Algebraic and Combinatorial Macdonald Polynomials

Nick Loehr AIM Workshop on Generalized Kostka Polynomials July 2005

Reference: \A Combinatorial Formula for Macdonald Polynomials" by Haglund, Haiman, and Loehr, JAMS 18 (2005), $735 - 761$.

Outline

- 1. Background on Symmetric Polynomials
- 2. Algebraic definition of (modified) Macdonald polynomials
- 3. New combinatorial definition of Macdonald polynomials
- 4. Proof that the two definitions agree
- 5. q; t-Kostka polynomials

Symmetric Polynomials

Let n be a positive integer. Suppose:

- \bullet P is a polynomial in $x_1,\ldots,x_n.$
- \bullet $\;P$ is nomogeneous of degree $\;n.$
- \bullet Permuting the subscripts of the ${x_i}$'s always leaves P unchanged.

Then P is a symmetric polynomial of order n .

Example: (n = 3) $P = 5x_1 + 5x_2 + 5x_3 - (1/2)x_1x_2x_3.$ 1 $\overline{}$ <u>33 meter in de statistike in de st</u>

Fact: $V_n = \{\text{symm. polys. of order } n\}$ is a vector space.

Partitions

A partition of n is a list of positive integers $\mu = (\mu_1,\ldots,\mu_n)$ with

 $\mu_1 \geq \cdots \geq \mu_n \geq 0$ and $\mu_1 + \cdots + \mu_n = n.$

Notation: $\mu \vdash n$ means μ is a partition of n .

Example: There are 5 partitions of n = 4: $(4, 0, 0, 0), (3, 1, 0, 0), (2, 2, 0, 0),$ $(2, 1, 1, 0), (1, 1, 1, 1).$

 \mathbf{C} is defined in Fig. , we have in the row i.e. \mathbf{C}

Bases for Symmetric Polys.

 \mathbf{F} and \mathbf{F} are number of \mathbf{F} and \mathbf{F} are number of \mathbf{F} . The number of \mathbf{F} We use partitions to index bases of V_n .

The six classical bases of V_n :

- $\bullet \,$ monomial basis $\{ m_{\mu} : \mu \vdash n \}$
- \bullet elementary basis $\{e_{\mu}:\mu \vdash n\}$
- \bullet homogeneous basis $\{h_{\mu}:\mu\vdash n\}$
- $\bullet\,$ power-sum basis $\{p_{\mu}:\mu\vdash n\}$
- \bullet Schur basis $\{ s_{\mu} : \mu \vdash n \}$
- \bullet forgotten basis $\{f_{\bm{\mu}} : \bm{\mu} \vdash n\}$

Modern Bases for V_n

- \bullet Zonal symmetric polys. $\{Z_\mu : \mu \vdash n\}$
- Jack's symmetric polys.
- Hall-Littlewood basis
- \bullet original Macdonald basis $\{P_{\mu} : \mu \vdash n\}$
- \bullet dual Macdonald basis $\{Q_\mu : \mu \vdash n\}$
- \bullet integral Macdonald basis $\{J_{\mu} : \mu \vdash n\}$
- \bullet transformed Macdonald basis $\{H_\mu : \mu \vdash n\}$
- $\bullet \,$ modified Macdonald basis $\{ H_{\mu} : \mu \vdash n \}$

The Monomial Basis

For $\mu \vdash n$, the monomial symmetric poly. m_{μ} is the sum of all distinct monomials obtained by permuting the subscripts of the monomial

$$
x_1^{\mu_1}x_2^{\mu_2}\cdots x_n^{\mu_n}.
$$

Fact: $\{m_{\mu}:\mu \vdash n\}$ are linearly independent polynomials that span V_n . They form the *monomial basis* for V_n .

 \blacksquare . For a set \blacksquare . For a set \blacksquare , then \blacksquare

$$
m_{(3,0,0)} = x_1^3 + x_2^3 + x_3^3
$$

\n
$$
m_{(2,1,0)} = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1
$$

\n
$$
+ x_2^2 x_3 + x_3^2 x_1 + x_3^2 x_2
$$

\n
$$
m_{(1,1,1)} = x_1 x_2 x_3
$$

The Power-Sum Basis

For $k > 0$, the k'th power-sum is

$$
p_k(x_1,...,x_n) = x_1^k + x_2^k + \dots + x_n^k.
$$

Define $p_0 = 1$. For $\mu \vdash n$, define the power-sum symmetric poly. p_{μ} to be

$$
p_{\mu} = \prod_{i=1}^n p_{\mu_i}(x_1,\ldots,x_n).
$$

Fact: $\{p_{\mu} : \mu \vdash n\}$ is a basis for V_n .

Example: For n = 3,

$$
p_{(3,0,0)} = x_1^3 + x_2^3 + x_3^3 = m_{(3,0,0)}
$$

\n
$$
p_{(2,1,0)} = (x_1^2 + x_2^2 + x_3^2)(x_1 + x_2 + x_3)
$$

\n
$$
= m_{(3,0,0)} + m_{(2,1,0)}
$$

\n
$$
p_{(1,1,1)} = (x_1 + x_2 + x_3)^3
$$

\n
$$
= m_{(3,0,0)} + 3m_{(2,1,0)} + 6m_{(1,1,1)}
$$

The Parameters q and t

Macdonald polynomials involve variables x_1,\ldots,x_n and two extra parameters q and t.

Formally, let $F = \mathbb{Q}(q, t)$ be the field whose elements are formal quotients of polynomials in two variables q and t .

Examples: 4, $3t - 1$, $\frac{1}{2}$, $\frac{1}{2}$, i.e. in $q^2 - (3/7)t$

From now on, view V_n as a vector space over

Example:

 $(3t-1)x_1^2 + (3t-1)x_2^2 + \frac{q^2+5}{q^2-(3/7)t}x_1x_2 \in V_2.$

Two Special Linear Maps

We can define linear maps on the vector space V_n by specifying their effect on any basis. Define:

$$
A_t(p_\mu) = \left(\prod_{i:\mu_i>0} [t^{\mu_i}-1]\right) p_\mu.
$$

$$
A_q(p_\mu)=\left(\prod_{i:\,\mu_i>0}\left[q^{\mu_i}-1\right]\right)p_\mu,
$$

Note: Terms in parentheses are elements of F (scalars)!

Extending by linearity, we get two linear maps A_q and A_t mapping V_n into itself.

Conjugation; Domination

Conjugate of μ : μ' is the partition whose parts are the columns in the diagram of μ .

Dominance partial ordering: For $\lambda, \mu \vdash n$, $\lambda \preceq \mu$ iff $\lambda_1 + \cdots + \lambda_i \leq \mu_1 + \cdots + \mu_i$ for all $i.$

Example: $(1,1,1) \preceq (2,1,0) \preceq (3,0,0)$. But $(3, 1, 1, 1, 0, 0) \nleq (2, 2, 2, 0, 0, 0),$ $(2, 2, 2, 0, 0, 0) \nless (3, 1, 1, 1, 0, 0).$

Algebraic Definition of Modified Macdonald Polys.

Def./Thm. There exists a unique basis $\{\tilde{H}_{\mu}:\mu\vdash n\}$ of V_n satisfying these axioms:

(1) The coefficient of x_1 in $n\mu$ is 1.

(2) Let
$$
A_t(\tilde{H}_\mu) = \sum_{\lambda \vdash n} c_{\lambda,\mu} m_\lambda \ (c_{\lambda,\mu} \in F)
$$
.
Then $c_{\lambda,\mu} = 0$ except when $\lambda \preceq \mu$.

(3) Let
$$
A_q(\tilde{H}_\mu) = \sum_{\lambda \vdash n} d_{\lambda,\mu} m_\lambda \ (d_{\lambda,\mu} \in F)
$$
.
Then $d_{\lambda,\mu} = 0$ except when $\lambda \preceq \mu'$.

The \tilde{H}_{μ} 's are the modified Macdonald polynomials.

Comments/Complaints

The algebraic definition for H_{μ} just given:

- \bullet requires a hard proof to justify $\hspace{0.1em}$ (uniqueness easy, but existence unclear!)
- \bullet is completely non-explicit $\hspace{0.1em}$
- \bullet seems totally unmotivated \bullet
- \bullet gives us no intuition about H_{μ}

Yet, this definition was the only one available for the last 16 years! $(1988 - 2004)$

The New Definition

We're about to give Haglund's conjectured combinatorial definition for \tilde{H}_{μ} , which:

- \bullet proves the existence claim in the earlier definition by giving a construction for \tilde{H}_{μ}
- \bullet is an explicit sum of weighted $\hspace{0.1em}$ combinatorial objects
- \bullet shows that H_{μ} is in $\mathbb{N}[q,t][x_1,\ldots,x_n],$ not just in $\mathbb{Q}(q,t)[x_1,\ldots,x_n]$.
- \bullet has intuitive appeal due to its $\hspace{0.1em}$ concreteness and simplicity
- \bullet exhibits the combinatorial significance of $\hspace{0.1mm}$ the cryptic algebraic axioms defining \tilde{H}_{μ}
- \bullet leads to elegant proofs of results on $\hspace{0.1mm}$ Jack's polys., Hall-Littlewood polys., etc.

Combinatorial Definition

Haglund's combinatorial formula:

$$
\tilde{H}_{\mu} = \sum_{\text{objects } T} q^{\text{QWt}(T)} t^{\text{LWt}(T)} \vec{x}^{\text{XWt}(T)}
$$

where the objects and weights depend on μ .

The objects: all llings of the boxes of with integers from 1 to n , repeats allowed.

The \sim weight of \sim weight of \sim weight of \sim \sim $\times {\sf wt}(T) = x_1^{\#}$ of 1 's in $T\ldots x_n^{\#}$ of n 's in T .

Example: n = 10, = (3; 3; 3; 1;0;:::; 0).

$$
T = \frac{\frac{4}{2}}{\frac{2}{3}\frac{4}{1}\frac{9}{2}}
$$

$$
\mathsf{xwt}(T) = x_1^1 x_2^4 x_3^1 x_4^2 x_5^1 x_9^1.
$$

Major Index and Inversions

Let $w = w_1, w_2,...,w_s$ be a list of integers.

The *major index* maj(w) is the sum of all $i < s$ such that $w_i > w_{i+1}$.

The inversions of w, inv(w), is the number of pairs $i < j$ with $w_i > w_j$.

Examples:

 $maj(4, 2, 2, 3) = 1, inv(4, 2, 2, 3) = 3$

 $maj(5, 4, 1) = 3, inv(5, 4, 1) = 3$

 $maj(2, 9, 2) = 2, inv(2, 9, 2) = 1$

The t-weight

Given an object T, let $w^{(j)}$ be the list of integers in column j of μ , from top to bottom. Define

$$
twt(T) = maj_{\mu}(T) = \sum_{j=1}^{\mu_1} maj(w^{(j)}).
$$

Example:

$$
T = \frac{\frac{4}{2} \frac{5}{2} \frac{2}{4}}{\frac{2}{3} \frac{4}{1} \frac{9}{2}}
$$

$$
maj_{\mu}(T) = 1 + 3 + 2 = 6.
$$

Inversion Triples

Consider a configuration of cells in T like this:

These three cells form an inversion triple of T

iff $x < y \leq z$ or $y \leq z < x$ or $z < x < y$.

The q -weight

Given an object T, let $w^{(0)}$ be the list of integers in the lowest row of μ , from left to right. Suppose T has K inversion triples. Define

$$
\operatorname{qwt}(T) = \operatorname{inv}_{\mu}(T) = \operatorname{inv}(w^{(0)}) + K.
$$

Example:

$$
T = \frac{\frac{4}{2} \frac{5}{2} \frac{2}{4}}{\frac{2}{3} \frac{4}{1} \frac{9}{2}}
$$

$$
inv_{\mu}(T) = 2 + 3 = 5.
$$

Full weight of L. $q^*t^*x_1^*x_2^*x_3^*x_4^*x_5^*x_9^T$.

20

Steps in the Proof

Let C_{μ} denote Haglund's formula for \tilde{H}_{μ} .

1. SHOW the COENICIENT OF x_1 in ψ_μ is 1.

1

- 2. Prove C_{μ} is symmetric (i.e., $C_{\mu} \in V_n$).
- 3. Interpret $A_t(C_\mu)$ and $A_q(C_\mu)$ as sums of signed, weighted objects.

4.
$$
A_t(C_\mu) = \sum_{\lambda \vdash n} a_{\lambda,\mu} m_\lambda
$$
, $A_q(C_\mu) = \sum_{\lambda \vdash n} b_{\lambda,\mu} m_\lambda$.
Use cancellation of objects to show
 $a_{\lambda,\mu} \neq 0 \Rightarrow \lambda \preceq \mu$, $b_{\lambda,\mu} \neq 0 \Rightarrow \lambda \preceq \mu'$.

5. C_{μ} satisfies all axioms, so $C_{\mu} = \tilde{H}_{\mu}$.

Interpreting $A_t(C_\mu)$

One can prove that $A_t(C_\mu)$ is a sum of signed, weighted objects:

$$
A_t(C_\mu) = \sum_{\text{objects } T} \text{sgn}(T) q^{\text{qwt}(T)} t^{\text{twt}(T)} \vec{x}^{\text{xwt}(T)}
$$

The objects: llings of using the alphabet $\{1, 2, \ldots, n, \overline{1}, \overline{2}, \ldots, \overline{n}\}\$ consisting of positive and negative letters. The \vec{x} -weight: $\prod_{i=1}^n x_i^{\#}$ of i's and i's in T .

Example: n = 10, = (3; 3; 3; 1;0;:::; 0).

$$
\mathbf{T} = \frac{\frac{4}{2} \cdot 5 \cdot 2}{\frac{2}{3} \cdot 4 \cdot 9}
$$

xwt(T) = $x_1^1 x_2^4 x_3^1 x_4^2 x_5^1 x_9^1$.

Signs and Weights

Consider an object T with P positive letters and N negative letters.

q-weight: $qwt(T) = inv_{\mu}(T)$.

$$
t\text{-weight: } \text{twt}(T) = \text{maj}_{\mu}(T) + P.
$$

Sign:
$$
sgn(T) = (-1)^N
$$
.

Example:

$$
T = \frac{\frac{4}{2} \frac{5}{5} \frac{2}{2}}{\frac{2}{3} \frac{4}{1} \frac{9}{2}}
$$

Full weight of T is $(-1)^5 q^{-1}$, $x_1^2 x_2^2 x_3^2 x_4^2 x_5^2 x_9^2$.

Cancelling Pairs of Objects

Idea: Cancel pairs of terms in

 $A_t(C_\mu) = \sum_{\sigma}$ sgn $(T)q^{\text{QWL}(T)}t^{\text{LWL}(T)}\vec{x}^{\text{XWL}(T)}$ objects T

with equal weights and opposite signs.

Example:

$$
T = \frac{\frac{4}{2} \frac{5}{5} \frac{2}{2}}{\frac{2}{3} \frac{4}{1} \frac{9}{2}}
$$

1 Contributes the term $-q^{-}i^{2} + z^{2} \bar{1} \bar{x}^{2} \bar{x}^{2} \bar{3} \bar{x} \bar{4} \bar{x} \bar{5} \bar{x} \bar{9}$.

$$
U = \frac{\frac{4}{2} - \frac{1}{5}}{\frac{2}{3} + \frac{4}{2}}
$$

U contributes the term $+q^{-}i^{+}$ $x_1^{\dagger}x_2^{\dagger}x_3^{\dagger}x_4^{\dagger}x_5^{\dagger}x_9^{\dagger}$. Terms for T and U cancel in $A_t(C_\mu)$!!!

Finding Matched Pairs

To cancel an object T :

- \bullet Choose i minimal[†] such that i or \bar{i} appears above the lowest i rows in T .
- \bullet Find the topmost and then leftmost $\hspace{0.1mm}$ occurrence of i or \overline{i} in T.
- \bullet FIIP the sign of this symbol to get U .
- \bullet Check: sign reverses, but weights are preserved!

 † If no such i exists, then T contributes an uncancelled term to $A_t(C_\mu)$.

Proving Axiom 2 for C_{μ}

$$
A_t(C_\mu) = \sum_{\lambda \vdash n} a_{\lambda,\mu} m_\lambda.
$$
 Show: $a_{\lambda,\mu} \neq 0 \Rightarrow \lambda \leq \mu$.
1. $a_{\lambda,\mu} \neq 0 \Rightarrow$ the coefficient of $x_1^{\lambda_1} \cdots x_n^{\lambda_n}$ in

$$
A_t(C_\mu) = \sum_{\text{objects } T} \text{sgn}(T) q^{\text{qwt}(T)} t^{\text{twt}(T)} \vec{x}^{\text{xwt}(T)}
$$

is nonzero.

2. So, there must be an uncancelled object T with $\mathsf{xwt}(T) = x_1^{-1} \cdots x_n^{\varkappa n}.$

1

- 3. For each i, the number of i's and \overline{i} 's in T is exactly λ_i .
- 4. For each i, letters in $\{1,\ldots,i,\overline{1},\ldots,\overline{i}\}$ occur in the lowest i rows of μ .
- 5. So $\lambda_1 + \cdots + \lambda_i \leq \mu_1 + \cdots + \mu_i \quad \forall i$, which says that $\lambda \preceq \mu!$

Interpreting $A_q(C_u)$

As with $A_t(C_\mu)$, we can prove that $A_q(C_u) = \sum$ sgn $(T)q^{\text{QWL}(T)}t^{\text{LWL}(T)}\vec{x}^{\text{XWL}(T)}$ objects T objects

Objects: llings of with entries from $\{1,\ldots,n,\overline{1},\overline{2},\ldots,\overline{n}\}.$

 \vec{x} -weight: $\prod_{i=1}^n x_i^{\#}$ of i 's and i 's in T .

Sign: $(-1)^n$ of negative letters in T.

 q -weight: inv $\mu(T)$ + (# of positive letters in T).

t-weight: maj_{μ} (T) .

Cancelling Pairs of Objects

 \blacksquare . \blacksquare . The state of the state in Aq(C) with \blacksquare equal weights and opposite signs.

Example:

$$
T = \frac{\frac{4}{2} \frac{1}{5} \frac{1}{2}}{\frac{1}{3} \frac{1}{2}}
$$

Term for T is $(-1)^{5}q^{5} + 5t^{5}x^{1}y^{2}x^{2}z^{3}z^{4}z^{6}z^{6}$.

$$
V = \frac{\frac{4}{2} \frac{5}{5}}{\frac{2}{3} \frac{4}{1} \frac{9}{2}}
$$

Term for *V* is $(-1)^{q}$ q^{3} x^{2} x^{2} x^{3} x^{2} x^{3} x^{2} x^{3} y^{3} .

Terms for T and V cancel in $A_q(C_\mu)$!!! As before, not every object T can cancel.

Proving Axiom 3 for C_{μ}

$$
A_q(C_\mu) = \sum_{\lambda \vdash n} b_{\lambda,\mu} m_\lambda. \text{ Show: } b_{\lambda,\mu} \neq 0 \Rightarrow \lambda \preceq \mu'.
$$

- 1. $b_{\lambda,\mu}\neq 0 \Rightarrow$ there is an uncancelled object T with $\text{\rm xwt}(T)=x_1^{-1}\cdots x_n^{\alpha_n}.$
- 2. For each i, the number of i's and \overline{i} 's in T is exactly λ_i .
- 3. The new cancellation mechanism implies that, for all i , T never has two letters in $\{\overline{i}, \overline{i}\}$ in the same row.
- 4. The last condition easily implies

 $\lambda_1 + \cdots + \lambda_i \leq \mu'_1 + \cdots + \mu'_i \quad \forall i,$ 1 $\hspace{0.1cm} i \hspace{0.1cm} \forall i,$ so that $\lambda \preceq \mu'$!

Applications of New Formula

- \bullet best proof of existence, integrality of H_{1l}
- \bullet explicit compinatorial formulas for all five $\hspace{0.1mm}$ Macdonald bases $(P_\mu, Q_\mu, J_\mu, H_\mu, \tilde{H}_\mu)$
- \bullet explanation and proof of the $\hspace{0.1em}$ Lascoux-Schützenberger cocharge statistic for Hall-Littlewood polynomials
- simple proof of Sahi and Knop's formula for Jack polynomials
- \bullet expansion of H_{μ} using LLT polynomials
- \bullet insight into Kostka-Macdonald \bullet coefficients $\tilde{K}_{\lambda,\mu}$ \mathbf{r} ; and \mathbf{r} is the set of the set

Monomial Expansion

Expand Macdonald polynomials in terms of monomial symmetric functions:

$$
\tilde{H}_{\mu} = \sum_{\lambda} a_{\lambda,\mu} m_{\lambda} \qquad (a_{\lambda,\mu} \in \mathbb{Q}(q,t))
$$

Lemma: The combinatorial formula for H_{ll} is symmetric in the x_i 's.

Corollary: If (c1;:::;cN) is any sequence that rearranges to the partition λ , then

$$
a_{\lambda,\mu} = \sum_{\substack{T:\mu \to [N] \\ |T^{-1}(\{i\})| = c_i}} q^{\text{inv}(T)} t^{\text{maj}(T)}.
$$

Schur Expansion

Now expand Macdonald polynomials in terms of Schur functions:

$$
\tilde{H}_{\mu} = \sum_{\lambda} \tilde{K}_{\lambda,\mu} s_{\lambda}
$$

The scalars $K_{\lambda,\mu}\in\mathbb{Q}(q,t)$ are the (modified) q; t-Kostka polynomials.

Theorem: [positivity] which polynomiality and polynomiality \mathbf{p}

$$
\tilde{K}_{\lambda,\mu} \in \mathbb{N}[q,t].
$$

Open Problem: Find a combinatorial formula for the q, t -Kostka polynomials.