COMPONENTS OF HILBERT SCHEMES

RECORDED ON WHITEBOARD BY IZZET COSKUN, AND EDITED BY LI LI

Following are the open problems raised/discussed during the AIM workshop *Components of Hilbert Schemes*, July 19 to 23, 2010, organized by Robin Hartshorne, Diane Maclagan, and Gregory G. Smith.

Notation and convention. Denote by $\operatorname{Hilb}^d(\mathbb{A}^n)$ the Hilbert scheme of d points in the affine space \mathbb{A}^n . Denote by $\operatorname{Hilb}_{d,g}(\mathbb{P}^r)$ the Hilbert scheme of curves of degree d and genus g in the projective space \mathbb{P}^r . By component we always mean an irreducible component.

Problem 1. Describe the singularities of the smoothable component of $\mathrm{Hilb}^d(\mathbb{A}^n)$. To be more specific,

- How large can the dimension of the Zariski tangent space to this component qet?
- Does the maximum occur in the intersection of components? Does it occur in the smoothable component?

Problem 2. Can you describe the Zariski tangent space to the smoothable component of $\operatorname{Hilb}^d(\mathbb{A}^n)$?

Problem 3. Fix d, g, r, e > 0. Let $\operatorname{Hilb}_{d,g}^{sm}(\mathbb{P}^r)$ be the open subscheme of the Hilbert scheme $\operatorname{Hilb}_{d,g}(\mathbb{P}^r)$ that parameterizes smooth curves. For each point $[C] \in \operatorname{Hilb}_{d,g}^{sm}(\mathbb{P}^r)$, we define the Gauss map $C \to \operatorname{Gr}(1,r)$ sending a point of C to the tangent line at that point. Define

 $Z^e:=\{[C]\in \operatorname{Hilb}_{d,q}^{sm}(\mathbb{P}^r)|\ \text{the Gauss map of the curve C is inseparable of degree p^e}\}.$

Then $\bigcup_{e>0} Z^e = \mathrm{Hilb}_{d,q}^{sm}(\mathbb{P}^r)$.

What can we say about the set Z^e ? Can we construct exotic components (i.e. components that only exist in characteristic p) using this stratification? Study the action by the Galois group $Gal(\overline{\mathbb{F}}_p/\mathbb{F}_p)$.

Remark. There are some other stratifications one may consider, e.g. the one obtained by the topological type of the ramification divisor.

Problem 4. (1) Is there a component of $\operatorname{Hilb}^d(\mathbb{A}^n)$ that exists only in characteristic p for some p? (2) Same question for the Hilbert schemes of curves in \mathbb{P}^3 .

Problem 5. Is there a nonreduced component of $Hilb^d(\mathbb{A}^n)$? If so, find it.

Problem 6. (1) Give an explicit example (or show it does not happen) of a geometrically irreducible component of $\operatorname{Hilb}^d(\mathbb{A}^n)$, which is not fixed under the action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

(2) Same question for the Hilbert schemes of curves in \mathbb{P}^3 .

Problem 7. Does there exist a nonrational component of $Hilb^d(\mathbb{A}^n)$?

Problem 8. If a component of the Hilbert scheme contains a smooth Borel fixed point, does the component have to be rational?

Remark. If the ideal is a segment ideal (i.e. a monomial ideal generated in some degree s, where $s \leq$ its regularity, by the maximal monomials with respect to some term ordering), then the component is known to be rational, c.f. [P. Lella, M. Roggero, Rational components of Hilbert schemes, arXiv:0903.1029]. Note that every segment ideal is a Borel fixed ideal, but the converse is not true.

Problem 9. Is the Hilbert scheme of local Cohen-Macaulay curves in \mathbb{P}^3 connected?

Problem 10. Let $\rho = (p, q, r, 0, 0, ...)$ and define $E_{p,q,r} := E_{\rho}$ to be the moduli space of finite length graded modules of function ρ . For which p, q, r is $E_{p,q,r}$ irreducible?

Remark. It is proved that if $4q < \max(6p + r, 6r + p)$ then $E_{p,q,r}$ is reducible (c.f. [M. Martin-Deschamps, D. Perrin, Courbes gauches et modules de Rao, J. Reine Angew. Math. 439 (1993), 103–145. page 119, Theorem 2.1]). Conjecturally, if $4q \ge \max(6p + r, 6r + p)$ then $E_{p,q,r}$ is irreducible.

Problem 11. Describe the irreducible component of E_{ρ} , the moduli of finite length graded modules of function ρ .

Problem 12. What do properties of the Rao modules imply about C? For example, if M_C is Gorenstein or annihilated by a linear form, does C have any nice properties?

Remark. We might have to require C to be minimal.

Problem 13. Let C_t be a family of curves in \mathbb{P}^3 such that a general curve in this family is a smooth complete intersection, and the special curve C_0 is smooth. Does it imply that C_0 is also a complete intersection, assuming that the characteristic is 0?

Remark. If the characteristic is p > 0, the answer is negative; if n > 3, the answer is negative; if C_0 is not smooth, the answer is negative. The reference is [P. Ellia, R. Hartshorne, Smooth specializations of space curves: questions and examples, Commutative algebra and algebraic geometry (Ferrara), 53–79, Lecture Notes in Pure and Appl. Math., 206, Dekker, New York, 1999].

Problem 14. Give a geometric algebraic description of generic points of irreducible components of $\mathrm{Hilb}^d(\mathbb{A}^n)$.

Problem 15. Is the Gröbner fan a discrete invariant that distinguishes the components of $Hilb^d(\mathbb{A}^n)$?

Problem 16. Does the set of monomial ideals contained in a component of $\operatorname{Hilb}^d(\mathbb{A}^n)$ determine that component? (Or more generally for $\operatorname{Hilb}^P(\mathbb{P}^n)$ for an arbitrary Hilbert polynomial P.)

Remark. For the analogous question for the Hilbert scheme of curves, Richard Liebling might have given a counterexample in his thesis.

Problem 17. Let $S \subset \mathbb{P}^3$ be an integral surface of degree d with a double curve D of degree e, and triple points, pinch point,....

Conjecture: there exists $n_0 \in \mathbb{Z}$ such that for any smooth curve $C \subset S$ of degree $n \geq n_0$, let H_C be the irreducible component of the Hilbert scheme containing C, then a general $C' \in H_C$ is also contained in a surface $S' \subset \mathbb{P}^3$ of degree d and a double curve D' of degree e.

Remark. The conjecture is posed in [P. Ellia, R. Hartshorne, Smooth specializations of space curves: questions and examples, Commutative algebra and algebraic geometry (Ferrara), 53–79, Lecture Notes in Pure and Appl. Math., 206, Dekker, New York, 1999]. It is proved to be true for d=3 in [J. Brevik, F. Mordasini, Curves on a ruled cubic surface, Collect. Math. 54 (2003), no. 3, 269–281].

Problem 18. Is it possible to define analogues of the Nakajima operators for the cohomology of a desingularization of the smoothable component of $Hilb^d(\mathbb{A}^n)$?

Problem 19. What is the geography of locally Cohen-Macaulay surfaces in \mathbb{P}^4 ? To be more precise, what numerical invariants (degree, sectional genus, ...) occur?

Problem 20. Let C be a curve, can $Hilb^d(C)$ have a component of dim < d?

Remark. There exists a non-smoothable component of dim = d > 1.

Problem 21. Is there a multigraded Hilbert scheme with a connected component isomorphic to a fat point?

Problem 22. Fix d, g, n. Find a good/sharp lower bound for the dimension of components of $\operatorname{Hilb}_{d,g}(\mathbb{P}^n)$.

(For \mathbb{P}^3 a lower bound is 4d; for \mathbb{P}^4 the lower bound is 5d+1-g which is obviously not a good bound for d fixed and g sufficiently large.)

Remark. In the range $d^3 \leq \lambda(n)g^2$ there is a better bound, c.f. [D. Chen, On the dimension of the Hilbert scheme of curves, Math. Res. Lett. 16 (2009), no. 6, 941–954. Theorem 1.3].

Problem 23. (An old question of Joe Harris) Does there exist a nondegenerate rigid curve in \mathbb{P}^n other than the rational normal curve? Here rigid means the only deformations of the curve are those induced by automorphisms of \mathbb{P}^n .

Problem 24. Is $Hilb^8(\mathbb{A}^4)$ reduced? More generally, develop techniques to prove the reducedness of Hilbert schemes.

Problem 25. For $R = k[x_1, x_2, x_3]$. Is every multigraded Hilbert scheme connected?

Remark. For $R = k[x_1, ..., x_{26}]$, there are non-connected examples, c.f. [Francisco Santos, Non-connected toric Hilbert-schemes, MR2181765, arXiv:0204044]. Find examples with fewer variables.

Problem 26. (i) Let C be of bidegree (3,7) on a nonsingular quadric surface in \mathbb{P}^3 . Can C be connected to an extremal curve in $\text{Hilb}_{10,12}(\mathbb{P}^3)$?

(ii) Given 4 skew lines C_1 on a nonsingular quadric Q_1 in \mathbb{P}^3 . Does there exists a family $Q_t \rightsquigarrow 2H$, and a family $C_t \subset Q_t$ such that $C_0 \subset Q_0 = 2H$ is locally Cohen-Macaulay?

Remark. (ii) \Rightarrow (i).

Problem 27. Are there necessary or sufficient conditions on Borel fixed monomial ideals such that they are the generic initial ideals of local Cohen-Macaulay curves?

Problem 28. What is the smallest d such that $Hilb^d(\mathbb{A}^3)$ is reducible?

Remark. $10 < d \le 78$. The bound d > 10 needs the assumption that char= 0 and follows from a recent paper of Sivic.

Problem 29. Fix a Hilbert polynomial P, consider the moduli space $BrV_P\mathbb{P}^n$ of branchvarieties that are equidimensional and connected in codimension 1.

Is $BrV_P(\mathbb{P}^n)$ connected when non-empty?

Problem 30. Is there a rigid local Artinian algebra besides k^n ?

Problem 31. Consider 1, 4, 10, a where $6 \le a \le 10$. The general Artinian algebra with this Hilbert function is nonsmoothable. What is the generic point of the component it lies on?

Problem 32. Fix d, g. Let $H \subset \operatorname{Hilb}_{d,g}(\mathbb{P}^3)$ be an irreducible component. What is the largest number of points in general position you can make these curves pass through?

Remark. This is a hard problem. If the curves are arithmetically Cohen-Macaulay, it should be treatable.

Problem 33. What is the best pair (d, g) (in the vague sense that d is as small as possible and g is close to 0 as possible) such that there is a component of $Hilb_{d,g}$ whose general member has an embedded point.

Remark. An example of a pair satisfying the above condition is d=4, g=-15, c.f. [D. Chen, S. Nollet, Detaching embedded points, arXiv:0911.2221].