OPEN PROBLEMS ON POWERS OF IDEALS

CRAIG HUNEKE

ABSTRACT. These are notes on the author's talk given at the workshop on Integral Closure, Multiplier Ideals and Cores, AIM, December 2006.

Problem 0.1. Let $R = \mathbb{C}[[x_1, \dots, x_d]]$, and let $0 \neq f \in \mathfrak{m}_R$. Can f ever be a minimal generator of the ideal $I = \overline{(\partial f/\partial x_1, \dots, \partial f/\partial x_d)}$?

It's well known that $f \in \overline{\mathfrak{m}(\partial f/\partial x_1, \dots, \partial f/\partial x_d)}$.

Conjecture 0.2 (Eisenbud-Mazur). If $\mathfrak{p} \in \operatorname{Spec}(R)$, then $\mathfrak{p}^{(2)} \subset \mathfrak{mp}$.

If Question 1 has a positive answer, then the conjecture holds: choose $f \in \mathfrak{p}^{(2)}$, then partials are in \mathfrak{p} , so $\overline{(\partial f/\partial x_1,\ldots,\partial f/\partial x_d)} \subset \mathfrak{p}$, which would imply that $f \in \mathfrak{mp}$. The Eisenbud-Mazur Conjecture is false in characteristic > 0. The best result to date is due to Takagi using multiplier ideals, Hochster-Huneke otherwise: If R is a regular local ring containing a field, and $\mathfrak{p} \in \operatorname{Spec}(R)$, then $\mathfrak{p}^{(c+1)} \subset \mathfrak{mp}$, where $c = \operatorname{height} \mathfrak{p}$.

Problem 0.3 (Hübl). Let (R, \mathfrak{m}) be a regular local ring. If $\sqrt{I} = I$ and $f^n \in I^{n+1}$ for some n, is $f \in \mathfrak{m}I$? This implies Eisenbud-Mazur conjucture (Hübl).

If I is radical, then write $I = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_l$. Define $I^{(n)} = \mathfrak{p}_1^{(n)} \cap \ldots \cap \mathfrak{p}_l^{(n)}$. There is a theorem of Ein-Lazarsfeld-Smith (generalized by Hochster-Huneke): If (R, \mathfrak{m}) is local, regular, containing a field, and $\mathfrak{p} \in \operatorname{Spec}(R)$, then for all $n \geq 1, \mathfrak{p}^{(cn)} \subset \mathfrak{p}^n$, where $c = \operatorname{height} \mathfrak{p}$. It is also true if \mathfrak{p} is replaced with $I = \sqrt{I}$ and $c = \max$ {height $\mathfrak{p}_1, \ldots, \operatorname{height} \mathfrak{p}_l$ }. If c = 2, we get $I^{(4)} \subset I^2$.

Problem 0.4. If R = k[x, y, z], and I = I(X), where X = some points, then is $I^{(3)} \subset I^2$?

I view these theorems as Briancon-Skoda, but for symbolic powers. The regular version of which is $\overline{I^{d+n-1}} \subset I^n$, where d is dimension of the ring, and $n \geq 1$ (Lipman-Sathaye). "What's true for integral closure by summing a constant is true for symbolic by multiplying by a constant".

Problem 0.5 (Understanding symbolic powers). Let \mathfrak{p} be a homogeneous prime in $k[x_1, \ldots, x_d]$, generated in degrees $\leq D$. Is $\mathfrak{p}^{(n)}$ generated in degrees $\leq Dn$?

Problem 0.6. Let (R, \mathfrak{m}) be a regular local ring of dimension d. What is the best integer $k \leq d$ such that for all \mathfrak{m} -primary ideals I, there is a Gorenstein ideal J with $I^k \subset J \subset I$?

Nonregular case:

Theorem 0.7. If R is excellent, local, and reduced, then there is an integer k such that for all $I \subset R$, and all $n \ge 1$, $\overline{I^{n+k}} \subset I^n$.

Problem 0.8. Is this true without local if $\dim R$ is finite?

Problem 0.9. If R is a complete local domain, is there a k so that for all $\mathfrak{p} \in \operatorname{Spec}(R)$, $\mathfrak{p}^{(kn)} \subset \mathfrak{p}^n$? I. Swanson proved that for any \mathfrak{p} there is such a k.

Problem 0.10. Let I be an ideal generated by square-free monomials in a polynomial ring. (If $\sqrt{I} = I$, then $I^{(l)} = I^l$ for all $l \iff \operatorname{gr}_I(R)$ is reduced). When does a square-free monomial ideal satisfy $I^{(l)} = I^l$ for all l?

We say I has the packing property if after setting any subset of variables equal to 0 or 1, the new square free monomial ideal J has the property that there is a regular sequence of monomials having length equal to the height of J.

Conjecture 0.11 (Conforti-Cornuejols). I has the packing property if and only if $gr_I(R)$ is reduced. As far as I know the field is irrelevant. If the ideal is the ideal of a graph, the conjecture is true, and equivalent to the bipartite property of the graph.

An attempt to combine Frobenius and differentials: In characteristic 0, in $R = \mathbb{C}[[x_1,\ldots,x_d]]$, and I an ideal, if $f\in R$ and $(\partial f/\partial x_i)\subset I^n$ for all i, then $f\in I^{n-d+1}$, because $f\in \overline{(\partial f/\partial x_1,\ldots,\partial f/\partial x_d)}\subset \overline{I^n}\subset I^{n-d+1}$. In characteristic p>0 this doesn't work out.

Problem 0.12. Let $R = \mathbb{Z}[x_1, \ldots, x_d]$, and let $I \subset R$. Let $(-)_p$ denote reduction mod p. Does there exist a k so that for p >> 0, if $f \in R_p$ and $(\partial f/\partial x_i) \subset I_p^N$, then $f \in I_p^{N-k} + R_p^p$?