Galleries

Let $R=(V,\phi)$ be an irreducible reduced root system with positive roots ϕ^+ and Weyl group W. Denote by Q^\vee the group generated by the coroots and by $Q_+^\vee \subset Q^\vee$ the dominant cone. The affine Weyl group is the semidirect product $W^{\mathfrak{a}}=W\ltimes Q^\vee$. It acts on V^* by affine transformations. For $\lambda\in Q^\vee$ denote by $t_\lambda\in W^{\mathfrak{a}}$ the associated translation. Let $H^{\mathfrak{a}}$ be the union of all reflection hyperplanes of reflections in $W^{\mathfrak{a}}$. Then $H^{\mathfrak{a}}=\bigcup_{\alpha\in\phi^+,m\in\mathbb{Z}}H_{\alpha,m}$, where $H_{\alpha,m}=\{x\in V^*\mid \langle\alpha,x\rangle=m\}$. Let $H_{\alpha,m}^\pm$ be the associated affine half spaces.

The closures of the connected components of $V^* \setminus H^{\mathfrak{a}}$ are the alcoves in V^* . They are fundamental domains for the $W^{\mathfrak{a}}$ -action on V^* . Denote by \mathcal{A} the set of all alcoves. The fundamental alcove is $A_f = \{x \in V^* | 0 \le \langle \alpha, x \rangle \le 1 \, \forall \alpha \in \phi^+ \} \in \mathcal{A}$. We have a bijection $W^{\mathfrak{a}} \to \mathcal{A}, w \mapsto A_w := wA_f$. Every alcove A is of the form $\mu + A_w$ for unique $\mu \in Q^{\vee}$ and $w \in W$. Denote this by $\mu(A) = \mu$ and w(A) = w.

A face F of an alcove A is an intersection $F = A \cap H$ such that $H \subset H^{\mathfrak{a}}$ is a reflection hyperplane and $\langle F \rangle_{\mathrm{aff}} = H$. Here $\langle F \rangle_{\mathrm{aff}}$ is the affine subspace spanned by F. A wall of A is some hyperplane $H \subset H^{\mathfrak{a}}$ such that $H \cap A$ is a face of A. The group $W^{\mathfrak{a}}$ is generated by the reflections $S^{\mathfrak{a}}$ at the walls of A_f . One has $S^{\mathfrak{a}} = S \cup \{s_0\}$, where $S = \{s_1, \ldots, s_l\}$ is the set of simple reflections of W and s_0 is the affine reflection at $H_{\theta,1}$. Here $\theta \in \phi$ is the highest root. Let F be a face of A_f . The type of F is the reflection at $\langle F \rangle_{\mathrm{aff}}$. Extend this definition to all faces by demanding that the $W^{\mathfrak{a}}$ -action preserves types.

Right multiplication of $W^{\mathfrak{a}}$ induces an action of $W^{\mathfrak{a}}$ on \mathcal{A} from the right. For $A \in \mathcal{A}$ and $s \in S^{\mathfrak{a}}$ the alcove As is the unique alcove not equal to A having a common face of type s with A. Let $F_s \subset A$ be the face of type s and $\langle F_s \rangle_{\mathrm{aff}} = H_{\alpha,m}$ for some $\alpha \in \phi^+$ and $m \in \mathbb{Z}$. Call A negative with respect to s if A is contained in $H^-_{\alpha,m}$. Notation: $A \prec As$.

Definition. Let $t = (t_1, \ldots, t_k)$ with $t_i \in S^{\mathfrak{a}}$.

- A gallery σ of type t connecting the alcoves A and B is a sequence $(A = A_0, \ldots, B = A_k)$ of alcoves such that $A_{i+1} \in \{A_i, A_i t_{i+1}\}$. The initial direction $\iota(\sigma)$ is defined to be $w(A_0)$ and the weight of σ is $\mu(A_k)$.
- The gallery σ is said to be positive at i if $A_{i+1} = A_i t_{i+1}$ and A_i is negative with respect to t_{i+1} , i.e. $A_i \prec A_{i+1}$.
- The gallery σ is folded at i if $A_{i+1} = A_i$. The folding hyperplane is the wall of A_i corresponding to the face of type t_{i+1} . The folding is positive if $A_i \succ A_i t_{i+1}$. We call σ positively folded, if all foldings occurring are positive.
- A gallery is said to be minimal if it is of minimal length among all galleries connecting the same alcoves.
- $m'(\sigma) = m(\sigma) = \#\{j | \sigma \text{ is positive at } j\}$
- $n(\sigma) = \#\{j | \sigma \text{ is positively folded at } j\}$
- $n'(\sigma)$ is the number of all foldings in σ such that the folding hyperplane is no wall of the dominant Weyl chamber C, i.e. is not of the form $H_{\alpha_i,0}$.
- $p(\sigma)$ is the number of foldings in σ where the folding hyperplane is a wall of C.
- If σ is positively folded, define $L_{\sigma} = q^{m(\sigma)}(q-1)^{n(\sigma)}$ and $C_{\sigma} = q^{m'(\sigma)+p(\sigma)}(q-1)^{n'(\sigma)}$.

Relations to Hall-Littlewood polynomials (see [S])

Let $\mathcal{L}[Q^{\vee}]^W$ be the algebra of symmetric polynomials with coefficients in $\mathcal{L} = \mathbb{Z}[q, q^{-1}]$. We regard two bases:

- Monomial basis $\{m_{\lambda}\}_{{\lambda}\in Q_+^{\vee}}$, where $m_{\lambda}=\sum_{\mu\in W_{\lambda}}x^{\mu}$.
- Hall-Littlewood basis $\{P_{\lambda}(q^{-1})\}_{\lambda \in Q_{\perp}^{\vee}}$, where

$$P_{\lambda}(q^{-1}) = \frac{1}{W_{\lambda}(q^{-1})} \sum_{w \in W} w \left(x^{\lambda} \prod_{\alpha \in \phi^{+}} \frac{1 - q^{-1} x^{-\alpha^{\vee}}}{1 - x^{-\alpha^{\vee}}} \right).$$

Here $W_{\lambda} \subset W$ is the stabilizer of λ and $W_{\lambda}(t) = \sum_{w \in W_{\lambda}} t^{l(w)}$.

Define Laurent polynomials $L_{\lambda\mu}$ for $\lambda, \mu \in Q_+^{\vee}$ as modified entries of the transition matrix from the m_{μ} to the $P_{\lambda}(q^{-1})$. More precisely, we have (with $\rho := \frac{1}{2} \sum_{\alpha \in \phi^+} \alpha$)

$$P_{\lambda}(q^{-1}) = \sum_{\mu \in Q_{+}^{\vee}} q^{-\langle \rho, \lambda + \mu \rangle} L_{\lambda \mu} m_{\mu}.$$

Let $\lambda \in Q_+^{\vee}$ and w^{λ} be the element of minimal length in the right coset $t_{\lambda}W$. Let σ^{λ} be a minimal gallery of type t^{λ} connecting A_f and $A_{w^{\lambda}}$. Let W^{λ} be the set of minmal representatives of W/W_{λ} .

Theorem. For $\mu \in Q_+^{\vee}$ we have $L_{\lambda\mu} = \sum_{\sigma} q^{l(w_0\iota(\sigma))} L_{\sigma}$, where the sum is over all positively folded galleries σ of type t^{λ} and weight μ , starting in the origin with $w_0\iota(\sigma) \in W^{\lambda}$.

Define
$$C_{\lambda\mu}^{\nu}$$
 for $\lambda, \mu, \nu \in Q_+^{\vee}$ by $P_{\lambda}(q^{-1})P_{\mu}(q^{-1}) = \sum_{\nu \in Q_+^{\vee}} q^{-\langle \rho, \mu - \lambda + \nu \rangle} C_{\lambda\mu}^{\nu} P_{\nu}(q^{-1})$.

Theorem. Let $\lambda, \mu \in Q_+^{\vee}$. Then $C_{\lambda\mu}^{\nu} = \frac{W_{\nu}(q^{-1})}{W_{\mu}(q)} \sum_{\sigma} q^{l(w_0\iota(\sigma))} C_{\sigma}$, where the sum is over all positively folded galleries of type t^{μ} and weight ν , starting in λ and contained in the dominant chamber.

Relations to geometry (see [GL])

Let K be an algebraically closed field. Let G be a simple, simply connected algebraic group over K with root system R corresponding to some choice of a Borel $B \subset G$ and a maximal torus $T \subset B$. Let U^- denote the unipotent radical of the opposite Borel of B. Let K = K((t))be the field of Laurent series and denote by $\mathcal{O} = K[[t]] \subset K$ the ring of formal power series. The affine Grassmanian is the quotient $G(K)/G(\mathcal{O})$. Let $\lambda \in Q_+^{\vee}$ and assume for simplicity that λ is regular.

Theorem (Gaussent, Littelmann). There is a surjective map from the orbit $G(\mathcal{O})\lambda \cdot G(\mathcal{O})$ to the set of all positively folded galleries of type t^{λ} . The preimage of a gallery σ of weight μ is contained in $U^{-}(\mathcal{K})\mu \cdot G(\mathcal{O})$ and it is isomorphic to $K^{l(w_0\iota(\sigma))+m(\sigma)}\times (K^*)^{n(\sigma)}$.

References

- [GL] S. Gaussent and P. Littelmann. LS galleries, the path model, and MV cycles. Duke Math. J., 127(1):35–88, 2005
- [S] C. Schwer. Galleries, Hall-Littlewood polynomials and structure constants of the spherical Hecke algebra, arXiv:math.CO/0506287