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Symmetric Polynomials

Let n be a positive integer. Suppose:

e P is a polynomial in z1,...,xn.
e P is homogeneous of degree n.

e Permuting the subscripts of the z;'s
always leaves P unchanged.

Then P is a symmetric polynomial of order n.
Example: (n = 3)

P = 5x:1)’ + 5:1:% + 5x% — (1/2)xz1x013.

Fact: V,, = {symm. polys. of order n}
IS a vector space.



Partitions

A partition of n is a list of positive integers
H = (,UJ17---7,UJ77/) with

p1r 22 pn>0and py + -+ pun =n.

Notation: y Fn means p is a partition of n.

Example: There are 5 partitions of n = 4:
(4,0,0,0), (3,1,0,0), (2,2,0,0),

(2,1,1,0), (1,1,1,1).

Diagram of u: Put u; boxes in row z.




Bases for Symmetric Polys.

Fact: dim(V,,) = number of partitions of n.
We use partitions to index bases of V.

The six classical bases of V,,:

e monomial basis {m, : pF n}

e eclementary basis {e, : p Fn}

e homogeneous basis {h, : p - n}
e power-sum basis {p, : pF n}

e Schur basis {s; : pFn}

e forgotten basis {fu, : pkF n}



Modern Bases for V),
Zonal symmetric polys. {Z, : ptF n}
Jack’s symmetric polys.

Hall-Littlewood basis

original Macdonald basis {P, : p - n}

dual Macdonald basis {Qu : pF n}
integral Macdonald basis {J, : p - n}
transformed Macdonald basis {H, : p Fn}

modified Macdonald basis {H, : u + n}



T he Monomial Basis

For u = mn, the monomial symmetric poly. my
IS the sum of all distinct monomials obtained
by permuting the subscripts of the monomial

K1 K2 | pn
T T xhn.

Fact: {m, : p Fn} are linearly independent
polynomials that span V,,.
They form the monomial basis for V.

Example. For n = 3,
_ 34,34 .3
m(3,0,0) = It T3+ T3

2 2 2
riTro + 123 + T5T1

M(2,1,0)

2 2
—I—ac%a:3 + x311 + 372

m1,1,1) L1273



T he Power-Sum Basis

For kK > 0, the k'th power-sum is

pr(x1,. .. xn) =25 + a5+ 2k

Define pg = 1. For u - n, define the
power-sum symmetric poly. p, to be

n
Pup — H p,ui(xly ey Tn).
1=1

Fact: {p,:ptF n} is a basis for V.

Example: For n = 3,
P(3,0,0) — 3 + 23 + 23 = ™M (3,0,0)
p210) = (@14 25+23) (21 + 22+ 33)
= m(3,0,0) T ™(2,1,0)
p111) = (z1+z2+23)°

= m(3,0,00 T 3M(2,1,0) T 6mM(1,11)



The Parameters ¢ and ¢

Macdonald polynomials involve variables
x1,...,Tn and two extra parameters q and t.

Formally, let F = Q(q,t) be the field whose
elements are formal quotients of polynomials
in two variables q and t.

. . qt+5 .
Examples: 4, 3t — 1, 22— 3/ lie in F.
From now on, view V, as a vector space over
this field.

Example:

(3t — 1):10% + (3t — 1)3:% + ngt(g;)?)txlxg e Vs.




Two Special Linear Maps

We can define linear maps on the vector
space V,, by specifying their effect on any
basis. Define:

At(p,u) — ( H [tui — 1]) Pu-

21 >0
Aq(p,u) — ( H [q" — 1]) P,
11 >0

Note: Terms in parentheses are elements of
F' (scalars)!

Extending by linearity, we get two linear maps

Aq and Ay mapping Vi, into itself.
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Conjugation; Domination

Conjugate of u: ' is the partition whose
parts are the columns in the diagram of u.

conjugate

_——

Dominance partial ordering: For A\, ut n,
Apiff Ay 4+---4+ X, < pup+---4+ u; for all 4.

Example: (1,1,1) <(2,1,0) <(3,0,0). But

(3,1,1,1,0,0) £ (2,2,2,0,0,0),
(2,2,2,0,0,0) £(3,1,1,1,0,0).
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Algebraic Definition of
Modified Macdonald Polys.

Def./Thm. There exists a unique basis
{H,, : p+n} of V, satisfying these axioms:

(1) The coefficient of z% in Hy, is 1.

(2) Let Ay(Hp) = Yarncaumy (ery € F).
Then W O except when A\ < wu.

(3) Let Ag(Hyu) = YXarpndymy (dy, € F).
Then dy , = 0 except when A < u/.

The H,'s are the modified Macdonald
polynomials.
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Comments/Complaints

The algebraic definition for ﬁM just given:

e requires a hard proof to justify
(uniqueness easy, but existence unclear!)

e iS completely non-explicit
e Seems totally unmotivated
e gives us no intuition about Hy,

Yet, this definition was the only one available
for the last 16 years! (1988 — 2004)
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T he New Definition

We're about to give Haglund’'s conjectured
combinatorial definition for H,, which:

e proves the existence claim in the earlier
definition by giving a construction for H,

e iS an explicit sum of weighted
combinatorial objects

e shows that Hy, is in Ng, t][z1,...,zn],
not just in Q(q, t)[x1,...,zn].

e has intuitive appeal due to its
concreteness and simplicity

e exhibits the combinatorial significance of
the cryptic algebraic axioms defining H,

e |eads to elegant proofs of results on
Jack’s polys., Hall-Littlewood polys., etc.
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Combinatorial Definition

Haglund’'s combinatorial formula:
ﬁu — Z qut(T)ttwt(T) 7 xwt(T)
objects T
where the objects and weights depend on u.

The objects: all fillings of the boxes of u
with integers from 1 to n, repeats allowed.

The zZ-weight of T':
xWH(T) = x# of 1's in T{E# of n's in T"

Example: n =10, = (3,3,3,1,0,...,0).

W NN
NS,
N O N

xwt(T) = x%:v%x%x%x%xé
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Major Index and Inversions
Let w = wq,wo,...,ws be a list of integers.

The major index maj(w) is the sum of all
i < s such that w; > w;41.

The inversions of w, inv(w), is the number of
pairs + < 7 with w; > w;.

Examples:
maj(4,2,2,3) = 1, inv(4,2,2,3) = 3
maj(5,4,1) = 3, inv(5,4,1) = 3
maj(2,9,2) = 2, inv(2,9,2) = 1
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The t-weight

Given an object T, let w(?) be the list of
integers in column 35 of u, from top to
bottom. Define

twt(T) = maj,(T) = fj maj(w{)).

1=1

Example:

W NN
NS,
N O N

maj, (T) =1+3+2=6.
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Inversion Triples

Consider a configuration of cells in T like this:

These three cells form an inversion triple of T

iffr<y<zory<z<zorz<z<uy.

18



The g-weight

Given an object T, let w(0) be the list of
integers in the lowest row of u, from left to
right. Suppose T' has K inversion triples.
Define

qwt(T) = inv,(T) = inv(w(?) + K.

Example:

W NN
NS,
N O N

inv,(T) =2+ 3 =5.
Full weight of T': q5t6x%x‘21:z:1 2riaxl

3513456‘55139 .
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Hip 10y = 1mz 0,0+ @ +a+ Dm0

+(1+2¢+2t+ qt)m(1,1,1)-
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Steps in the Proof

Let C, denote Haglund's formula for Hy,.
1. Show the coefficient of z7 in C, is 1.
2. Prove Cy is symmetric (i.e., Cy € Va).

3. Interpret A¢(Cy) and A4(Cy) as sums of
signed, weighted objects.

AFn AFn

Use cancellation of objects to show

Ay F 0= A=, by, F0=> A=y

5. C, satisfies all axioms, so C,, = H,,.
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Interpreting A:(C,)

One can prove that A;(Cy) is a sum of
signed, weighted objects:

A(Cp) = Z Sgn(T)qut(T)ttWt(T)f xwt(T)
objects T

The objects: fillings of u using the alphabet
{1,2,...,n,1,2,...,m}

consisting of positive and negative letters.
The #-weight: [[7_, z# of¥'sandisin T

Example: n =10, = (3,3,3,1,0,...,0).

4
252
T= 12749
312
xwt(T) = zizgeizzetad.
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Signs and Weights

Consider an object T with P positive letters
and N negative letters.

q-weight: qwt(T) = inv,(T).
t-weight: twt(T) = maj,(T) + P.
Sign: sgn(T) = (—1)V.

Example:

Wl NN

= o
Nl | N

Full weight of T is (—1)5q2t8+5x%xgx%x£x%xé.
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Cancelling Pairs of Objects

Idea: Cancel pairs of terms in

A(Cw) = > sgn(T)q@WE(T) twt(T) z xwt(T)
objects T
with equal weights and opposite signs.

Example:

W[N] N D

NS
N[ | N

T contributes the term —g?t8T5zix3xix2xizd.

5
4
1

wl| NI N

N[ Ol Ny

U contributes the term +¢%t°T4zizdrizzzizd.

Terms for T' and U cancel in A (C)!!

24



Finding Matched Pairs

To cancel an object T

e Choose i minimalf such that i or i

appears above the lowest ¢ rows in T'.

e Find the topmost and then leftmost
occurrence of s or ¢z in T.

e Flip the sign of this symbol to get U.

e Check: sign reverses, but weights are
preserved!

fIf no such 3 exists, then T contributes an

uncancelled term to Ai(Cy).

25



Proving Axiom 2 for C,
At(C’M) = Z ay ;1. Show: ax . = 0=\ =<pu.
AFn

1. ay, 7 0 = the coefficient of xi‘l cooxpnin

At(c,u) — Z sgn(T)qut(T)ttWt(T)f xwt(T)
objects T

IS nonzero.

2. So, there must be an uncancelled object
T with xwt(T) = xi‘l AL

3. For each i, the number of i's and z7's in T
IS exactly A;.

4. For each i, letters in {1,...,4,1,...,5}
occur in the lowest ¢ rows of u.

5.50 A1+ + A Spr Ay Y
which says that A < u!
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Interpreting A,(Cy)

As with A{(C,), we can prove that

A C) = Y sgn(T)gWHT)wt(T) 7 xwt(T)
objects T

Objects: fillings of u with entries from
{1,...,n,1,2,...,m}.

Z-weight: H?:1 $Z¢ of ¢’s and ¢’s in T

Sign: (_1)# of negative letters in T_

g-weight: inv,(T)+
(# of positive letters in T).

t-weight: maj, (7).
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Cancelling Pairs of Objects

Idea: Cancel pairs of terms in A4(Cy) with
equal weights and opposite signs.

Example:

W[N] N D

NS
N[ | N

Term for T is (—1)5q6+5t6x%x3x%xﬁx%xé.

ol Nl Nl

= Ao
NIl O N

Term for V is (—1)4q5+6t6x%$g:p%$£:p%$$.

Terms for T and V cancel in A4;(Cy)!!
As before, not every object T can cancel.
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Proving Axiom 3 for C,

Aq(CM) = Z b)\,'um)\. Show: b)\,,u =0= A= ,u’.
AFn

1. by, 7 0= there is an uncancelled object

A

T with xwt(T) = z7t - zpn.

2. For each i, the number of i's and i's in T
IS exactly A;.

3. The new cancellation mechanism implies
that, for all 2, T never has two letters in
{i,1} in the same row.

4. The last condition easily implies

A+t A <py g Y
so that A < u/!
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Applications of New Formula
e best proof of existence, integrality of H,

e explicit combinatorial formulas for all five
Macdonald bases (P, Qu, Ju, Hyu, Hy)

e explanation and proof of the
LLascoux-Schutzenberger cocharge
statistic for Hall-Littlewood polynomials

e simple proof of Sahi and Knop's formula
for Jack polynomials

e expansion of H, using LLT polynomials

e insight into Kostka-Macdonald
coefficients K ,

30



Monomial Expansion

Expand Macdonald polynomials in terms of
monomial symmetric functions:

ﬁ'u = Za/)\,um)\ (af)\,'u S Q(q7 t))
A

Lemma: The combinatorial formula for Hy, is
symmetric in the z;’s.

Corollary: If (¢q,...,cn) IS any sequence that
rearranges to the partition A, then

ay, = Z qinv(T)tmaj(T).
T:u—[N]
T {iP)|=c;
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Schur Expansion

Now expand Macdonald polynomials in terms
of Schur functions:

ﬁ# — Z K)\,/LSA
A

The scalars K) , € Q(g,t) are the (modified)
q,t-Kostka polynomials.

Theorem: [positivity and polynomiality]

f()\,'u € N]q, t].

Open Problem: Find a combinatorial
formula for the q,t-Kostka polynomials.
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