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Symmetric Polynomials

Let n be a positive integer. Suppose:

� P is a polynomial in x1; : : : ; xn.

� P is homogeneous of degree n.

� Permuting the subscripts of the xi's

always leaves P unchanged.

Then P is a symmetric polynomial of order n.

Example: (n = 3)

P = 5x31+5x32+5x33 � (1=2)x1x2x3:

Fact: Vn = fsymm. polys. of order ng

is a vector space.
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Partitions

A partition of n is a list of positive integers

� = (�1; : : : ; �n) with

�1 � � � � � �n � 0 and �1+ � � �+ �n = n:

Notation: � ` n means � is a partition of n.

Example: There are 5 partitions of n= 4:

(4;0;0;0); (3;1;0;0); (2;2;0;0);

(2;1;1;0); (1;1;1;1):

Diagram of �: Put �i boxes in row i.
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Bases for Symmetric Polys.

Fact: dim(Vn) = number of partitions of n.

We use partitions to index bases of Vn.

The six classical bases of Vn:

� monomial basis fm� : � ` ng

� elementary basis fe� : � ` ng

� homogeneous basis fh� : � ` ng

� power-sum basis fp� : � ` ng

� Schur basis fs� : � ` ng

� forgotten basis ff� : � ` ng
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Modern Bases for Vn

� Zonal symmetric polys. fZ� : � ` ng

� Jack's symmetric polys.

� Hall-Littlewood basis

� original Macdonald basis fP� : � ` ng

� dual Macdonald basis fQ� : � ` ng

� integral Macdonald basis fJ� : � ` ng

� transformed Macdonald basis fH� : � ` ng

� modi�ed Macdonald basis f ~H� : � ` ng
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The Monomial Basis

For � ` n, the monomial symmetric poly. m�

is the sum of all distinct monomials obtained

by permuting the subscripts of the monomial

x
�1
1 x

�2
2 � � �x�nn :

Fact: fm� : � ` ng are linearly independent

polynomials that span Vn.

They form the monomial basis for Vn.

Example. For n = 3,

m(3;0;0) = x31+ x32+ x33

m(2;1;0) = x21x2+ x21x3+ x22x1

+x22x3+ x23x1+ x23x2

m(1;1;1) = x1x2x3
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The Power-Sum Basis

For k > 0, the k'th power-sum is

pk(x1; : : : ; xn) = xk1+ xk2+ � � �+ xkn:

De�ne p0 = 1. For � ` n, de�ne the

power-sum symmetric poly. p� to be

p� =
nY

i=1

p�i(x1; : : : ; xn):

Fact: fp� : � ` ng is a basis for Vn.

Example: For n = 3,

p(3;0;0) = x31+ x32+ x33 = m(3;0;0)

p(2;1;0) = (x21+ x22+ x23)(x1+ x2+ x3)

= m(3;0;0)+m(2;1;0)

p(1;1;1) = (x1+ x2+ x3)
3

= m(3;0;0)+3m(2;1;0)+6m(1;1;1)
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The Parameters q and t

Macdonald polynomials involve variables

x1; : : : ; xn and two extra parameters q and t.

Formally, let F = Q (q; t) be the �eld whose

elements are formal quotients of polynomials

in two variables q and t.

Examples: 4, 3t� 1, qt+5
q2�(3=7)t

lie in F .

From now on, view Vn as a vector space over

this �eld.

Example:

(3t� 1)x21+ (3t� 1)x22+
qt+5

q2�(3=7)t
x1x2 2 V2.
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Two Special Linear Maps

We can de�ne linear maps on the vector

space Vn by specifying their e�ect on any

basis. De�ne:

At(p�) =

0
@ Y

i:�i>0

[t�i � 1]

1
A p�:

Aq(p�) =

0
@ Y

i:�i>0

[q�i � 1]

1
A p�;

Note: Terms in parentheses are elements of

F (scalars)!

Extending by linearity, we get two linear maps

Aq and At mapping Vn into itself.
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Conjugation; Domination

Conjugate of �: �0 is the partition whose

parts are the columns in the diagram of �.

conjugate

Dominance partial ordering: For �; � ` n,

� � � i� �1+ � � �+ �i � �1+ � � �+ �i for all i.

Example: (1;1;1) � (2;1;0) � (3;0;0). But

(3;1;1;1;0;0) 6� (2;2;2;0;0;0),

(2;2;2;0;0;0) 6� (3;1;1;1;0;0).
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Algebraic De�nition of

Modi�ed Macdonald Polys.

Def./Thm. There exists a unique basis

f ~H� : � ` ng of Vn satisfying these axioms:

(1) The coeÆcient of xn1 in ~H� is 1.

(2) Let At( ~H�) =
P
�`n c�;�m� (c�;� 2 F).

Then c�;� = 0 except when � � �.

(3) Let Aq( ~H�) =
P
�`n d�;�m� (d�;� 2 F).

Then d�;� = 0 except when � � �0.

The ~H�'s are the modi�ed Macdonald

polynomials.
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Comments/Complaints

The algebraic de�nition for ~H� just given:

� requires a hard proof to justify

(uniqueness easy, but existence unclear!)

� is completely non-explicit

� seems totally unmotivated

� gives us no intuition about ~H�

Yet, this de�nition was the only one available

for the last 16 years! (1988 | 2004)
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The New De�nition

We're about to give Haglund's conjectured

combinatorial de�nition for ~H�, which:

� proves the existence claim in the earlier

de�nition by giving a construction for ~H�

� is an explicit sum of weighted

combinatorial objects

� shows that ~H� is in N [q; t][x1; : : : ; xn],

not just in Q (q; t)[x1; : : : ; xn].

� has intuitive appeal due to its

concreteness and simplicity

� exhibits the combinatorial signi�cance of

the cryptic algebraic axioms de�ning ~H�

� leads to elegant proofs of results on

Jack's polys., Hall-Littlewood polys., etc.
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Combinatorial De�nition

Haglund's combinatorial formula:

~H� =
X

objects T

qqwt(T)ttwt(T)~x xwt(T)

where the objects and weights depend on �.

The objects: all �llings of the boxes of �
with integers from 1 to n, repeats allowed.

The ~x-weight of T :

xwt(T) = x# of 1's in T
1 � � � x# of n's in T

n :

Example: n= 10, � = (3;3;3;1;0; : : : ;0).

T =
2

4

94
5

3 2

2
2

1

xwt(T) = x11x
4
2x

1
3x

2
4x

1
5x

1
9:
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Major Index and Inversions

Let w = w1; w2; : : : ; ws be a list of integers.

The major index maj(w) is the sum of all

i < s such that wi > wi+1.

The inversions of w, inv(w), is the number of

pairs i < j with wi > wj.

Examples:

maj(4;2;2;3) = 1; inv(4;2;2;3) = 3

maj(5;4;1) = 3; inv(5;4;1) = 3

maj(2;9;2) = 2; inv(2;9;2) = 1
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The t-weight

Given an object T , let w(j) be the list of

integers in column j of �, from top to

bottom. De�ne

twt(T) = maj�(T) =
�1X

j=1

maj(w(j)):

Example:

T =
2

4

94
5

3 2

2
2

1

maj�(T ) = 1+ 3+ 2 = 6:
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Inversion Triples

Consider a con�guration of cells in T like this:

z
xy

These three cells form an inversion triple of T

i� x < y � z or y � z < x or z < x < y:
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The q-weight

Given an object T , let w(0) be the list of

integers in the lowest row of �, from left to

right. Suppose T has K inversion triples.

De�ne

qwt(T) = inv�(T) = inv(w(0)) +K:

Example:

T =
2

4

94
5

3 2

2
2

1

inv�(T) = 2+ 3 = 5:

Full weight of T : q5t6x11x
4
2x

1
3x

2
4x

1
5x

1
9.
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Example: ~H(2;1;0)

x1x1 x1

3
1 2

q t0 1

3
2 1

q t1 1

1
1 1

q t0 0

2
2 2

q t0 0

3
3 3

q t0 0

1
1 2

q t0 0

1
2 1

q t1 0

2
2 3

q t0 0

3
1 1

q0 1

1
3 1

q t1 0

1
1 3

q t0 0

2
1 1

q t0 1

2
3 2

q t1 0

3
2 2

q t0 1

1
2 2

q t0 0

2
2 1

q t1 0

2
1 2

q t0 1

3
3 2

q t1 0

2
3 3

q t0 0

3
1 3

q t0 1

3
3 1

q t1 0

1
3 3

q t0 0

3
2 3

q t0 1

1
2 3

q t0 0

1
3 2

q t1 0

2
1 3

q t0 1

2
3 1

q t1 0

x2x2 x2 x3x3 x3 x1x1 x2 x1x1 x2

x1x1 x2 x1x1 x3 x1 x3x1 x1x1 x3 x2x2 x3t

x2x2 x3 x2x2 x3 x1x2 x2 x1x2 x2 x1x2 x2

x1x3 x3 x1x3 x3 x1x3 x3 x2x3 x3 x2x3 x3

x2x3 x3 x1x2 x3 x1x2 x3 x1x2 x3 x1x2 x3

x1x2 x3 x1x2 x3

~H(2;1;0) = 1m(3;0;0)+ (1+ q+ t)m(2;1;0)

+(1+ 2q+2t+ qt)m(1;1;1):
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Steps in the Proof

Let C� denote Haglund's formula for ~H�.

1. Show the coeÆcient of xn1 in C� is 1.

2. Prove C� is symmetric (i.e., C� 2 Vn).

3. Interpret At(C�) and Aq(C�) as sums of

signed, weighted objects.

4. At(C�) =
X

�`n

a�;�m�; Aq(C�) =
X

�`n

b�;�m�:

Use cancellation of objects to show

a�;� 6= 0) � � �; b�;� 6= 0) � � �0:

5. C� satis�es all axioms, so C� = ~H�.
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Interpreting At(C�)

One can prove that At(C�) is a sum of

signed, weighted objects:

At(C�) =
X

objects T

sgn(T)qqwt(T)ttwt(T)~x xwt(T)

The objects: �llings of � using the alphabet

f1;2; : : : ; n;1;2; : : : ; ng

consisting of positive and negative letters.

The ~x-weight:
Qn
i=1 x

# of i's and i's in T
i :

Example: n= 10, � = (3;3;3;1;0; : : : ;0).

3 1 2
2 94

252
4

T =

xwt(T) = x11x
4
2x

1
3x

2
4x

1
5x

1
9:
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Signs and Weights

Consider an object T with P positive letters

and N negative letters.

q-weight: qwt(T) = inv�(T).

t-weight: twt(T) = maj�(T) + P .

Sign: sgn(T) = (�1)N .

Example:

3 1 2
2 94

252
4

T =

Full weight of T is (�1)5q2t8+5x11x
4
2x

1
3x

2
4x

1
5x

1
9.
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Cancelling Pairs of Objects

Idea: Cancel pairs of terms in

At(C�) =
X

objects T

sgn(T)qqwt(T)ttwt(T)~x xwt(T)

with equal weights and opposite signs.

Example:

3 1 2
2 94

252
4

T =

T contributes the term �q2t8+5x11x
4
2x

1
3x

2
4x

1
5x

1
9.

U =

4
2 5 2

4 92
213

U contributes the term +q2t9+4x11x
4
2x

1
3x

2
4x

1
5x

1
9.

Terms for T and U cancel in At(C�)!!!
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Finding Matched Pairs

To cancel an object T :

� Choose i minimaly such that i or i

appears above the lowest i rows in T .

� Find the topmost and then leftmost

occurrence of i or i in T .

� Flip the sign of this symbol to get U .

� Check: sign reverses, but weights are

preserved!

yIf no such i exists, then T contributes an

uncancelled term to At(C�).
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Proving Axiom 2 for C�

At(C�) =
X

�`n

a�;�m�. Show: a�;� 6= 0) � � �.

1. a�;� 6= 0) the coeÆcient of x
�1
1 � � �x�nn in

At(C�) =
X

objects T

sgn(T)qqwt(T )ttwt(T )~x xwt(T )

is nonzero.

2. So, there must be an uncancelled object

T with xwt(T) = x
�1
1 � � �x�nn .

3. For each i, the number of i's and i's in T

is exactly �i.

4. For each i, letters in f1; : : : ; i;1; : : : ; ig

occur in the lowest i rows of �.

5. So �1+ � � �+ �i � �1+ � � �+ �i 8i;

which says that � � �!
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Interpreting Aq(C�)

As with At(C�), we can prove that

Aq(C�) =
X

objects T

sgn(T)qqwt(T)ttwt(T)~x xwt(T)

Objects: �llings of � with entries from

f1; : : : ; n;1;2; : : : ; ng.

~x-weight:
Qn
i=1 x

# of i's and i's in T
i :

Sign: (�1)# of negative letters in T .

q-weight: inv�(T)+

(# of positive letters in T).

t-weight: maj�(T ).
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Cancelling Pairs of Objects

Idea: Cancel pairs of terms in Aq(C�) with

equal weights and opposite signs.

Example:

3 1 2
2 94

252
4

T =

Term for T is (�1)5q6+5t6x11x
4
2x

1
3x

2
4x

1
5x

1
9.

V =

4
2 5 2

4 92
213

Term for V is (�1)4q5+6t6x11x
4
2x

1
3x

2
4x

1
5x

1
9.

Terms for T and V cancel in Aq(C�)!!!

As before, not every object T can cancel.
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Proving Axiom 3 for C�

Aq(C�) =
X

�`n

b�;�m�. Show: b�;� 6= 0) � � �0.

1. b�;� 6= 0) there is an uncancelled object

T with xwt(T) = x
�1
1 � � �x�nn .

2. For each i, the number of i's and i's in T

is exactly �i.

3. The new cancellation mechanism implies

that, for all i, T never has two letters in

fi; ig in the same row.

4. The last condition easily implies

�1+ � � �+ �i � �01+ � � �+ �0i 8i;

so that � � �0!
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Applications of New Formula

� best proof of existence, integrality of ~H�

� explicit combinatorial formulas for all �ve

Macdonald bases (P�, Q�, J�, H�, ~H�)

� explanation and proof of the

Lascoux-Sch�utzenberger cocharge

statistic for Hall-Littlewood polynomials

� simple proof of Sahi and Knop's formula

for Jack polynomials

� expansion of ~H� using LLT polynomials

� insight into Kostka-Macdonald

coeÆcients ~K�;�
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Monomial Expansion

Expand Macdonald polynomials in terms of

monomial symmetric functions:

~H� =
X

�

a�;�m� (a�;� 2 Q (q; t))

Lemma: The combinatorial formula for ~H� is

symmetric in the xi's.

Corollary: If (c1; : : : ; cN) is any sequence that

rearranges to the partition �, then

a�;� =
X

T :�![N ]

jT�1(fig)j=ci

qinv(T)tmaj(T):

31



Schur Expansion

Now expand Macdonald polynomials in terms

of Schur functions:

~H� =
X

�

~K�;�s�

The scalars ~K�;� 2 Q (q; t) are the (modi�ed)

q; t-Kostka polynomials.

Theorem: [positivity and polynomiality]

~K�;� 2 N [q; t]:

Open Problem: Find a combinatorial

formula for the q; t-Kostka polynomials.

32


