally if \(f \circ Z^p = Z^p \circ f \) is replaced by \(f \circ \rho_T = \rho_T \circ f \) for \(\rho \) a Drinfeld \(\mathbb{F}_q[T] \)-module over \(L \).

Question 7 (Davis). Let \(\mathbb{H} \) be the quaternions over \(\mathbb{Q} \), and

\[
\mathcal{O} = \mathbb{Z} + i\mathbb{Z} + j\mathbb{Z} + k\mathbb{Z}
\]

1. Is there an algorithm to decide whether a noncommutative polynomial equation \(f(x_1, \ldots, x_n) = 0 \) with coefficients in \(\mathbb{Q} \) has a solution in \(\mathbb{H} \)?
2. Is there an algorithm to decide whether a noncommutative polynomial equation \(f(x_1, \ldots, x_n) = 0 \) with coefficients in \(\mathbb{Q} \) has a solution in \(\mathcal{O} \)?
(3) Is there an algorithm to decide whether a noncommutative polynomial equation $f(x_1, \ldots, x_n) = 0$ with coefficients in \mathbb{H} has a solution in \mathbb{H}?

(4) Is there an algorithm to decide whether a noncommutative polynomial equation $f(x_1, \ldots, x_n) = 0$ with coefficients in \mathbb{H} has a solution in \mathbb{O}?

Is \mathbb{Z} existentially definable in \mathbb{O}? This probably works:

$$x \in \mathbb{Z} \iff (\exists I, J, K)(I^2 = -1 \land J^2 = -1 \land IJ = -JI \land xI = Ix \land xJ = Jx)$$

Very likely done by D. Tunc. This solves the problems 2 and 4.

In an analogous way, \mathbb{Q} should be Diophantine in \mathbb{H}. So, 1 and 3 are equivalent with Hilbert’s Tenth Problem over \mathbb{Q}.

Same questions for the matrix rings $M_n(\mathbb{Z})$ and $M_n(\mathbb{Q})$.

Question 8 (Pheidas). Is the following problem decidable:

Given $P(\vec{x}) \in \mathbb{Z}[\vec{x}]$, do there exist $n_1, \ldots, n_m \in \mathbb{N}$ such that $P(2^{n_1}, \ldots, 2^{n_m}) = 0$?

The answer is YES: this is related to the Mordell–Lang conjecture for tori.

Question 9 (Pheidas). Can we redo the proof of Hilbert’s Tenth Problem over \mathbb{Z}, using elliptic curves instead of Pell equations?

Hopefully, this would lead to a lower number of variables and/or lower degree.

Can this give a finite-fold Diophantine definition of all r.e. sets?

Question 10 (Davis). Find a native proof of DPRM in \mathbb{Z}, instead of referring to \mathbb{N}.

Prove DPRM for some class of rings abstractly, with no reference to \mathbb{N}.

Question 11 (Davis). A subset $S \subseteq \mathbb{N}$ is called simple if and only if:

1. S is r.e.
2. $\mathbb{N} \setminus S$ is infinite.
3. If $T \subseteq \mathbb{N} \setminus S$ is r.e., then T is finite.

Take a simple set $S \subseteq \mathcal{O}_K$ and an embedding $f : \mathcal{O}_K \hookrightarrow R$, for some ring R. Let

$$S = \{x \in \mathcal{O}_K \mid (\exists \vec{y} \in \mathcal{O}_K^n)(P(x, \vec{y}) = 0)\}$$

and consider

$$S' = \{x \in \mathcal{O}_K \mid (\exists \vec{y} \in R^n)(P(x, \vec{y}) = 0)\}$$

Clearly, $f(S) \subseteq S'$. Either S' is simple (hence not recursive) or its complement is finite. In particular, if $P(x, \vec{y}) \in \mathbb{Z}[x, \vec{y}]$ is such that

$$\{x \in \mathbb{Z} \mid (\exists \vec{y} \in \mathbb{Z}^n)(P(x, \vec{y}) = 0)\}$$

is simple and

$$\mathbb{Z} \setminus \{x \in \mathbb{Z} \mid (\exists \vec{y} \in \mathbb{Q}^n)(P(x, \vec{y}) = 0)\}$$

is infinite, then Hilbert’s Tenth Problem for \mathbb{Q} has a negative answer.

Reference: Davis, Putnam, “Diophantine sets over polynomial rings”.

Question 12 (Cornelissen). If \mathbb{Z} admits a Diophantine interpretation in \mathbb{Q} (that is, using an equivalence relation), does it follow that Mazur’s conjecture is wrong?

Question 13 (Cornelissen). Solve in integers A, B, X, Y:

$$(A^2 + B^2)(A^2 + 11B^2) = 9 \cdot 25 \cdot (X^2 - 5Y^2)^2$$

This is related to defining the integers in the rational numbers by a Σ^+_3-formula, see Cornelissen--Zahidi, ArXiv:math.NT/0412473.

Question 14 (Cornelissen). Jeroen Demeyer has observed that the existence of a polynomial bijection $\mathbb{N}^2 \rightarrow \mathbb{N}$ implies that any first order formula over \mathbb{N} in positive prenex form is equivalent to one in which every block of consecutive universal quantifiers is replaced by just one (and the number of existential quantifiers goes up). Such a polynomial bijection can be found in Davis, Math. Monthly 80, 236–237.

Does something similar work for \mathbb{Q}, in other words, can we find a Diophantine injection $\mathbb{Q}^2 \rightarrow \mathbb{Q}$? There are some observations related to this in C.R.A.S. Paris 328, 3–8 (1999); for example, this would follow from the generalized abc-conjecture.

Question 15 (Rojas). What is the smallest n such that Hilbert’s Tenth Problem over \mathbb{Z} restricted to one polynomial in n variables is undecidable?

Minimal n is known to be $2 \leq n \leq 22$ by Matijasević, and probably $2 \leq n \leq 11$ by some Chinese. There is some evidence that $n = 3$.

Question 16 (Rojas). Consider sequences in $\mathbb{Z}[x]$ of the form

$$1, x, g_1, g_2, \ldots$$

where each g_i is a sum, difference or product of 2 earlier terms in the sequence. Let

$$\tau(f) := \min \{n \mid \text{there exists such a sequence with } g_n = f\}$$

Conjecture: there exists a constant c such that the number of integer zeros of f is at most $(1 + \tau(f))^c$, where f is not identically zero.

Question 17 (Rojas). Let $c_j \in \mathbb{Z}$ and consider polynomials of the form

$$P(x_1, \ldots, x_n) = \prod_{j=1}^{n+1} c_j x_j^{a_j}$$

where $a_1, \ldots, a_{n+1} \in \mathbb{N}^n$ are affinely independent.

Can we decide in polynomial time (for fixed p) whether there exists a $\bar{x} \in \mathbb{Q}_p^n$ such that $P(\bar{x}) = 0$?

Answer: NO, because the 0/1 knapsack problem can be encoded as a subproblem of this (Poonen). Over \mathbb{R} this is in NP, and probably in P (modulo some technicalities).

Can we decide whether there exists a $\bar{x} \in \mathbb{Q}^n$ such that $P(\bar{x}) = 0$?

This includes the unsolved problem of deciding whether a genus 1 curve of the form $ax^3 + by^3 = 1$ has a rational point, so it is probably very hard.

Question 18 (Rojas). Is there a computable bound (in function of f) on the size of the largest integer solution to $f(x, y) = 0$, when there are finitely many solutions?

This is already done for genus 1 curves.

There exists an algorithm to decide finiteness of the set of solutions.

For rational points, there are papers by Minhyong Kim from Arizona:

“Relating decision and search algorithms for rational points on curves of higher genus”, Arch. Math. Logic 42 (2003), no. 6, 563–568
“On relative computability for curves”, ArXiv:math.NT/0502224

Question 19 (Jarden). Is there an algorithm to decide whether \(f(x, y) = 0 \) has infinitely many \(\mathbb{Q} \)-rational solutions?

This seems to be very hard for genus 1 curves. It has been done in other cases.

Possible if \(\mathbb{H} \) is finite for all elliptic curves over \(\mathbb{Q} \).

Question 20 (Shlapentokh). Let \(E \) be an elliptic curve over \(\mathbb{Q} \) of rank 2. Does there exist an existentially definable rank 1 subgroup?

Question 21 (Shlapentokh). Let \(E \) be an elliptic curve over \(\mathbb{Q} \) of rank 2. Can we find a subset \(S \) of (infinitely many) primes such that the subgroup generated by \(E(\mathbb{Z}[S^{-1}]) \) has rank one?

If \(S \) is finite, the Siegel–Mahler theorem states that \(E(\mathbb{Z}[S^{-1}]) \) is finite.

Suppose \(S \) is infinite, but of density 0. Is \(E(\mathbb{Z}[S^{-1}]) \) still “small”?

Question 22 (Zahidi). Look at the Denef curve

\[
E : f(t)Y^2 = f(X)
\]

where \(f \) is a cubic. If we choose the curve in a good way, then \(E(k(t)) \) has rank 1.

Define

\[
E_u : f(u)Y^2 = f(X)
\]

Try to give conditions on \(u \in k(t) \) such that \(E_u(k(t)) \) also has rank 1.

Question 23 (Pheidas). Consider the elliptic curve

\[
E : Y^2 = X^3 + aX + b
\]

The following statement is Diophantine: “\(\text{End}(E)/(2\text{End}(E)) \) has more than 2 elements”.

Because \(\text{End}(E) \) is a free finitely generated \(\mathbb{Z} \)-module, this is equivalent with “\(\text{End}(E) \neq \mathbb{Z} \)”.

So, we can existentially define the following set in \(\mathbb{C}(\mathbb{Z}) \):

\[
\{ j \in \mathbb{C} \mid j \text{ is the } j\text{-invariant of a CM elliptic curve} \}
\]

Can we do anything with this set?

Question 24 (Pheidas). If \(x \in \mathbb{C}(\mathbb{Z}) \), then

\[
\text{ord}_{Z=0} \left(\frac{1 + Zx^2}{1 - Zx^2} \right) = \text{ord}_{Z=\infty} \left(\frac{1 + Zx^2}{1 - Zx^2} \right) = 0
\]

Can every \(f \in \mathbb{C}(\mathbb{Z}) \) with \(\text{ord}_{Z=0}(f) = \text{ord}_{Z=\infty}(f) \) even be written as (obviously, the number 1000 can be changed to any other integer)

\[
f = u^2 \prod_{i=1}^{1000} \frac{1 + Zx_i^2}{1 - Zx_i^2}
\]

Weaker version: is this true at least for \(f \in \mathbb{Q}(\mathbb{Z}) \), with \(u, x_i \in \mathbb{C}(\mathbb{Z}) \)?

This would imply that the existential theory of \(\mathbb{C}(\mathbb{Z}) \) is undecidable.

Question 25 (Pheidas). Is \(\{ f \in \mathbb{C}(\mathbb{Z}) \mid \text{ord}_{Z=0}(f) \geq 0 \} \) (existentially) definable in \(\mathbb{C}(\mathbb{Z}) \), where there is a symbol for \(Z \) in the language?
Question 26 (Moret-Bailly). Is there a nontrivial valuation ring
\[R \subset \text{Frac} \frac{\mathbb{R}[x,y]}{(x^2 + y^2 + 1)} \]
which is definable?

Same question for “semi-local ring” (finite intersection of valuation rings) instead of “valuation ring”? This is equivalent with the problem for valuation rings.

Question 27 (Shlapentokh). Can one find an algebraically closed field \(K \) and a nontrivial valuation ring \(R \subset K(\mathbb{Z}) \) (or a finite extension), which is definable in \(K(\mathbb{Z}) \)?

Answer: YES. Inside \(\mathbb{Q}_p^{al} = \mathbb{Q} \cap \mathbb{Q}_p \subset \overline{\mathbb{Q}_p} \), the ring \(\mathbb{Z}_p^{al} \) is definable.

Fact 29 (Pheidas). \(\mathbb{C}[[Z]] \) is definable in \(\mathbb{C}((Z)) \):
\[x \in \mathbb{C}[[Z]] \iff (\exists y)(1 + Zx^2 = y^2) \]

Proven using Hensel’s lemma.

Question 30 (Shlapentokh). Let \(K \) be a number field and \(\mathcal{O}_K \) its ring of integers. Fix an embedding \(K \hookrightarrow \mathbb{C} \), with \(K \not\subset \mathbb{R} \). Is \(\{ \alpha \in \mathcal{O}_K \mid ||\alpha|| \leq 1 \} \) Diophantine in \(\mathcal{O}_K \)?

If this is true for all \(K \), then Hilbert’s Tenth Problem is undecidable for all \(\mathcal{O}_K \).

Question 31 (Cornelissen). Let \(K \) be a number field and \(\mathcal{O}_K \) its ring of integers. A set \(A \subseteq \mathcal{O}_K \) is said to be division-ample if

- It is Diophantine over \(\mathcal{O}_K \).
- Any \(x \in \mathcal{O}_K \) divides some \(a \in A \).
- There exists a positive integer \(l \) such that for any \(a \in A \), there exists \(\tilde{a} \in \mathbb{Z} \) with \(\tilde{a}|a \) and \(N(a) \leq |\tilde{a}|^l \).

Observe that if \(A \subseteq \mathbb{Z} \), then one can dispose of the last condition by choosing \(\tilde{a} = a \) and \(l = [K : \mathbb{Q}] \).

Question: give an example of such \(A \) where for any finite \(S \subseteq \mathcal{O}_K \), \(A \) is not a subset of \(\mathcal{O}_K \cap (\mathbb{Z} \cup S) \).

Cornelissen–Pheidas–Zahidi have shown that HTP(\(\mathcal{O}_K \)) has a negative answer if such \(A \) exists and there exists an elliptic curve of rank one over \(K \).

Question 32 (Poonen). Is it true that for all number fields \(K \), there exists a variety \(X \) (scheme of finite type) over \(\mathbb{Z} \) such that

1. \(X(\mathbb{Z}) \) is infinite.
2. \(X(\mathcal{O}_K) = X(\mathbb{Z}) \).

Question 33 (Videla). Let \(K \subseteq \mathbb{Q}^{tot.\ real} \subseteq \overline{\mathbb{Q}} \). Define
\[A_K := \{ s \in \mathbb{R}_{>0} \mid \text{There exist infinitely many } \alpha \in \mathcal{O}_K \text{ such that } \alpha \text{ and its conjugates are all in } [0, s] \} \]

Question of Julia Robinson: Is the infimum of \(A_K \) an element of \(A_K \)? If so, the first order theory of \(\mathcal{O}_K \) is undecidable.

For \(K = \mathbb{Q}^{tot.\ real} \), \(\inf(A_K) = 4 \in A_K \).
Question 34 (Zahidi). Let $\mathbb{R}^{alg} := \overline{\mathbb{Q}} \cap \mathbb{R}$. It is known that $\mathbb{R}^{alg} \equiv \mathbb{R}$ (elementary equivalence), but that $\mathbb{R}^{alg}(t) \not\equiv \mathbb{R}(t)$. On the other hand, the existential theories of $\mathbb{R}^{alg}(t)$ and $\mathbb{R}(t)$ are the same. What is the minimal quantifier complexity for which $\mathbb{R}^{alg}(t)$ and $\mathbb{R}(t)$ have different theories?

Another question is the minimal number of variables one needs.

Question 35 (Pheidas). Let X be a variety over \mathbb{Q}. Call X hyperbolic iff there is no nonconstant holomorphic map $\mathbb{C} \to X(\mathbb{C})$. Is there an algorithm which can decide whether a variety X/\mathbb{Q} is hyperbolic?

Question 36 (Jarden). Given $f_1, \ldots, f_n \in \mathbb{C}[x_1, \ldots, x_m]$ which are homogeneous of degree d. Assume that the only common zero of the f_i is $(0, \ldots, 0)$. Prove that

$$V(f_1(\bar{x}) = b_1, \ldots, f_n(\bar{x}) = b_n)$$

is finite, for all $b_1, \ldots, b_n \in \mathbb{C}$.

Solution: If it were infinite, then the variety in \mathbb{P}^m defined by the homogenizations of the equations would be positive-dimensional, and then it would have to intersect the hyperplane at infinity, which would mean that the f_i have a common zero.