PROBLEMS ON FRAMES AND THE KADISON-SINGER PROBLEM

Abstract. Please send problems, which should be posted in this section, to Pete Casazza at pete@math.missouri.edu. We would like to refer to the introduction to this section and [2] for an introduction to frames and the Kadison-Singer Problem as well as the notation used in this section.

1. Frame Theory Problems Which Are Equivalent to the Kadison-Singer Problem

Problem 1.1: [Feichtinger Conjecture] [3]. Can every unit norm frame be written as a finite union of Riesz basic sequences?

Problem 1.2: [Weak Feichtinger Conjecture] [3]. Can every unit norm Bessel sequence be written as a finite union of Riesz basic sequences?

Problem 1.3: [6] Can every unit norm Bessel sequence be written as a finite union of frame sequences?

Problem 1.4: [4] Does there exist an \(\epsilon > 0 \) and a natural number \(r \) so that for all equal norm Parseval frames \(\{f_i\}_{i=1}^{2n} \) for \(\ell_2^N \) there is a partition \(\{A_j\}_{j=1}^r \) of \(\{1, 2, \cdots , 2n\} \) so that \(\{f_i\}_{i\in A_j} \) has Bessel bound \(\leq 1 - \epsilon \) for all \(j = 1, 2, \cdots , r \)?

Problem 1.5: [Finite Feichtinger Conjecture] [3] For every \(B, C > 0 \) is there a natural number \(M = M(B, C) \) and an \(A = A(B, C) > 0 \) so that whenever \(\{f_i\}_{i\in I} \) is a frame for \(\ell_2^N \) (\(N \in \mathbb{N} \)) with upper frame bound \(B \) and \(\|f_i\| \geq C \) for all \(i \in I \), then \(I \) can be partitioned into \(\{A_j\}_{j=1}^M \) so that for each \(1 \leq j \leq M \), \(\{f_i\}_{i\in A_j} \) is a Riesz basic sequence with lower Riesz basis bound \(A \) (and upper Riesz basis bound \(B \))?

Problem 1.6: [7] Are there universal constants \(B \) and \(\epsilon > 0 \) and a natural number \(r \) so that the following holds? Let \(\{f_i\}_{i=1}^M \) be elements of \(\ell_2^N \) with \(\|f_i\| \leq 1 \) for \(i = 1, 2, \cdots , M \) and suppose \(\{f_i\}_{i=1}^M \) is a B-Bessel sequence (or a B-tight frame). There is a partition \(\{A_j\}_{j=1}^r \) of \(\{1, 2, \cdots , n\} \) so that for all \(j = 1, 2, \cdots , r \) the family \(\{f_i\}_{i\in A_j} \) has Bessel bound \(B - \epsilon \).

Problem 1.7: [7] Are there universal constants \(B \geq 4 \) and \(\epsilon > \sqrt{B} \) and an \(r \in \mathbb{N} \) so that the following holds? Whenever \(\{f_i\}_{i=1}^M \) is a unit norm B-tight
frame for ℓ_p^2, there exists a partition $\{A_j\}_{j=1}^r$ of $\{1, 2, \ldots, M\}$ so that for all $j = 1, 2, \ldots, r$ the family $\{f_i\}_{i \in A_j}$ has Bessel bound $B - \epsilon$.

Problem 1.8: [5] For every unit norm B-Bessel sequence $\{f_i\}_{i=1}^M$ in \mathbb{H}_N and every $\epsilon > 0$, does there exist $r = r(B, \epsilon)$ and a partition $\{A_j\}_{j=1}^r$ of $\{1, 2, \ldots, M\}$ so that for every $j = 1, 2, \ldots, r$ and all scalars $\{a_i\}_{i \in A_j}$ we have

$$\sum_{n \in A_j} \sum_{n \neq m \in A_j} |\langle f_n, a_m f_m \rangle|^2 \leq \epsilon \sum_{m \in A_j} \|a_m f_m\|^2.$$

R$_\epsilon$-Conjecture [Casazza, Vershynin] For every $\epsilon > 0$, every unit norm Riesz basic sequence is a finite union of ϵ-Riesz basic sequences.

2. **Frame Theory Problems Which May Be Easier Than the Kadison-Singer Problem**

Problem 2.1: Can every unit norm Bessel sequence be written as a finite union of ω-independent sets?
[Casazza, Kutyniok, Nikolskii, Speegle, Tremain]

Problem 2.2: Can every unit norm Bessel sequence be written as a finite union of minimal systems with constant δ?
[Casazza, Tremain]

Problem 2.3: Can every unit norm Bessel sequence which is a minimal system with constant δ be written as a finite union of Riesz basic sequences?
[A positive solution to KS is equivalent to having positive solutions to both Problems 2.2 and 2.3.]
[Casazza, Tremain]

3. **Frame Theory Problems Related to the Kadison-Singer Problem**

Problem 3.1: Can every frame of translates be written as a finite union of Riesz basic sequences?

Problem 3.2: Can every regular (or irregular) Bessel Gabor system be written as a finite union of Riesz basic sequences?
[Feichtinger]

Problem 3.3: Assume $\{x_i\}_{i \in I}$ is a sequence in \mathbb{H} such that the operator

$$\sum_{i \in I} x_i \otimes x_i$$
is bounded below on the closed linear span of \(\{x_i\}_{i \in I} \). Find a "nice" criterion for which \(\{x_i\}_{i \in I} \) is a Riesz basis for its closed linear span.

[Larson]

Problem 3.4: [1] For every unit norm frame \(\{f_i : i \in \mathbb{N}\} \) indexed by the natural numbers, does there exist a set \(K \subset \mathbb{N} \) such that \(\{f_i : i \in K\} \) is a Riesz basic sequence and

\[
\lim_{n \to \infty} \frac{\#(K \cap [1, n])}{n} > 0?
\]

[It is not known if a positive solution to KS would yield a positive solution to this problem. It is easy to see that there is a partition of the natural numbers into two sets, neither of which satisfy (3.1).]

References

