Algebraic and Combinatorial Macdonald Polynomials

Nick Loehr AIM Workshop on Generalized Kostka Polynomials July 2005

Reference: "A Combinatorial Formula for Macdonald Polynomials" by Haglund, Haiman, and Loehr, *JAMS* **18** (2005), 735—761.

Outline

- 1. Background on Symmetric Polynomials
- 2. Algebraic definition of (modified) Macdonald polynomials
- 3. New combinatorial definition of Macdonald polynomials
- 4. Proof that the two definitions agree
- 5. q, t-Kostka polynomials

Symmetric Polynomials

Let n be a positive integer. Suppose:

- P is a polynomial in x_1, \ldots, x_n .
- P is homogeneous of degree n.
- Permuting the subscripts of the x_i 's always leaves P unchanged.

Then P is a symmetric polynomial of order n.

Example: (n = 3) $P = 5x_1^3 + 5x_2^3 + 5x_3^3 - (1/2)x_1x_2x_3.$

Fact: $V_n = \{\text{symm. polys. of order } n\}$ is a vector space.

Partitions

A partition of n is a list of positive integers $\mu = (\mu_1, \dots, \mu_n)$ with

 $\mu_1 \geq \cdots \geq \mu_n \geq 0$ and $\mu_1 + \cdots + \mu_n = n$.

Notation: $\mu \vdash n$ means μ is a partition of n.

Example: There are 5 partitions of n = 4: (4,0,0,0), (3,1,0,0), (2,2,0,0), (2,1,1,0), (1,1,1,1).

Diagram of μ : Put μ_i boxes in row *i*.

Bases for Symmetric Polys.

Fact: dim (V_n) = number of partitions of n. We use partitions to index bases of V_n .

The six classical bases of V_n :

- monomial basis $\{m_{\mu} : \mu \vdash n\}$
- elementary basis $\{e_{\mu} : \mu \vdash n\}$
- homogeneous basis $\{h_{\mu} : \mu \vdash n\}$
- power-sum basis $\{p_{\mu} : \mu \vdash n\}$
- Schur basis $\{s_{\mu} : \mu \vdash n\}$
- forgotten basis $\{f_{\mu} : \mu \vdash n\}$

Modern Bases for V_n

- Zonal symmetric polys. $\{Z_{\mu} : \mu \vdash n\}$
- Jack's symmetric polys.
- Hall-Littlewood basis
- original Macdonald basis $\{P_{\mu} : \mu \vdash n\}$
- dual Macdonald basis $\{Q_{\mu}: \mu \vdash n\}$
- integral Macdonald basis $\{J_{\mu} : \mu \vdash n\}$
- transformed Macdonald basis $\{H_{\mu}: \mu \vdash n\}$
- modified Macdonald basis $\{ ilde{H}_{\mu}: \mu \vdash n\}$

The Monomial Basis

For $\mu \vdash n$, the monomial symmetric poly. m_{μ} is the sum of all distinct monomials obtained by permuting the subscripts of the monomial

$$x_1^{\mu_1} x_2^{\mu_2} \cdots x_n^{\mu_n}.$$

Fact: $\{m_{\mu} : \mu \vdash n\}$ are linearly independent polynomials that span V_n . They form the *monomial basis* for V_n .

Example. For n = 3,

$$m_{(3,0,0)} = x_1^3 + x_2^3 + x_3^3$$

$$m_{(2,1,0)} = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1$$

$$+ x_2^2 x_3 + x_3^2 x_1 + x_3^2 x_2$$

$$m_{(1,1,1)} = x_1 x_2 x_3$$

The Power-Sum Basis

For k > 0, the k'th power-sum is

 $p_k(x_1, \ldots, x_n) = x_1^k + x_2^k + \cdots + x_n^k.$

Define $p_0 = 1$. For $\mu \vdash n$, define the power-sum symmetric poly. p_{μ} to be

$$p_{\mu} = \prod_{i=1}^{n} p_{\mu_i}(x_1,\ldots,x_n).$$

Fact: $\{p_{\mu} : \mu \vdash n\}$ is a basis for V_n .

Example: For n = 3,

$$p_{(3,0,0)} = x_1^3 + x_2^3 + x_3^3 = m_{(3,0,0)}$$

$$p_{(2,1,0)} = (x_1^2 + x_2^2 + x_3^2)(x_1 + x_2 + x_3)$$

$$= m_{(3,0,0)} + m_{(2,1,0)}$$

$$p_{(1,1,1)} = (x_1 + x_2 + x_3)^3$$

$$= m_{(3,0,0)} + 3m_{(2,1,0)} + 6m_{(1,1,1)}$$

The Parameters q and t

Macdonald polynomials involve variables x_1, \ldots, x_n and two extra parameters q and t.

Formally, let $F = \mathbb{Q}(q, t)$ be the field whose elements are formal quotients of polynomials in two variables q and t.

Examples: 4, 3t - 1, $\frac{qt+5}{q^2 - (3/7)t}$ lie in *F*.

From now on, view V_n as a vector space over this field.

Example:

 $(3t-1)x_1^2 + (3t-1)x_2^2 + \frac{qt+5}{q^2-(3/7)t}x_1x_2 \in V_2.$

Two Special Linear Maps

We can define linear maps on the vector space V_n by specifying their effect on any basis. Define:

$$A_t(p_\mu) = \left(\prod_{i:\mu_i>0} [t^{\mu_i} - 1]\right) p_\mu.$$

$$A_q(p_\mu) = \left(\prod_{i:\mu_i>0} [q^{\mu_i} - 1]\right) p_\mu,$$

Note: Terms in parentheses are elements of *F* (scalars)!

Extending by linearity, we get two linear maps A_q and A_t mapping V_n into itself.

Conjugation; Domination

Conjugate of μ : μ' is the partition whose parts are the columns in the diagram of μ .

Dominance partial ordering: For $\lambda, \mu \vdash n$, $\lambda \leq \mu$ iff $\lambda_1 + \cdots + \lambda_i \leq \mu_1 + \cdots + \mu_i$ for all *i*.

Example: $(1, 1, 1) \leq (2, 1, 0) \leq (3, 0, 0)$. But $(3, 1, 1, 1, 0, 0) \not\leq (2, 2, 2, 0, 0, 0)$, $(2, 2, 2, 0, 0, 0) \not\leq (3, 1, 1, 1, 0, 0)$.

Algebraic Definition of Modified Macdonald Polys.

Def./Thm. There exists a unique basis ${\tilde{H}_{\mu} : \mu \vdash n}$ of V_n satisfying these axioms:

(1) The coefficient of x_1^n in \tilde{H}_{μ} is 1.

(2) Let
$$A_t(\tilde{H}_{\mu}) = \sum_{\lambda \vdash n} c_{\lambda,\mu} m_{\lambda} \ (c_{\lambda,\mu} \in F)$$
.
Then $c_{\lambda,\mu} = 0$ except when $\lambda \preceq \mu$.

(3) Let
$$A_q(\tilde{H}_\mu) = \sum_{\lambda \vdash n} d_{\lambda,\mu} m_\lambda \ (d_{\lambda,\mu} \in F)$$
.
Then $d_{\lambda,\mu} = 0$ except when $\lambda \preceq \mu'$.

The \tilde{H}_{μ} 's are the modified Macdonald polynomials.

Comments/Complaints

The algebraic definition for \tilde{H}_{μ} just given:

- requires a hard **proof** to justify (uniqueness easy, but existence unclear!)
- is completely **non-explicit**
- seems totally **unmotivated**
- gives us **no** intuition about $ilde{H}_{\mu}$

Yet, this definition was the only one available for the last 16 years! (1988 — 2004)

The New Definition

We're about to give Haglund's conjectured combinatorial definition for \tilde{H}_{μ} , which:

- proves the existence claim in the earlier definition by giving a construction for \tilde{H}_{μ}
- is an explicit sum of weighted combinatorial objects
- shows that \tilde{H}_{μ} is in $\mathbb{N}[q,t][x_1,\ldots,x_n]$, not just in $\mathbb{Q}(q,t)[x_1,\ldots,x_n]$.
- has intuitive appeal due to its concreteness and simplicity
- exhibits the combinatorial significance of the cryptic algebraic axioms defining ${\tilde H}_\mu$
- leads to elegant proofs of results on Jack's polys., Hall-Littlewood polys., etc.

Combinatorial Definition

Haglund's combinatorial formula:

$$\tilde{H}_{\mu} = \sum_{\text{objects } T} q^{\text{qwt}(T)} t^{\text{twt}(T)} \vec{x}^{\text{xwt}(T)}$$

where the objects and weights depend on μ .

The objects: all fillings of the boxes of μ with integers from 1 to n, repeats allowed.

The \vec{x} -weight of T: $\operatorname{xwt}(T) = x_1^{\# \text{ of } 1's \text{ in } T} \cdots x_n^{\# \text{ of } n's \text{ in } T}.$

Example: $n = 10, \mu = (3, 3, 3, 1, 0, \dots, 0).$

$$\mathbf{T} = \begin{array}{c|c} \mathbf{4} \\ \mathbf{2} & \mathbf{5} & \mathbf{2} \\ \mathbf{2} & \mathbf{4} & \mathbf{9} \\ \mathbf{3} & \mathbf{1} & \mathbf{2} \end{array}$$

$$\mathsf{xwt}(T) = x_1^1 x_2^4 x_3^1 x_4^2 x_5^1 x_9^1.$$

Major Index and Inversions

Let $w = w_1, w_2, \ldots, w_s$ be a list of integers.

The major index maj(w) is the sum of all i < s such that $w_i > w_{i+1}$.

The *inversions* of w, inv(w), is the number of pairs i < j with $w_i > w_j$.

Examples:

maj(4,2,2,3) = 1, inv(4,2,2,3) = 3

maj(5,4,1) = 3, inv(5,4,1) = 3

maj(2,9,2) = 2, inv(2,9,2) = 1

The *t*-weight

Given an object T, let $w^{(j)}$ be the list of integers in column j of μ , from top to bottom. Define

$$twt(T) = maj_{\mu}(T) = \sum_{j=1}^{\mu_1} maj(w^{(j)}).$$

Example:

$$T = \begin{array}{c|c} 4 \\ 2 & 5 & 2 \\ 2 & 4 & 9 \\ \hline 3 & 1 & 2 \end{array}$$

$$maj_{\mu}(T) = 1 + 3 + 2 = 6.$$

Inversion Triples

Consider a configuration of cells in T like this:

These three cells form an *inversion triple* of T

 $\text{iff } x < y \leq z \text{ or } y \leq z < x \text{ or } z < x < y.$

The *q*-weight

Given an object T, let $w^{(0)}$ be the list of integers in the lowest row of μ , from left to right. Suppose T has K inversion triples. Define

$$qwt(T) = inv_{\mu}(T) = inv(w^{(0)}) + K$$

Example:

$$T = \begin{array}{c|c} 4 \\ \hline 2 & 5 & 2 \\ \hline 2 & 4 & 9 \\ \hline 3 & 1 & 2 \end{array}$$

$$inv_{\mu}(T) = 2 + 3 = 5.$$

Full weight of T: $q^5t^6x_1^1x_2^4x_3^1x_4^2x_5^1x_9^1$.

Steps in the Proof

Let C_{μ} denote Haglund's formula for $ilde{H}_{\mu}$.

- 1. Show the coefficient of x_1^n in C_μ is 1.
- 2. Prove C_{μ} is symmetric (i.e., $C_{\mu} \in V_n$).
- 3. Interpret $A_t(C_\mu)$ and $A_q(C_\mu)$ as sums of *signed*, weighted objects.

4.
$$A_t(C_\mu) = \sum_{\lambda \vdash n} a_{\lambda,\mu} m_\lambda, \ A_q(C_\mu) = \sum_{\lambda \vdash n} b_{\lambda,\mu} m_\lambda.$$

Use cancellation of objects to show
 $a_{\lambda,\mu} \neq 0 \Rightarrow \lambda \preceq \mu, \ b_{\lambda,\mu} \neq 0 \Rightarrow \lambda \preceq \mu'.$

5. C_{μ} satisfies all axioms, so $C_{\mu} = \tilde{H}_{\mu}$.

Interpreting $A_t(C_{\mu})$

One can prove that $A_t(C_\mu)$ is a sum of *signed*, weighted objects:

$$A_t(C_{\mu}) = \sum_{\text{objects } T} \operatorname{sgn}(T) q^{\operatorname{qwt}(T)} t^{\operatorname{twt}(T)} \vec{x}^{\operatorname{xwt}(T)}$$

The objects: fillings of μ using the alphabet

$$\{1, 2, \ldots, n, 1, 2, \ldots, \overline{n}\}$$

consisting of *positive* and *negative* letters.

The \vec{x} -weight: $\prod_{i=1}^{n} x_i^{\# \text{ of } i \text{ 's and } \overline{i} \text{ 's in } T}$.

Example: $n = 10, \mu = (3, 3, 3, 1, 0, \dots, 0).$

$$T = \frac{\begin{vmatrix} 4 \\ 2 & 5 & \overline{2} \\ \hline \overline{2} & 4 & \overline{9} \\ \hline \overline{3} & 1 & \overline{2} \end{vmatrix}$$

 $\mathsf{xwt}(T) = x_1^1 x_2^4 x_3^1 x_4^2 x_5^1 x_9^1.$

Signs and Weights

Consider an object T with P positive letters and N negative letters.

q-weight: $qwt(T) = inv_{\mu}(T)$.

t-weight: $twt(T) = maj_{\mu}(T) + P$.

Sign:
$$\operatorname{sgn}(T) = (-1)^N$$
.

Example:

$$T = \begin{array}{c|c} 4 \\ \hline 2 & 5 & \hline 2 \\ \hline \hline 2 & 4 & \hline 9 \\ \hline \hline 3 & 1 & \hline 2 \end{array}$$

Full weight of T is $(-1)^5 q^2 t^{8+5} x_1^1 x_2^4 x_3^1 x_4^2 x_5^1 x_9^1$.

Cancelling Pairs of Objects

Idea: Cancel pairs of terms in

$$A_t(C_{\mu}) = \sum_{\text{objects } T} \operatorname{sgn}(T) q^{\operatorname{qwt}(T)} t^{\operatorname{twt}(T)} \vec{x} \operatorname{xwt}(T)$$

with equal weights and opposite signs.

Example:

$$T = \begin{array}{c|c} 4 \\ \hline 2 & 5 & \hline 2 \\ \hline \hline 2 & 4 & \hline 9 \\ \hline \hline 3 & 1 & \hline 2 \end{array}$$

T contributes the term $-q^2t^{8+5}x_1^1x_2^4x_3^1x_4^2x_5^1x_9^1$.

$$\mathbf{U} = \frac{\begin{array}{c|c} 4 \\ \hline 2 & 5 & 2 \\ \hline 2 & 4 & 9 \\ \hline 3 & 1 & 2 \end{array}$$

U contributes the term $+q^2t^{9+4}x_1^1x_2^4x_3^1x_4^2x_5^1x_9^1$. Terms for T and U cancel in $A_t(C_{\mu})!!!$

Finding Matched Pairs

To cancel an object T:

- Choose i minimal[†] such that i or \overline{i} appears above the lowest i rows in T.
- Find the topmost and then leftmost occurrence of i or \overline{i} in T.
- Flip the sign of this symbol to get U.
- Check: sign reverses, but weights are preserved!

[†]If no such *i* exists, then *T* contributes an *uncancelled term* to $A_t(C_\mu)$.

Proving Axiom 2 for C_{μ}

$$A_t(C_{\mu}) = \sum_{\lambda \vdash n} a_{\lambda,\mu} m_{\lambda}. \text{ Show: } a_{\lambda,\mu} \neq 0 \Rightarrow \lambda \preceq \mu.$$

$$1. \ a_{\lambda,\mu} \neq 0 \Rightarrow \text{ the coefficient of } x_1^{\lambda_1} \cdots x_n^{\lambda_n} \text{ in}$$

$$A_t(C_{\mu}) = \sum_{\text{objects } T} \text{sgn}(T) q^{\text{qwt}(T)} t^{\text{twt}(T)} \vec{x}^{\text{ xwt}(T)}$$
is nonzero.

- 2. So, there must be an *uncancelled* object T with $xwt(T) = x_1^{\lambda_1} \cdots x_n^{\lambda_n}$.
- 3. For each *i*, the number of *i*'s and \overline{i} 's in *T* is exactly λ_i .
- 4. For each *i*, letters in $\{1, \ldots, i, \overline{1}, \ldots, \overline{i}\}$ occur in the lowest *i* rows of μ .
- 5. So $\lambda_1 + \cdots + \lambda_i \leq \mu_1 + \cdots + \mu_i \quad \forall i$, which says that $\lambda \leq \mu$!

Interpreting $A_q(C_\mu)$

As with $A_t(C_\mu)$, we can prove that $A_q(C_\mu) = \sum_{\text{objects } T} \operatorname{sgn}(T) q^{\operatorname{qwt}(T)} t^{\operatorname{twt}(T)} \vec{x}^{\operatorname{xwt}(T)}$

Objects: fillings of μ with entries from $\{1, \ldots, n, \overline{1}, \overline{2}, \ldots, \overline{n}\}.$

 \vec{x} -weight: $\prod_{i=1}^{n} x_i^{\#}$ of *i*'s and \overline{i} 's in *T*.

Sign: $(-1)^{\# \text{ of negative letters in } T}$.

q-weight: $inv_{\mu}(T)$ + (# of positive letters in T).

t-weight: maj_{μ}(*T*).

Cancelling Pairs of Objects

Idea: Cancel pairs of terms in $A_q(C_\mu)$ with equal weights and opposite signs.

Example:

$$\mathbf{T} = \begin{array}{c|c} \mathbf{4} \\ \hline \mathbf{2} & \mathbf{5} & \overline{\mathbf{2}} \\ \hline \mathbf{2} & \mathbf{4} & \mathbf{9} \\ \hline \mathbf{3} & \mathbf{1} & \overline{\mathbf{2}} \end{array}$$

Term for T is $(-1)^5 q^{6+5} t^6 x_1^1 x_2^4 x_3^1 x_4^2 x_5^1 x_9^1$.

$$\mathbf{V} = \begin{bmatrix} \mathbf{4} \\ \mathbf{2} & \mathbf{5} & \mathbf{2} \\ \hline \mathbf{2} & \mathbf{4} & \mathbf{9} \\ \hline \mathbf{3} & \mathbf{1} & \mathbf{2} \end{bmatrix}$$

Term for V is $(-1)^4 q^{5+6} t^6 x_1^1 x_2^4 x_3^1 x_4^2 x_5^1 x_9^1$.

Terms for T and V cancel in $A_q(C_\mu)$!!! As before, not every object T can cancel.

Proving Axiom 3 for C_{μ}

$$A_q(C_\mu) = \sum_{\lambda \vdash n} b_{\lambda,\mu} m_{\lambda}$$
. Show: $b_{\lambda,\mu} \neq 0 \Rightarrow \lambda \preceq \mu'$.

- 1. $b_{\lambda,\mu} \neq 0 \Rightarrow$ there is an uncancelled object T with $xwt(T) = x_1^{\lambda_1} \cdots x_n^{\lambda_n}$.
- 2. For each *i*, the number of *i*'s and \overline{i} 's in *T* is exactly λ_i .
- 3. The new cancellation mechanism implies that, for all *i*, *T* never has two letters in $\{i, \overline{i}\}$ in the same row.
- 4. The last condition easily implies

 $\lambda_1 + \dots + \lambda_i \leq \mu_1' + \dots + \mu_i' \quad \forall i,$ so that $\lambda \leq \mu'!$

Applications of New Formula

- **best** proof of existence, integrality of \tilde{H}_{μ}
- explicit combinatorial formulas for all five Macdonald bases $(P_{\mu}, Q_{\mu}, J_{\mu}, H_{\mu}, \tilde{H}_{\mu})$
- explanation and proof of the Lascoux-Schützenberger *cocharge* statistic for Hall-Littlewood polynomials
- simple proof of Sahi and Knop's formula for Jack polynomials
- expansion of \tilde{H}_{μ} using LLT polynomials
- insight into Kostka-Macdonald coefficients $ilde{K}_{\lambda,\mu}$

Monomial Expansion

Expand Macdonald polynomials in terms of monomial symmetric functions:

$$\widetilde{H}_{\mu} = \sum_{\lambda} a_{\lambda,\mu} m_{\lambda} \qquad (a_{\lambda,\mu} \in \mathbb{Q}(q,t))$$

Lemma: The combinatorial formula for \tilde{H}_{μ} is symmetric in the x_i 's.

Corollary: If (c_1, \ldots, c_N) is any sequence that rearranges to the partition λ , then

$$a_{\lambda,\mu} = \sum_{\substack{T:\mu \to [N] \\ |T^{-1}(\{i\})| = c_i}} q^{\mathsf{inv}(T)} t^{\mathsf{maj}(T)}.$$

Schur Expansion

Now expand Macdonald polynomials in terms of Schur functions:

$$\tilde{H}_{\mu} = \sum_{\lambda} \tilde{K}_{\lambda,\mu} s_{\lambda}$$

The scalars $\tilde{K}_{\lambda,\mu} \in \mathbb{Q}(q,t)$ are the (modified) q, t-Kostka polynomials.

Theorem: [positivity and polynomiality] $ilde{K}_{\lambda,\mu} \in \mathbb{N}[q,t].$

Open Problem: Find a combinatorial formula for the q, t-Kostka polynomials.