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Abstract. We will see that the famous intractible 1959 Kadison-Singer
Problem in C∗-algebras is equivalent to fundamental open problems in a
dozen different areas of research in Mathematics and Engineering. This
gives all these areas common ground on which to interact as well as explain-
ing why each area has volumes of literature on their respective problems
without a satisfactory resolution.

1. Introduction

For nearly 50 years the Kadison-Singer problem [37] has defied the best
efforts of some of the most talented mathematicians of our time.

Kadison-Singer Problem (KS). Does every pure state on the (abelian) von
Neumann algebra D of bounded diagonal operators on `2 have a unique exten-
sion to a (pure) state on B(`2), the von Neumann algebra of all bounded linear
operators on the Hilbert space `2?

A state of a von Neumann algebra R is a linear functional f on R for
which f(I) = 1 and f(T ) ≥ 0 whenever T ≥ 0 (i.e. whenever T is a positive
operator). The set of states ofR is a convex subset of the dual space ofR which
is compact in the w∗-topology. By the Krein-Milman theorem, this convex set
is the closed convex hull of its extreme points. The extremal elements in the
space of states are called the pure states (of R).

This problem evolved from the very productive collaboration between Kadi-
son and Singer over a 9 year period in the 1950’s which culminated in their
seminal work on triangular operator algebras. Their discussions often revolved
around the fundamental work of Dirac on Quantum Mechanics [24]. But there
was one part they kept returning to which was problematic. Dirac wants to
find a “representation” (i.e. an orthonormal basis) for a compatible family
of observables (i.e. a commutative family of self-adjoint operators). On page
74-75 of [24] Dirac states:
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“To introduce a representation in practice

(i) We look for observables which we would like to
have diagonal either because we are interested in their
probabilities or for reasons of mathematical simplicity;

(ii) We must see that they all commute - a necessary
condition since diagonal matrices always commute;

(iii) We then see that they form a complete commut-
ing set, and if not we add some more commuting observ-
ables to make them into a complete commuting set;

(iv) We set up an orthogonal representation with this
commuting set diagonal.

The representation is then completely deter-
mined ... by the observables that are diagonal ...”

The emphasis was added. In the case of D, the representation is {ei}i∈I , the
orthonormal basis of l2. But what happens if our observables have “ranges”
(intervals) in their spectra? This leads Dirac to introduce his famous δ-function
— vectors of “infinite length.” From a mathematical point of view, this is
problematic. What we need is to replace the vectors ei by some mathematical
object that is essentially the same as the vector, when there is one, but gives
us something precise and usable when there is only a δ-function. This leads
to the “pure states” of B(`2) and, in particular, the (vector) pure states ωx,
given by ωx(T ) = 〈Tx, x〉, where x is a unit vector in H. Then ωx(T ) is the
expectation value of T in the state corresponding to x. This expectation is
the average of values measured in the laboratory for the “observable” T with
the system in the state corresponding to x. The pure state ωei

can be shown
to be completely determined by its values on D; that is, each ωei

has a unique
extension to B(`2). But there are many other pure states of D. (The family
of all pure states of D with the w∗-topology is β(Z), the β-compactification of
the integers.) Do these other pure states have unique extension? That is the
Kadison-Singer problem (KS).

By a “complete” commuting set, Dirac means what is now called a “maximal
abelian self-adjoint” subalgebra of B(`2); D is one such. There are others. For
example, another is generated by an observable with (“simple”) spectrum a
closed interval. Dirac’s claim, in mathematical form, is that each pure state of
a “complete commuting set” has a unique state extension to B(`2). Kadison
and Singer show [37] that that is not so for each complete commuting set other
than D. They do show that each pure state of D has a unique extension to the
uniform closure of the algebra of linear combinations of operators Tπ defined
by Tπei = eπ(i), where π is a permutation of Z.
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In sections 2-7 we will successively look at equivalents of the Kadison-Singer
problem in operator theory, inner product theory, Banach space theory, frame
theory, harmonic analysis, time-frequency analysis and finally in internet cod-
ing and signal processing. For many more equivalences of KS and a much more
detailed discussion we refer the reader to [18]. To reduce the redundancy of
statements of theorems, we adopt the notation: Problem A (or Conjecture A)
implies Problem B (or Conjecture B) means that a positive solution to the
former implies a positive solution to the latter. They are equivalent if they
imply each other.
Notation: Throughout, `2(I) will denote a finite or infinite dimensional com-
plex Hilbert space with a fixed orthonormal basis {ei}i∈I . If I is infinite we
let `2 = `2(I), and if |I| = n write `2(I) = `n

2 with fixed orthonormal basis
{ei}n

i=1. For any Hilbert space H we let B(H) denote the family of bounded
linear operators on H. An n-dimensional subspace of `2(I) will be denoted Hn.
For an operator T on any one of our Hilbert spaces, its matrix representation
(〈Tei, ej〉)i,j∈I is with respect to our fixed orthonormal basis. If J ⊂ I, the
diagonal projection QJ is the matrix all of whose entries are zero except
for the (i, i) entries for i ∈ J which are all one. For a matrix A = (aij)i,j∈I let
δ(A) = maxi∈I |aii|.
An apology to the authors not referenced: Because we are dealing with
so many very active areas of research, a proper bibliography would be longer
than the paper. Therefore, we will resort to “secondary referencing” of books,
survey articles and the most recent papers whose bibliographies give a good
introduction to the subject.

2. Kadison-Singer in Operator Theory

A significant advance on KS was made by Anderson [3] in 1979 when he
reformulated KS into what is now known as the Paving Conjecture (Lemma
5 of [37] shows a connection between KS and Paving).

Paving Conjecture (PC). For ε > 0, there is a natural number r so that for
every natural number n and every linear operator T on ln2 whose matrix has
zero diagonal, we can find a partition (i.e. a paving) {Aj}r

j=1 of {1, · · · , n}, so
that

‖QAj
TQAj

‖ ≤ ε‖T‖ for all j = 1, 2, · · · , r.

It is important that r not depend on n in PC. PC has an equivalent formula-
tion for operators on `2. We will say that an arbitrary operator T satisfies PC
if T −D(T ) satisfies PC where D(T ) is the diagonal of T . It is known that the
class of operators satisfying PC (the pavable operators) is a closed subspace
of B(`2). Also, to verify PC we only need to verify it for any one the following
classes of operators [1, 18]: 1. unitary operators, 2. positive operators, 3.
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orthogonal projections, 4. Gram operators of the form T ∗T = (〈fi, fj〉)i,j∈I

where ‖fi‖ = 1 and Tei = fi is a bounded operator. The only large classes
of operators which have been shown to be pavable are “diagonally dominant”
matrices [6, 7, 33] and matrices with all entries real and positive [8, 35].

In [1] it was shown that the following conjecture implies KS.

Conjecture 2.1. There exist 0 < ε, δ < 1 with the following property: for any
orthogonal projection P on `n

2 with δ(P ) ≤ δ, there is a diagonal projection Q
such that ‖QPQ‖ ≤ 1− ε and ‖(I −Q)P (I −Q)‖ ≤ 1− ε.

It is important that ε, δ are independent of n in Conjecture 2.1. It is un-
known if KS implies Conjecture 2.1. Recently Weaver [39] showed that a slight
weakening of this will produce a conjecture equivalent to KS.

Conjecture 2.2. There exist universal constants 0 < δ, ε < 1 and r ∈ N so
that for all n and all orthogonal projections P on `n

2 with δ(P ) ≤ δ, there
is a paving {Aj}r

j=1 of {1, 2, · · · , n} so that ‖QAj
PQAj

‖ ≤ 1 − ε, for all j =
1, 2, · · · , r.

This needs some explanation since there is nothing in [39] which looks any-
thing like Conjecture 2.2. In [39], Weaver introduces what he calls “Conjecture
KSr”. A careful examination of the proof of Theorem 1 of [39] reveals that
Weaver shows Conjecture KSr implies Conjecture 2.2 which in turn implies
KS which (after the theorem is proved) is equivalent to KSr.

3. Kadison-Singer in Hilbert Space Theory

In this section we will see that KS is actually a fundamental result concern-
ing inner products. Recall that a family of vectors {fi}i∈I is a Riesz basic
sequence in a Hilbert space H if there are constants A, B > 0 so that for all
scalars {ai}i∈I we have:

A
∑
i∈I

|ai|2 ≤ ‖
∑
i∈I

aifi‖2 ≤ B
∑
i∈I

|ai|2.

We call
√

A,
√

B the lower and upper Riesz basis bounds for {fi}i∈I . If
ε > 0 and A = 1 − ε, B = 1 + ε we call {fi}i∈I an ε-Riesz basic sequence.
If ‖fi‖ = 1 for all i ∈ I this is a unit norm Riesz basic sequence. A natural
question is whether we can improve the Riesz basis bounds for a unit norm
Riesz basic sequence by partitioning the sequence into subsets. This conjecture
was first stated in [21] where it was shown that KS implies the conjecture.

Conjecture 3.1 (Rε-Conjecture). For every ε > 0, every unit norm Riesz
basic sequence is a finite union of ε-Riesz basic sequences.

We will now show that KS is equivalent to the Rε-Conjecture.



THE KADISON-SINGER PROBLEM IN MATHEMATICS AND ENGINEERING 5

Theorem 3.2. The following are equivalent:
(1) The Kadison-Singer Problem.
(2) If T : `2 → `2 is a bounded linear operator with ‖Tei‖ = 1 for all i ∈ I,

then for every ε > 0, {Tei}i∈I is a finite union of ε-Riesz basic sequences.
(3) The Rε-Conjecture.

Proof: (1) ⇒ (2): Fix ε > 0. Given T as in (2), let S = T ∗T . Since S has
ones on its diagonal, by the (infinite form of the) Paving Conjecture there is a
r = r(ε, ‖T‖) and a partition {Aj}r

j=1 of I with so that for every j = 1, 2, · · · , r
we have

‖QAj
(I − S)QAj

‖ ≤ δ‖I − S‖

where δ = ε
‖S‖+1

. Now, for all f =
∑

i∈I aiei we have

‖
∑
i∈Aj

aiTei‖2 = ‖TQAj
f‖2 = 〈TQAj

f, TQAj
f〉 = 〈T ∗TQAj

f, QAj
f〉

= 〈QAj
f, QAj

f〉 − 〈QAj
(I − S)QAj

f, QAj
f〉

≥ ‖QAj
f‖2 − δ‖I − S‖‖QAj

f‖2

≥ (1− ε)‖QAj
f‖2 = (1− ε)

∑
i∈Aj

|ai|2.

Similarly, ‖
∑

i∈Aj
aiTei‖2 ≤ (1 + ε)

∑
i∈Aj

|ai|2.
(2) ⇒ (3): This is obvious.
(3) ⇒ (1): Let T ∈ B(`2) with Tei = fi and ‖fi‖ = 1 for all i ∈ I. We need

to show that the Gram operator G of {fi}i∈I is pavable. Fix 0 < δ < 1 and
let ε > 0. Let gi =

√
1− δ2fi ⊕ δei ∈ `2 ⊕ `2. Then ‖gi‖ = 1 for all i ∈ I and

for all scalars {ai}i∈I

δ
∑
i∈I

|ai|2 ≤ ‖
∑
i∈I

aigi‖2 = (1− δ2)‖
∑
i∈I

aiTei‖2 + δ2
∑
i∈I

|ai|2

≤
[
(1− δ2)‖T‖2 + δ2

]∑
i∈I

|ai|2.

So {gi}i∈I is a unit norm Riesz basic sequence and 〈gi, gk〉 = (1 − δ2)〈fi, fk〉
for all i 6= k ∈ I. By the Rε-Conjecture, there is a partition {Aj}r

j=1 so that
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for all j = 1, 2, · · · , r and all f =
∑

i∈I aiei,

(1− ε)
∑
i∈Aj

|ai|2 ≤ ‖
∑
i∈Aj

aigi‖2 = 〈
∑
i∈Aj

aigi,
∑
k∈Aj

akgk〉

=
∑
i∈Aj

|ai|2‖gi‖2 +
∑

i6=k∈Aj

aiak〈gi, gk〉

=
∑
i∈Aj

|ai|2 + (1− δ2)
∑

i6=k∈Aj

aiak〈fi, fk〉

=
∑
i∈Aj

|ai|2 + (1− δ2)〈QAj
(G−D(G))QAj

f, f〉

≤ (1 + ε)
∑
i∈Aj

|ai|2.

Subtracting
∑

i∈Aj
|ai|2 through the inequality yields,

−ε
∑
i∈Aj

|ai|2 ≤ (1− δ2)〈QAj
(G−D(G))QAj

f, f〉 ≤ ε
∑
i∈Aj

|ai|2.

That is,

(1− δ2)|〈QAj
(G−D(G))QAj

f, f〉| ≤ ε‖f‖2.

Since QAj
(G−D(G))QAj

is a self-adjoint operator, we have (1− δ2)‖QAj
(G−

D(G))QAj
‖ ≤ ε. That is, (1− δ2)G (and hence G) is pavable. �

Remark 3.3. The proof of (3) ⇒ (1) of Theorem 3.2 illustrates a standard
method for turning conjectures about unit norm Riesz basic sequences {gi}i∈I

into conjectures about unit norm familes {fi}i∈I with T ∈ B(`2(I)) and Tei =
fi. Namely, given {fi}i∈I and 0 < δ < 1 let gi =

√
1− δ2fi⊕δei ∈ `2(I)⊕`2(I).

Then {gi}i∈I is a unit norm Riesz basic sequence and for δ small enough, gi

is close enough to fi to pass inequalities from {gi}i∈I to {fi}i∈I .

Remark 3.4. There are standard methods for turning our finite dimensional
conjectures into infinite dimensional ones and vice-versa (see [17], Proposition
2.1 and the proof of Theorem 2.2 or [18]).

It follows from Remark 3.4 that (2) of Theorem 3.2 has a finite dimensional
equivalent:

Conjecture 3.5. For every ε > 0 and every T ∈ B(`n
2 ) with ‖Tei‖ = 1 for

i = 1, 2, · · · , n there is an r = r(ε, ‖T‖) and a partition {Aj}r
j=1 of {1, 2, · · · , n}

so that for all j = 1, 2, · · · , r and all scalars {ai}i∈Aj
we have

(1− ε)
∑
i∈Aj

|ai|2 ≤ ‖
∑
i∈Aj

aiTei‖2 ≤ (1 + ε)
∑
i∈Aj

|ai|2.
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By Remark 3.3, we can reformulate Conjecture 3.5 into a statement about
unit norm Riesz basic sequences.

One advantage of the Rε-Conjecture is that it can be shown to students right
at the beginning of a course in Hilbert spaces. We note that this conjecture
fails for equivalent norms on a Hilbert space. For example, if we renorm `2

by: |{ai}| = ‖ai‖`2 + supi|ai| then the Rε-Conjecture fails for this equivalent
norm. To see this let fi = e2i+e2i+1√

2+1
where {ei}i∈N is the unit vector basis of `2.

This is now a unit norm Riesz basic sequence but no infinite subset satisfies
the Rε-Conjecture. To check this let J ⊂ N with |J | = n and ai = 1√

n
for

i ∈ J . Then

|
∑
i∈J

aifi| =
1√

2 + 1

(√
2 +

1√
n

)
Since the norm above is bounded away from one for n ≥ 2, we cannot satisfy
the requirements of the Rε-Conjecture. It follows that a positive solution to
KS would imply a fundamental new result concerning “inner products”, not
just norms. Actually, the Rε-Conjecture is way too strong for proving KS. As
we will see, either the upper or the lower inequalities are sufficient for proving
KS and for each of these we only need a universal constant instead of 1− ε or
1 + ε.

4. Kadison-Singer in Banach Space Theory

In 1987 Bourgain and Tzafriri [10] proved a fundamental result in Banach
space theory known as the restricted invertibility principle. This gave
rise to a problem in the area which has received a great deal of attention
[11, 18, 21].

Bourgain-Tzafriri Conjecture (BT). There is a universal constant A > 0
so that for every B > 1 there is a natural number r = r(B) satisfying: For any
natural number n, if T ∈ B(`n

2 ) is a linear operator with ‖T‖ ≤ B and ‖Tei‖ =
1 for all i = 1, 2, · · · , n, then there is a partition {Aj}r

j=1 of {1, 2, · · · , n} so
that for all j = 1, 2, · · · , r and all choices of scalars {ai}i∈Aj

we have:

‖
∑
i∈Aj

aiTei‖2 ≥ A
∑
i∈Aj

|ai|2.

It had been “folklore” for years that KS and BT must be equivalent. But no
one was quite able to actually give a proof of this fact. Recently Casazza and
Vershynin [21] gave a formal proof of the equivalence of KS and BT. Sometimes
BT is called strong BT since there is a weakening of it called weak BT. In
weak BT we allow A to depend upon the norm of the operator T . A significant
amount of effort has been invested in trying to show that strong and weak BT
are equivalent [6, 17, 18, 21]. In [17] it was shown that weak BT is equivalent
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to the Feichtinger Conjecture (See Section 5). We will now end this search by
showing that all these conjectures are equivalent to KS. First, we state another
conjecture which is formally weaker than weak BT.

Conjecture 4.1. There exists a constant A > 0 and a natural number r so
that for all natural numbers n and all T : `n

2 → `n
2 with ‖Tei‖ = 1 for all

i = 1, 2, · · · , n and ‖T‖ ≤ 2, there is a partition {Aj}r
j=1 of {1, 2, · · · , n} so

that for all j = 1, 2, · · · , r and all scalars {ai}i∈Aj
we have

‖
∑
i∈Aj

aiTei‖2 ≥ A
∑
i∈Aj

|ai|2.

Now we establish the equivalence of weak BT and KS.

Theorem 4.2. Conjecture 4.1 is equivalent to KS.

Proof: Since KS implies the Rε-Conjecture implies weak BT implies Con-
jecture 4.1, we just need to show that Conjecture 4.1 implies Conjecture 2.2.
So choose r, A satisfying Conjecture 4.1. Fix 0 < δ ≤ 3

4
and let P be an

orthogonal projection on `n
2 with δ(P ) ≤ δ (notation from Section 1). Now,

〈Pei, ei〉 = ‖Pei‖2 ≤ δ implies ‖(I − P )ei‖2 ≥ 1 − δ ≥ 1
4
. Define T : `n

2 → `n
2

by Tei = (I−P )ei

‖(I−P )ei‖ . For any scalars {ai}n
i=1 we have

‖
n∑

i=1

aiTei‖2 = ‖
n∑

i=1

ai

‖(I − P )ei‖
(I − P )ei‖2

≤
n∑

i=1

∣∣∣∣ ai

‖(I − P )ei‖

∣∣∣∣2
≤ 4

n∑
i=1

|ai|2.

So ‖Tei‖ = 1 and ‖T‖ ≤ 2. By Conjecture 4.1, there is a partition {Aj}r
j=1 of

{1, 2, · · · , n} so that for all j = 1, 2, · · · , r and all scalars {ai}i∈Aj
we have

‖
∑
i∈AJ

aiTei‖2 ≥ A
∑
i∈Aj

|ai|2.

Hence,

‖
∑
i∈Aj

ai(I − P )ei‖2 = ‖
∑
i∈Aj

ai‖(I − P )ei‖Tei‖2

≥ A
∑
i∈Aj

|ai|2‖(I − P )ei‖2

≥ A

4

∑
i∈Aj

|ai|2.
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It follows that for all scalars {ai}i∈Aj
,∑

i∈Aj

|ai|2 = ‖
∑
i∈Aj

aiPei‖2 + ‖
∑
i∈Aj

ai(I − P )ei‖2

≥ ‖
∑
i∈Aj

aiPei‖2 +
A

4

∑
i∈Aj

|ai|2.

Now, for all f =
∑n

i=1 aiei we have

‖PQAj
f‖2 = ‖

∑
i∈Aj

aiPei‖2 ≤ (1− A

4
)
∑
i∈Aj

|ai|2.

Thus,

‖QAj
PQAj

‖ = ‖PQAj
‖2 ≤ 1− A

4
.

So Conjecture 2.2 holds. �
Finally, let us note that Remark 3.3 and BT imply that KS is equivalent

to just the lower inequality in the Rε-Conjecture and even without the lower
constant having to be close to one.

5. Kadison-Singer in Frame Theory

A family {fi}i∈I of elements of a (finite or infinite dimensional) Hilbert space
H is called a frame for H if there are constants 0 < A ≤ B < ∞ (called the
lower and upper frame bounds respectively) so that for all f ∈ H

(5.1) A‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B‖f‖2.

If we only have the right hand inequality in Equation 5.1 we call {fi}i∈I a
Bessel sequence with Bessel bound B. If A = B we call this a A-tight
frame and if A = B = 1 it is called a Parseval frame. If all the frame
elements have the same norm this is an equal norm frame and if the frame
elements have norm 1 it is a unit norm frame. The numbers {〈f, fi〉}i∈I are
the frame coefficients of the vector f ∈ H. If {fi}i∈I is a Bessel sequence, the
synthesis operator for {fi}i∈I is the bounded linear operator T : `2(I) → H
given by T (ei) = fi for all i ∈ I. The analysis operator for {fi}i∈I is T ∗ and
satisfies: T ∗(f) =

∑
i∈I〈f, fi〉ei. So for all f ∈ H, ‖T ∗(f)‖2 =

∑
i∈I |〈f, fi〉|2

and hence the smallest Bessel bound for {fi}i∈I equals ‖T ∗‖2. The frame
operator for the frame is the positive, self-adjoint invertible operator S =
TT ∗ : H → H satisfying Sf =

∑
i∈I〈f, fi〉fi, for all f ∈ H. Reconstruction

of vectors in the space is achieved via the formula: f =
∑

i∈I〈f, fi〉S−1fi.
A frame is Parseval if and only if S = I. In the finite dimensional case, if
{gj}n

j=1 is an orthonormal basis of `n
2 consisting of eigenvectors for S with

respective eigenvalues {λj}n
j=1, then for every 1 ≤ j ≤ n,

∑
i∈I |〈fi, gj〉|2 = λj.
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In particular,
∑

i∈I ‖fi‖2 = trace S (= n if {fi}i∈I is a Parseval frame). For
an introduction to frame theory we refer the reader to Christensen [22].

A fundamental result in frame theory was proved independently by Naimark
and Han/Larson [22, 34].

Theorem 5.1. A family {fi}i∈I is a Parseval frame for a Hilbert space H if
and only if there is a containing Hilbert space H ⊂ `2(I) with an orthonormal
basis {ei}i∈I so that the orthogonal projection PH of `2(I) onto H satisfies
PH(ei) = fi for all i ∈ I.

Weaver [39] established an important relationship between frames and KS
by showing that the following conjecture is equivalent to KS.

Conjecture 5.2. There are universal constants B ≥ 4 and ε >
√

B and an
r ∈ N so that the following holds: Whenever {fi}M

i=1 is a unit norm B-tight
frame for `n

2 , there exists a partition {Aj}r
j=1 of {1, 2, · · · , M} so that for all

j = 1, 2, · · · , r and all f ∈ `n
2 we have

(5.2)
∑
i∈Aj

|〈f, fi〉|2 ≤ (B − ε)‖f‖2.

Using Conjecture 5.2 we can show that the following conjecture is equivalent
to KS:

Conjecture 5.3. There is a universal constant 1 ≤ D so that for all T ∈ B(`n
2 )

with ‖Tei‖ = 1 for all i = 1, 2, · · · , n, there is an r = r(‖T‖) and a partition
{Aj}r

j=1 of {1, 2, · · · , n} so that for all j = 1, 2, · · · , r and all scalars {ai}i∈Aj

‖
∑
i∈Aj

aiTei‖2 ≤ D
∑
i∈Aj

|ai|2.

Theorem 5.4. Conjecture 5.3 is equivalent to KS.

Proof: Since Conjecture 3.5 clearly implies Conjecture 5.3, we just need to
show that Conjecture 5.3 implies Conjecture 5.2. So choose D as in Conjecture
5.3 and choose B ≥ 4 and ε >

√
B so that D ≤ B − ε. Let {fi}i∈I be a unit

norm B tight frame for `n
2 . If Tei = fi is the synthesis operator for this frame

then ‖T‖2 = ‖T ∗‖2 = B. So by Conjecture 5.3 there is an r = r(B) and a
partition {Aj}r

j=1 of {1, 2, · · · , n} so that for all j = 1, 2, · · · , r and all scalars
{ai}i∈Aj

‖
∑
i∈Aj

aiTei‖2 = ‖
∑
i∈Aj

aifi‖2 ≤ D
∑
i∈Aj

|ai|2 ≤ (B − ε)
∑
i∈Aj

|ai|2.

So ‖TQAj
‖2 ≤ B − ε and for all f ∈ `n

2 we have∑
i∈Aj

|〈f, fi〉|2 = ‖(QAj
T )∗f‖2 ≤ ‖TQAj

‖2‖f‖2 ≤ (B − ε)‖f‖2.
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This verifies that Conjecture 3.5 holds and so KS holds. �
Remark 3.3 and Conjecture 5.3 show that we only need any universal upper

bound in the Rε-Conjecture to hold to get KS.
In his work on time-frequency analysis, Feichtinger [18, 21] noted that all of

the Gabor frames he was using (see Section 7) had the property that they could
be divided into a finite number of subsets which were Riesz basic sequences.
This led to the conjecture:

Feichtinger Conjecture (FC). Every bounded frame (or equivalently, every
unit norm frame) is a finite union of Riesz basic sequences.

There is a significant body of work on this conjecture [6, 7, 18, 21, 33].
Yet it remains open even for Gabor frames. In [17] it was shown that FC is
equivalent to the weak BT (and hence is implied by KS). We now know by
Theorem 4.2 that FC is equivalent to KS.

6. Kadison-Singer in Harmonic Analysis

A deep and fundamental question in Harmonic Analysis is to understand
the distribution of the norm of a function f ∈ span {e2πint}n∈I =: S(I) over
[0, 1]. It is known [8] if [a, b] ⊂ [0, 1] and ε > 0 then there is a partition of Z
into arithmetic progressions Aj = {nr + j}n∈Z, 0 ≤ j ≤ r − 1 so that for all
f ∈ S(Aj) we have

(1− ε)(b− a)‖f‖2 ≤ ‖f · χ[a,b]‖2 ≤ (1 + ε)(b− a)‖f‖2.

What this says is that the functions in S(Aj) have their norms nearly uniformly
distributed across [a, b] and [0, 1] \ [a, b]. The central question is whether such
a result is true for arbitrary measurable subsets of [0, 1] (but it is known that
the partitions can no longer be arithmetic progressions [12, 18, 35]). If E is a
measurable subset of [0, 1] let PE denote the orthogonal projection of L2[0, 1]
onto L2(E). i.e. PE(f) = f · χE. The fundamental question here is then

Conjecture 6.1. If E ⊂ [0, 1] is measurable and ε > 0 is given, there is a
partition {Aj}r

j=1 of Z so that for all j = 1, 2, · · · , r and all f ∈ S(Aj)

(6.1) (1− ε)|E|‖f‖2 ≤ ‖PE(f)‖2 ≤ (1 + ε)|E|‖f‖2.

Despite Harmonic Analysis having some of the deepest theory in mathemat-
ics, almost nothing is known about the distribution of the norms of functions
coming from the span of a finite subset of the characters: except that this
question has connections to very deep questions in Number Theory [12]. Very
little progress has ever been made on Conjecture 6.1 except for a specialized
result of Bourgain and Tzafriri [11]. Any advance on this problem would have
broad applications throughout the field.

If φ ∈ L2(R) is an essentially bounded function, we define the Töplitz op-
erator Tφ on L2[0, 1] by Tφ(f) = f · φ. In the 1980’s much effort was put into
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showing that the class of Töplitz operators satisfies the Paving Conjecture (see
Berman, Halpern, Kaftal and Weiss [8, 35] and the references) during which
time the uniformly pavable operators were classified and it was shown that
Tφ is pavable if φ is Riemann integrable [8]. But to this day the KS problem
for Toplitz operators remains a deep mystery. The next theorem helps explain
why so little progress has been made on KS for Töplitz operators. Because this
is equivalent to the deep question facing Harmonic Analysis stated above. To
prove the theorem we will first look at the decomposition of Töplitz operators
of the form PE.

Proposition 6.2. If E ⊂ [0, 1] and A ⊂ Z then for every f ∈ L2[0, 1] we have

‖PEQAf‖2 = |E|‖PAf‖2 + 〈QA(PE −D(PE))QAf, f〉,

where QA is the orthogonal projection of L2[0, 1] onto span {e2πint}n∈A.

Proof: For any f =
∑

n∈Z ane
2πint ∈ L2[0, 1] we have

‖PEQAf‖2 = 〈PEQAf, PEQAf〉 = 〈
∑
n∈A

anPE(e2πint),
∑
m∈A

amPE(e2πimt)〉

=
∑
n∈A

|an|2‖χE · e2πint‖2 +
∑

n6=m∈A

anam〈PEe2πint, e2πimt〉

= |E|
∑
n∈A

|an|2 + 〈(PE −D(PE))
∑
n∈A

ane
2πint,

∑
n∈A

ane
2πint〉

= |E|‖QAf‖2 + 〈QA(PE −D(PE))QAf, f〉.

�
Now we are ready for the theorem.

Theorem 6.3. The following are equivalent:
(1) Conjecture 6.1.
(2) For every measurable E ⊂ [0, 1] the Töplitz operator PE satisfies KS.
(3) All Töplitz operators satisfy KS.

Proof: (2) ⇔ (3): This follows from the fact that the class of pavable
operators is closed and the class of Töplitz operators are contained in the
closed linear span of the Töplitz operators of the form PE. i.e. Arbitrary
bounded measurable functions on [0, 1] are uniformly approximable by simple
functions.

(1) ⇔ (2): By Proposition 6.2, given ε > 0, there is a partition {Aj}r
j=1 so

that Equation 6.1 holds if and only if for all j = 1, 2, · · · , r and all f ∈ L2[0, 1],

(1− ε)|E|‖QAj
f‖2 ≤ |E|‖QAj

f‖2 + 〈QAj
(PE −D(PE)QAj

f, f〉
≤ (1 + ε)|E|‖QAj

f‖2.
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Subtracting like terms through the inequality yields that this inequality is
equivalent to

(6.2) |〈QAj
(PE −D(PE)QAj

f, f〉| ≤ ε|E|‖QAj
f‖2.

Since QAj
(PE−D(PE)QAj

is a self-adjoint operator, Equation 6.2 is equivalent
to ‖QAj

(PE −D(PE)QAj
‖ ≤ ε|E|. i.e. PE is pavable. �

7. Kadison-Singer in Time-Frequency Analysis

Although the Fourier transform has been a major tool in analysis for over a
century, it has a serious lacking for signal analysis in that it hides in its phases
information concerning the moment of emission and duration of a signal. What
was needed was a localized time-frequency representation which has this in-
formation encoded in it. In 1946 Gabor [29] filled this gap and formulated a
fundamental approach to signal decomposition in terms of elementary signals.
Gabor’s method has become the paradigm for signal analysis in Engineering
as well as its mathematical counterpart: Time-Frequency Analysis.

To build our elementary signals, we choose a window function g ∈ L2(R).
For x, y ∈ R we define modulation by x and translation by y of g by:

Mxg(t) = e2πixtg(t), Tyg(t) = g(t− y).

If Λ ⊂ R × R and {ExTyg}(x,y)∈Λ forms a frame for L2(R) we call this an
(irregular) Gabor frame. Standard Gabor frames are the case where Λ is
a lattice Λ = aZ × bZ where a, b > 0 and ab ≤ 1. For an introduction to
time-frequency analysis we recommend the excellent book of Grochenig [32].

It was in his work on time-frequency analysis that Feichtinger observed that
all the Gabor frames he was working with could be decomposed into a finite
union of Riesz basic sequences. This led him to formulate the Feichtinger
Conjecture - which we now know is equivalent to KS. There is a significant
amount of literature on the Feichtinger Conjecture for Gabor frames as well as
wavelet frames and frames of translates [6, 7, 12, 18]. It is known that Gabor
frames over rational lattices [17] and Gabor frames whose window function is
“localized” satisfy the Feichtinger Conjecture [6, 7, 33]. But the general case
has defied solution.

Translates of a single function play a fundamental role in frame theory, time-
frequency analysis, sampling theory and more [2, 12]. If g ∈ L2(R), λn ∈ R
for n ∈ Z and {Tλng}n∈Z is a frame for its closed linear span, we call this a
frame of translates. Although considerable effort has been invested in the
Feichtinger Conjecture for frames of translates, little progress has been made.
One exception is a surprising result from [16].

Theorem 7.1. Let I ⊂ Z be bounded below, a > 0 and g ∈ L2(R). Then
{Tnag}n∈I is a frame if and only if it is a Riesz basic sequence.
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A recent theorem of the authors helps to explain why the Feichtinger Conjec-
ture has been so intractible for Gabor frames, frames of translates and wavelet
frames. That is, this problem is equivalent to a variation of the deep problem
facing Harmonic Analysis (Conjecture 6.1). The proof of this result is quite
substantial and will have to wait for another time.

Theorem 7.2. The Feichtinger Conjecture for frames of translates is equiva-
lent to FC for Töplitz operators (which in turn is equivalent to a slightly weaker
form of Conjecture 6.1 [18]).

8. Kadison-Singer in Engineering

Frames have traditionally been used in signal processing because of their
resilience to additive noise, resilience to quantization, numerical stability of
reconstruction and the fact that they give greater freedom to capture impor-
tant signal characteristics [23, 31]. Recently, Goyal, Kovačević and Vetterli
[31] proposed using the redundancy of frames to mitigate the losses in packet
based transmission systems such as the internet. These systems transport
packets of data from a “source” to a “recipient”. These packets are sequences
of information bits of a certain length surrounded by error-control, address-
ing and timing information that assure that the packet is delivered without
errors. It accomplishes this by not delivering the packet if it contains errors.
Failures here are due primarily to buffer overflows at intermediate nodes in
the network. So to most users, the behavior of a packet network is not charac-
terized by random loss but rather by unpredictable transport time. This is due
to a protocol, invisible to the user, that retransmits lost or damaged packets.
Retransmission of packets takes much longer than the original transmission
and in many applications retransmission of lost packets is not feasible. If a
lost packet is independent of the other transmitted data, then the informa-
tion is truly lost. But if there are dependencies between transmitted packets,
one could have partial or complete recovery despite losses. This leads us to
consider using frames for encoding. But which frames? In this setting, when
frame coefficients are lost we call them erasures. It was shown in [30] that
an equal norm frame minimizes mean-squared error in reconstruction with
erasures if and only if it is tight. So a fundamental question is to identify
the optimal classes of equal norm Parseval frames for doing reconstruction
with erasures. Since the lower frame bound of a family of vectors determines
the computational complexity of reconstruction, it is this constant we need to
control. Formally, this is a max/min problem which looks like:

Problem 8.1. Given natural numbers k,K find the class of equal norm Par-
seval frames {fi}Kn

i=1 in `n
2 which maximize the minimum below:

min {AJ : J ⊂ {1, 2, · · ·n}, |J | = k, AJ the lower frame bound of {fi}i∈Jc}.
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This problem has proved to be untouchable at this time. We only have a
complete solution to the problem for two erasures [9, 19, 36]. It was hoped
that some special cases of the problem would be more tractible and serve as
a starting point for the classification since the frames we are looking for are
contained in this class.

Conjecture 8.2. There exists an ε > 0 so that for large K, for all n and all
equal norm Parseval frames {fi}Kn

i=1 for `n
2 , there is a J ⊂ {1, 2, · · · , Kn} so

that both {fi}i∈J and {fi}i∈Jc have lower frame bounds at least ε.

The ideal situation would be for Conjecture 8.2 to hold for all K ≥ 2. In
order for {fi}i∈J and {fi}i∈Jc to both be frames for `n

2 , they at least have
to span `n

2 . So the first question is whether we can partition our frame into
spanning sets. This will follow from the Rado-Horn theorem [20].

Theorem 8.3 (Rado-Horn). Let I be a finite or countable index set and let
{fi}i∈I be a collection of vectors in a vector space. There is a partition {Aj}r

j=1

such that for each j = 1, 2, · · · , r, {fi}i∈Aj
is linearly independent if and only

if for all finite J ⊂ I

(8.1)
|J |

dim span {fi}i∈J

≤ r.

The Rado-Horn Theorem will decompose our frames for us.

Proposition 8.4. Every equal norm Parseval frame {fi}Kn
i=1 for `n

2 can be
partitioned into K linearly independent spanning sets.

Proof: If J ⊂ {1, 2, · · · , Kn}, let PJ be the orthogonal projection of `n
2

onto span {fi}i∈J . Since {fi}Kn
i=1 is a equal norm Parseval frame (see Section

5)
∑Kn

i=1 ‖fi‖2 = Kn‖f1‖2 = n. Now,

dim(span {fi}i∈J) =
Kn∑
i=1

‖PJfi‖2 ≥
∑
i∈J

‖PJfi‖2 =
∑
i∈J

‖fi‖2 =
|J |
K

.

So the Rado-Horn conditions hold with constant r = K. If we divide our
family of Kn vectors into K linearly independent sets, since each set cannot
contain more than n-elements, it follows that each has exactly n-elements. �

If we are going to be able to erase arbitrary k-element subsets of our frame,
then the frame must be a union of erasure sets. So a generalization of Conjec-
ture 8.2 which is a class containing the class given in Problem 8.1 is

Conjecture 8.5. There exists ε > 0 and a natural number r so that for all
large K and all equal norm Parseval frames {fi}Kn

i=1 in `n
2 there is a partition

{Aj}r
j=1 of {1, 2, · · · , Kn} so that for all j = 1, 2, · · · , r the Bessel bound of

{fi}i∈Aj
is ≤ 1− ε.
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No progress has been made on any of this list of problems. But before we
discuss why, let us turn to another setting where these problems arise. For
many years Engineers have believed that it should be possible to do signal re-
construction without phase. Recently, Balan, Casazza and Edidin [4] verified
this longstanding conjecture of the signal processing community by construc-
tion new classes of equal norm Parseval frames. This problem comes from
a fundamental problem in speech recognition technology called the “cocktail
party problem”.

Cocktail Party Problem. We have a tape recording of a group of people
talking at a cocktail party. Can we recover each individual voice with all of its
voice characteristics?

As we will see, the main problem here is “signal reconstruction with noisy
phase”. The standard format for signal processing (i.e. removing noise from
a signal) is to take a signal (i.e. a f ∈ L2(R)) and digitalize it by sending
it through the fast Fourier transform [4]. This proceedure just computes
the frame coefficients of f with respect to a Gabor frame (see Section 7), say
{〈f, fi〉}i∈I . Next, we take the absolute values of the frame coefficients to be
processed and store the phases

Xi(f) =
〈f, fi〉
|〈f, fi〉|

.

There are countless methods for processing a signal. One of the simplest
is thresholding. This is a process of deleting any frame coefficients whose
moduli fall outside of a “threshold interval” say [A, B] where 0 < A < B. The
idea is that if our frame is chosen carefully enough then the deleted coefficients
will represent the “noise” in the signal. Now it is time to reconstruct a clear
signal. This is done by passing our signal back through the inverse fast Fourier
transform (i.e. we are inverting the frame operator). But to do this we need
phases for our coefficients. So we take our stored Xi(f) and put them back
on the processed frame coefficients which are at this time all non-negative real
numbers. This is where the problem arises. If the noise in the signal was
actually in the phases (which occurs in speech recognition), then we just put
the noise back into the signal. The way to avoid this is to construct frames
for which reconstruction can be done directly from the absolute value of the
frame coefficients and not needing the phases. This was done in [4].

Theorem 8.6. For a generic real frame on `n
2 with at least (2n− 1)-elements

the mapping ±f → {|〈f, fi〉|}i∈I is one-to-one.
For a generic complex frame on `n

2 with at least (4n−2)-elements, the map-
ping cf → {|〈f, fi〉|}i∈I , |c| = 1, is one-to-one.

“Generic” here means that the set of frames with this property is dense in
the class of all frames in the Zariski topology on the Grassman manifold [4].
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In the process of looking for algorithms for doing reconstruction directly
from the absolute value of the frame coefficients, it was discovered in the
real case (the complex case is much more complicated) that the standard
algorithms failed when the vector was getting approximately half it’s norm
from the positive frame coefficients and half from the negative coefficients
[5]. The algorithms behave as if one of these sets has been “erased”. The
necessary conditions for reconstruction without phase in [4] help explain why.
These conditions imply that every vector in the space must be reconstructable
from either the positive frame coefficients or the negative ones. It is also shown
in [5] that signal reconstruction without phase is equivalent to a (P0) problem
with additional constraints (See formula 8.2 below). So once again we have
bumped into Problem 8.1 and Conjectures 8.2 and 8.5.

Our next theorem helps to explain why all of these reconstruction problems
have proved to be so difficult. Namely, because KS has come into play again.

Theorem 8.7. (1) Conjecture 8.2 implies Conjecture 8.5.
(2) Conjecture 8.5 is equivalent to KS.

Proof: (1): Fix ε > 0, r, K as in Conjecture 8.2. Let {fi}Kn
i=1 be an equal

norm Parseval frame for an n-dimensional Hilbert space Hn. By Theorem
5.1 there is an orthogonal projection P on `Kn

2 with Pei = fi for all i =
1, 2, · · · , Kn. By Conjecture 8.2, there is a J ⊂ {1, 2, · · · , Kn} so that {Pei}i∈J

and {Pei}i∈Jc both have lower frame bound ε > 0. Hence, for f ∈ Hn =
P (`Kn

2 ),

‖f‖2 =
n∑

i=1

|〈f, Pei〉|2 =
∑
i∈J

|〈f, Pei〉|2 +
∑
i∈Jc

|〈f, Pei〉|2

≥
∑
i∈J

|〈f, Pei〉|2 + ε‖f‖2.

That is,
∑

i∈J |〈f, Pei〉|2 ≤ (1− ε)‖f‖2. So the upper frame bound of {Pei}i∈J

(which is the norm of the analysis operator (PQJ)∗ for this frame) is ≤ 1− ε.
Since PQJ is the synthesis operator for this frame, we have that ‖QJPQJ‖ =
‖PQJ‖2 = ‖(PQJ)∗‖2 ≤ 1− ε. Similarly, ‖QJcPQJc‖ ≤ 1− ε. So Conjecture
8.5 holds for r = 2.

(2): We will show that Conjecture 8.5 implies Conjecture 5.2. Choose an
integer K and an r, ε > 0 with 1√

K
< ε. Let {fi}M

i=1 be a unit norm K-

tight frame for an n-dimensional Hilbert space Hn. Then (see Section 5)

M =
∑M

i=1 ‖fi‖2 = Kn. Since { 1√
K

fi}M
i=1 is an equal norm Parseval frame, by

Theorem 5.1, there is an orthogonal projection P on `M
2 with Pei = 1√

K
fi, for

i = 1, 2, · · · , M . By Conjecture 8.5, we have universal r, ε > 0 and a partition
{Aj}r

j=1 of {1, 2, · · · , M} so that the Bessel bound ‖(PQAj
)∗‖2 for each family
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{fi}i∈Aj
is ≤ 1− ε. So for j = 1, 2, · · · , r and any f ∈ `n

2 we have∑
i∈Aj

|〈f,
1√
K

fi〉|2 =
∑
i∈Aj

|〈f, PQAj
ei〉|2 =

∑
i∈Aj

|〈QAj
Pf, ei〉|2 ≤ ‖QAj

Pf‖2

≤ ‖QAj
P‖2‖f‖2 = ‖(PQAj

)∗‖2‖f‖2 ≤ (1− ε)‖f‖2.

Hence, ∑
i∈Aj

|〈f, fi〉|2 ≤ K(1− ε)‖f‖2 = (K −Kε)‖f‖2.

Since Kε >
√

K, we have verified Conjecture 5.2.
For the converse, choose r, δ, ε satisfying Conjecture 2.2. If {fi}Kn

i=1 is an
equal norm Parseval frame for an n-dimensional Hilbert space Hn with 1

K
≤ δ,

by Theorem 5.1 we have an orthogonal projection P on `Kn
2 with Pei = fi for

i = 1, 2, · · · , Kn. Since δ(P ) = ‖fi‖2 ≤ 1
K
≤ δ (See the proof of Proposition

8.4), by Conjecture 2.2 there is a partition {Aj}r
j=1 of {1, 2, · · · , Kn} so that

for all j = 1, 2, · · · , r,
‖QAj

PQAj
‖ = ‖PQAj

‖2 = ‖(PQAj
)∗‖2 ≤ 1− ε.

Since ‖(PQAj
)∗‖2 is the Bessel bound for {Pei}i∈Aj

= {fi}i∈Aj
, we have that

Conjecture 8.5 holds. �
Theorem 8.7 yields yet another equivalent form of KS. That is, KS is equiv-

alent to finding a quantative version of the Rado-Horn Theorem.
Recently, a slight weakening of KS has appeared. There is currently a flury

of activity surrounding sparse solutions to vastly underdetermined systems
of linear equations. This has applications to problems in signal processing
(recovering signals from highly incomplete measurements), coding theory (re-
covering an input vector from corrupted measurements) and much more. If A
is an n×m matrix with n < m, the sparsest solution to Af = g is

(8.2) (P0) min
f∈Rm

‖f‖`0 subject to Af = g,

where ‖f‖`0 = |{i : f(i) 6= 0}|. The problem with (P0) is that it is NP hard in
general. This led researchers to consider the `1 version of the problem known
as basis pursuit.

(P1) min
f∈Rm

‖f‖`1 subject to Af = g,

where ‖f‖`1 =
∑m

i=1 |f(i)|. Building on the groundbreaking work of Donoho
and Huo [26], it has now been shown [13, 15, 14, 25, 27, 28, 38] that there are
classes of matrices for which the problems (P0) and (P1) have the same unique
solutions. Since (P1) is a convex program, it can be solved by its classical
reformulation as a linear program. A recent approach to these problems in-
volves restricted isometry constants [15]. If A is a matrix with column vectors
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{vj}j∈J , for all 1 ≤ S ≤ |J | we define the S-restricted isometry constants δS

to be the smallest constant so that for all T ⊂ J with |T | ≤ S and for all
{aj}j∈T ,

(1− δS)
∑
j∈T

|aj|2 ≤ ‖
∑
j∈T

ajvj‖2 ≤ (1 + δS)
∑
j∈T

|aj|2.

The fundamental principle here is the construction of (nearly) unit norm
frames for which subsets of a fixed size are (nearly) Parseval (or better, nearly
orthogonal). The conjecture related to this is:

Conjecture 8.8. For every S ∈ N and B and every 0 < δ < 1, there is a
natural number r = r(δ, S, B) so that for every n and every unit norm B-
Bessel sequence {fi}M

i=1 for `n
2 there is a partition {Aj}r

j=1 of {1, 2, · · · , M}
so that for all j = 1, 2, · · · , r, {fi}i∈Aj

is a frame sequence with S-restricted
isometry constant δS ≤ δ.

A particularly interesting case of this arises in Harmonic Analysis. Let E
be a measurable subset of [0, 1] of positive measure. Does the family

{ 1√
|E|

e2πintχE}n∈Z,

satisfy Conjecture 8.8? It is clear the Rε-Conjecture implies Conjecture 8.8.
The question of whether these conjectures were equivalent has been an open
problem. Recently, however, it was shown [18] that Conjecture 8.8 is “for-
mally” weaker than KS and actually it has a positve solution.
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[19] P.G. Casazza and J. Kovačević, Equal norm tight frames with erasures, Adv. Comp.

Math 18 (2003) 387-430.
[20] P.G. Casazza, G. Kutyniok and D. Speegle, A redundant version of the Rado-Horn

theorem, Preprint.
[21] P.G. Casazza and R. Vershynin, Kadison-Singer meets Bourgain-Tzafriri, preprint.
[22] O. Christensen, An introductin to frames and Riesz bases, Birkhauser, Boston, 2003.
[23] I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathe-

matics, Philadelphia, PA, 1992.
[24] P.A.M. Dirac, Quantum Mechanics, 3rd Ed., Oxford University Press, London (1947).
[25] D.L. Donoho, For most large underdetermined systems of linear equations the minimal

`1-norm solution is also the sparsest solution, Preprint.
[26] D.L. Donoho and X. Huo, Uncertainty principles and ideal atomic decomposition, IEEE

Trans. on Information Theory 47 (2001) 2845-2862.
[27] D.L. Donoho and M. Elad, Optimally sparse representation in general (nonorthogonal)

dictionaries via `1 minimization, Proc. Natl. Acad. Sci. USA 100 (2003) 2197-2202.
[28] M. Elad and A.M. Burckstein, A generalized uncertainty principle and sparse represen-

tation in pairs of RN bases, IEEE Transactions on Inform. Theory 48 (202) 2558-2567.
[29] D. Gabor, Theory of communication, Jour. IEEE 93 (1946) 429-457.
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