Problems from the Workshops on

Low Eigenvalues of Laplace and Schrodinger Operators
at AIM 2006 (Palo Alto) and MFO 2009 (Oberwolfach)

Version 6, April 2009

Following are brief statements of some problems raised during the AIM Workshop on Low
Eigenvalues of Laplace and Schrodinger Operators, May 22-26, 2006, and the MFO Oberwolfach,
February 9-13, 2009. The name of the participant who mentioned the problem is stated in most
cases, along with a brief reference to more information. This participant is not necessarily the
original proposer of the problem in the literature, of course.

The problem statements given below include some editorial additions by the organizers, which
may not reflect the views of the person who mentioned the problem.

Further open problems can be found in some of the Participant Contributions. '

1. Pélya and Related Inequalities
Consider eigenvalues of the Dirichlet Laplacian on a bounded domain €2 C R™:
{—Auj = Eju; in{Q,
uj =0 on 0f).
Assume n > 2.

(1) (Michael Loss, Timo Weidl) The Pélya Conjecture claims that the Weyl asymptotic formula
provides a lower bound:

E; > (2n)*(n/|S™ M|, §=1,2,3,. ..

The conjecture remains open even for j = 3.

The best partial result known is with a factor of n/(n + 2) (which is less than 1) on the
right hand side, as one deduces by estimating £/; < F; in the following inequality due to
Li and Yau,

J
> By = s (2m)n/|S QP =123,
o n +

Berezin proved in 1972 that

Q
S(E-E < [ WP, o210 B0
The cases 0 < o < 1 remain open. The Pdlya conjecture is exactly the case ¢ = 0. The
inequality for o = 1 implies the Li—Yau inequality via the Legendre transform.

!Corrections and updates will be gratefully received at r1 frank@math.princeton.edu (for Pélya and Lieb—
Thirring inequalities) and Laugesen@illinois.edu (for Gap and Laplace eigenvalue inequalities).
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(2) (Timo Weidl) Can one strengthen the Li—Yau result by including a correction term, perhaps
involving the surface area of the boundary? This has been done for the discrete Laplacian
on domains in a lattice; J. K. Freericks, E. H. Lieb, D. Ueltschi, Phase separation due to
quantum mechanical correlations, Phys. Rev. Lett. 88, 106401 1-4 (2002).

There is a result by Melas of Li—Yau type with corrections involving moments of iner-
tia rather than surface area, see A. Melas, A lower bound for sums of eigenvalues of the
Laplacian, Proc. Amer. Math. Soc. 131 (2003), 631-636.

February 2009: The result of Melas has been strengthened by inclusion of a correction
term involving the surface area of the boundary; see H. Kovarik, S. Vugalter, T. Weid],
Two-dimensional Berezin—Li—Yau inequalities with a correction term, Comm. Math. Phys.
287 (2009), 959-981. An earlier improvement for 7 > 3/2, involving a notion of effective
boundary, is due to T. Weidl, Improved Berezin—Li—Yau inequalities with a remainder term,
in: Spectral theory of differential operators, T. Suslina and D. Yafaev (eds.), Amer. Math.
Soc. Transl. Ser. 2, 225 (2008). For v < 3/2 further improvements seem possible and
desirable.

(3) (Timo Weidl) There are analogues of the Pdlya and Li—Yau inequalities under Neumann
boundary conditions, with the inequality signs reversed. The Pdlya Conjecture remains
open for Neumann boundary conditions for 7 > 2, except it was recently proved for j =
2 in two dimensions by A. Girouard et al., J. Diff. Geometry, to appear. The analogue
of Li—Yau was proved by Pawel Kroger; see P. Kroger, Upper bounds for the Neumann
eigenvalues on a bounded domain in Euclidean space, J. Funct. Anal. 106 (1992), no. 2,
353-357, and also A. Laptev Dirichlet and Neumann eigenvalue problems on domains in
Euclidean spaces, J. Funct. Anal. 151 (1997), 531-545.

Can one strengthen the Kroger result by including a correction term?

(4) (Timo Weidl) The questions raised above are meaningful in the presence of a magnetic
field. For more information and some progress see Item (10) below.

(5) (Evans Harrell, Joachim Stubbe) For o > 2 the mapping

o B (0 [ B b= e -5

is non-increasing. This was proved in E. M. Harrell and L. Hermi, Differential inequali-
ties for Riesz means and Weyl-type bounds for eigenvalues, J. Funct. Analysis 254 (2008),
3173-3191, using the trace identities of E. M. Harrell and J. Stubbe, On trace identities and
universal eigenvalue estimates for some partial differential operators, Trans. Amer. Math.
Soc. 349 (1997), 1797-1809, and Universal bounds and semiclassical estimates for eigen-
values of abstract Schrodinger operators, preprint 2008, available as arXiv:0808.1133.
According to Weyl’s asymptotic formula r,(E) tends to zero as F tends to infinity and

therefore r,(£) > 0, which is the Berezin-Li—Yau-inequality. Can one strengthen this
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bound in the trace identity of Harrell-Stubbe to obtain correction terms involving the sur-
face area of the boundary? For the Laplacian with periodic boundary conditions a similar
monotonicity property holds (for details see E. M. Harrell and J. Stubbe, Trace identities
for commutators, with applications to the distribution of eigenvalues, preprint 2009, avail-
able as arXiv:0903.0563). In this case the search for the correction term is related to the
famous Gauss circle problem (or lattice point problem).

(6) (Evans Harrell, Joachim Stubbe) Prove monotonicity results like in Item (5) for higher
order operators (e.g. clamped plate problem) and fractional powers of Laplacians (for
some results on v/—A see E. M. Harrell and S. Yildirim Yolcu, Eigenvalue inequalities
for Klein-Gordon Operators, accepted for publication in J. Funct. Analysis) leading to
Berezin-Li-Yau inequalities for these operators.

(7) (Evans Harrell, Joachim Stubbe) For p > 0 let

M1 < v
My(J) = <”+ pszf) (1)

n

and for p = 0 define

J L
Mo(J) :=en (H EJ) . )
According the the Weyl asymptotic formula, for all p > 0,
My(J) ~ (2m)*(n/|S" 1|02/ T2

as J — oo. In E. M. Harrell and J. Stubbe, On trace identities and universal eigenvalue
estimates for some partial differential operators, Trans. Amer. Math. Soc. 349 (1997),
1797-1809, it has been shown that

M{(J) = Ma(J) = 2(Egn — Eg)* (2 0)

| =

and

ML) = /M)~ Ma)) < By < Egox < My(J) + [ MF() — Mo(J).

Both inequalities are sharp in the Weyl limit. For extensions to other M,(.J) see E. M.
Harrell and J. Stubbe, Universal bounds and semiclassical estimates for eigenvalues of
abstract Schrodinger operators, preprint 2008, available as arXiv:0808.1133. For p > 0
find an upper bound of the form

M2(J) = Mb(J) < C(p, Q) E J*™

with k < 2/n.



(8) (Evans Harrell, Joachim Stubbe) With the above notations does
E; < Mp<J )
hold for all J and all p > 0? Can one find €2 and J such that the inequality

My(J) = Mo(J) = 2(Egen — Ey)?

e e

is saturated ?

2. Lieb-Thirring Inequalities

Write Fy < Ey < E3 < -+ < 0 for the eigenvalues of —A — V on L?(R™), meaning

The eigenfunctions u; represent bound states with energies ;. For simplicity we assume .
Assume n > 1.
The Lieb—Thirring inequality can be written as

Sl <, [ Vo
j Re

This inequality holds (with a constant L,, ., independent of V) iff the parameter +y satisfies v > 1/2
ifn=1~v>0ifn=2and v > 0if n > 3. The case v = 0 (counting eigenvalues) is the
Cwikel-Lieb—Rozenblum Inequality (CLR).

In other words

where

L, 1
Cpy =722 and Ly = / (Ip|* = 1)7 dp.
R’ﬂ

L%lﬁ (2m)n

The constant L‘Til7 is called the semiclassical Lieb—Thirring constant.

Note that C,, , > 1 always, by the Weyl asymptotics, and that C, ., is decreasing in 7 for each
fixed n, by the Aizenman-Lieb monotonicity result.

To start with, let us summarize some known results on the constants C,, -, along with conjectures

about best (smallest) values of C, .
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n|vy Best known C,, , | Best constant? status last updated
% 2 2 known
(1,2) 2% 2(”’_1/2>71/2 conjectured
202 /2
2, 00) 1 1 known
21 (0,3) ?
3,1) 3.64 Feb. 2009
[1,3) 1.82 Feb. 2009
2, 00) 1 1 known
=3110,3) 6.87 8/v/3 ~ 4.62 conjectured
3,1) 3.64 Feb. 2009
[1,3) 1.82 1 conjectured | Feb. 2009
2, 00) 1 1 known
>4110,3) 10.34 Feb. 2009
3,1) 3.64 Feb. 2009
1,3) 1.82 1 conjectured | Feb. 2009
2, 00) 1 1 known

*better is known for y € [1, 2), e.g. C1; < 7= = 1.82 via work of Eden—Foias.

Remark. References to the results in the table and to many of the questions below can be found in
the lecture notes by Michael Loss and Timo Weidl, and in the survey paper by Dirk Hundertmark
(which further states some better estimates on C,, ., for special values of n and 7).

For February 2009 updates see J. Dolbeault, A. Laptev, M. Loss, Lieb-Thirring inequalities
with improved constants, J. Eur. Math. Soc. 10 (2008), and R. L. Frank, E. H. Lieb, R. Seiringer,
Number of bound states of Schrodinger operators with matrix-valued potentials, Lett. Math. Phys.
82, 107 (2007).

Now we state open problems on Lieb—Thirring inequalities.

(1) (Richard Laugesen) Must an optimal potential V' exist, for those Lieb—Thirring inequalities
in which the best constant is not known? In particular this question is open for n = 1 and
1 3
3 <7 <3
A restricted version of the problem asks: within the class of potentials having m bound
states (where m > 1 is given), does an optimal potential exist?

(2) (Richard Laugesen) If an optimal potential exists, then does it have just a single bound
state? (In other words, does —A — V' have just a single eigenvalue?) When n = 1 and % <
v < %, the natural conjecture is that the optimal potential is the one found by J. B. Keller
when he determined the best constant in |E;[Y < C [, VY™1/2dz (see J. Mathematical

Phys. 2:262-266, 1961).
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This “single bound state” conjecture is due to Lieb and Thirring, 1976. In dimension
n = 1, the conjecture is known to be true in the endpoint cases v = 1/2 (in which case
V is a delta function) and 7 = 3/2 (in which case V' is a transparent or reflectionless
potential).

(3) (Eric Carlen) Does there exist a bound of the form } . |E;|” < C|E;[7? Here the factor C
could depend on n, 7, and on the integrability of a power of V' sufficient to guarantee that
the lefthand side is finite.

(4) (Rafael Benguria) The use of Korteweg—de Vries (KdV) integrable system methods when
n = 1,~v = 3/2, suggests that one might similarly study Lieb—Thirring inequalities for the
linear equation associated with the Benjamin—Ono equation (another integrable system).
Tomas Ekholm, Rupert Frank and Dirk Hundertmark made progress during the Workshop
already, by obtaining the analog of the Aizenman-Lieb “monotonicity toward best con-
stants” result. The Lax pair for the Benjamin—Ono equation can be found for example in
R.L. Anderson and E. Tafflin, The Benjamin-Ono equation -Recursivity of linearization
maps- Lax pairs, Letters in Mathematical Physics, 9 (1985), 299-311. See also, D.J. Kaup
and Y. Matsuno, The inverse scattering transform for the Benjamin—Ono equation, Studies
in applied mathematics 101 (1998), 73-98.

(5) (Rupert Frank) The best constant when n = 1,y = 1, is due to Eden—Foias (see A. Eden
and C. Foias, A simple proof of the generalized Lieb-Thirring inequalities of one—space
dimension, Journal of mathematical analysis and applications, 162 (1991), 250-254.) More
precisely, they proved a Sobolev inequality, which then gives a Lieb—Thirring inequality
via the Legendre transform. So a question is: can one find a more direct proof of this
Lieb—Thirring inequality?

Also, can one sharpen the Eden—Foias bound by including correction terms in their ar-
gument?

February 2009: An operator-valued version of the Eden—Foias bound has been proved
by J. Dolbeault, A. Laptev, M. Loss, Lieb-Thirring inequalities with improved constants, J.
Eur. Math. Soc. 10 (2008). By the ‘lifting of dimension’-argument this result leads to the
best known values for the constants in the Lieb—Thirring inequalities for v > 1ifn =1
and fory > 1/2if n > 2.

(6) (Timo Weidl) Can one find a way to directly estimate the sum of the eigenvalues, without
going through the Birman—Schwinger transformation (which counts the eigenvalues rather
than summing them)?

(7) (Almut Burchard) The Ovals Problem. Consider a smooth closed curve 7 of length 27 in
R3, and let x(s) be its curvature as a function of arclength. The curve determines the one-
dimensional Schrodinger operator Ho = —d?/ds* + k? acting on 2w-periodic functions.
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This operator appears in the equation for the tension of a smooth, elastic, inextensible
loop [5], and in connection with a Lieb—Thirring inequality in one dimension [4]; similar
Schrodinger operators with quadratic curvature potentials have been studied in connec-
tion with quantum mechanics on narrow channels [2], Dirac operators on the sphere [3],
and curvature-driven flows describing the motion of interfaces in reaction-diffusion equa-
tions [1].

A natural conjecture is that the principal eigenvalue e(+y) is minimal when = is a circle,
where it takes the value 1. This question is open even for planar loops that enclose convex
sets (‘ovals’). It is known that the value e(y) = 1 is attained for an entire family of planar
curves whose curvature is given by x(s) = (a?cos?s + a~?sin’ 3)71. When o — 0,
these curves collapse onto two straight line segments of length 7 joined at the ends. The
inequality e(y) > 1 has recently been shown for curves in some neighborhood of the
family [5], and for curves satisfying additional geometric constraints [6]. The best universal
lower bound on e(7) that is currently known is .6085 [6].

Several participants at the Workshop had worked on this problem previously (includ-
ing Benguria, Loss, Burchard, Thomas, and Linde). All agreed that classical Calculus of
Variations techniques may be exhausted at this point, and that rearrangement techniques
seem to fail. Linde and Burchard claimed that minimizers can be shown to exist, and
should be convex, but could conceivably contain one corner, or two corners joined by a
straight line segment. Benguria pointed to the family of putative minimizers (which look
like ellipses in polar coordinates) as evidence that the problem may have a hidden affine
symmetry. Carlen, Mazzeo, and Benguria proposed to search for geometric flows that
drive e(+y) towards its minimum. The affine curvature flow [7] was mentioned as a promis-
ing candidate. Rapti and Lee proposed to analyze the Euler—Lagrange equation using ODE
methods. Laugesen suggested applying the Birman—Schwinger transformation, after which
the conjecture becomes that the largest eigenvalue of the operator T' = x(d?/ds* +v) 'k
is larger than 1, for each constant 0 < v < 1. Equivalently, take v = 1 and try to show the
largest eigenvalue of T is larger than 1, when 7" acts on functions ¢ with s orthogonal to
sin s and cos s. The hope is that a good choice of trial function (in the variational principle
for the largest eigenvalue) might suffice to prove this conjecture.

References for the ovals problem

[1] E. M. Harrell and M. Loss. On the Laplace operator penalized by mean curvature.
Commun. Math. Phys. 195:643-650 (1998).

[2] P. Exner, E. M. Harrell and M. Loss. Optimal eigenvalues for some Laplacians and
Schrodinger operators depending on curvature. Oper. Theory Adv. Appl. 108:47-58
(1999).

[3] T. Friedrich. A geometric estimate for a periodic Schrodinger operator. Colloq. Math.
83:209-216 (2000).



[4] R. D. Benguria and M. Loss. Connection between the Lieb—Thirring conjecture for
Schrodinger operators and an isoperimetric problem for ovals on the plane. Contem-
porary Math. 362:53-61 (2004).

[5] A. Burchard and L. E. Thomas. On an isoperimetric inequality for a Schrodinger
operator depending on the curvature of a loop. J. Geometric Analysis 15:543-563
(2005).

[6] H. Linde. A lower bound for the ground state energy of a Schrodinger operator on a
loop., Proc. Amer. Math. Soc. 134 (2006), 3629-3635.

[7] B. Andrews. The affine curve-lengthening flow. Crelle J. Reine Angew. Math. 506:43-
83 (1999).

(8) (Timo Weidl) For n = 2, = 0, can one prove a Cwikel-Lieb—Rozenblum Inequality
that involves a logarithmic correction factor? Without some such correction factor, the
inequality fails, since any nontrivial attractive potential has at least one bound state.

February 2009: This problem has been solved in H. Kovarik, S. Vugalter, T. Weidl,
Spectral estimates for two-dimensional Schrodinger operators with application to quantum
layers. Comm. Math. Phys. 275 (2007), no. 3, 827-838.

(9) (Timo Weidl) Can one obtain improved Lieb-Thirring constants when working on a do-
main 2 rather than on all of R"? For example, can one obtain a boundary correction term?

(10) (Timo Weidl) Magnetic Schriodinger operators on a domain. Consider the Dirichlet Lapla-
cian in a domain in R". The technique of iteration-in-dimension gives sharp Lieb—Thirring
constants for arbitrary magnetic fields for v > 3/2 and any n > 2. (See the final part of
A. Laptev and T. Weidl, Sharp Lieb-Thirring inequalities in high dimensions, Acta Math-
ematica 184 (2000), 87-111.) For 1/2 < ~ < 3/2 one also gets estimates uniform in the
magnetic field, but the constant is (probably) not sharp. With the same approach, the results
of D. Hundertmark, A. Laptev and T. Weidl (New bounds on the Lieb—Thirring constants,
Inventiones Math. 140 (2000), 693-704) carry over to magnetic operators; see the remark
at the end of that paper.

The sharp Li—Yau bound (corresponding to v = 1) has been proved by L. Erdos, M.
Loss and V. Vougalter (Diamagnetic behavior of sums of Dirichlet eigenvalues, Ann. Inst.
Fourier (Grenoble) 50 (2000), 891-907) for constant magnetic fields. Does this bound hold
true for arbitrary magnetic fields for 1 <~ < 3/2?

For v = 0, does the Pélya conjecture hold true for tiling domains in the presence of
magnetic fields?

February 2009: The answer to the latter question is negative for constant magnetic fields.
Indeed, the sharp constant in the corresponding lower bound for 0 < v < 1 was found in
R. L. Frank, M. Loss, T. Weidl, Polya’s conjecture in the presence of a constant magnetic
field. J. Eur. Math. Soc., to appear.



(11) (Timo Weidl) Magnetic Schrodinger operators on R™. Consider Lieb—Thirring bounds
for magnetic Schrodinger operators on all of R™. In all cases where the sharp constant
is known, either the magnetic field is not relevant (dimension n = 1) or the value of the
constant is independent of the magnetic field (y > 3/2 and n > 2 as above, where the
sharp constant equals the classical constant).

Can the magnetic field change the optimal value of the Lieb—Thirring constant in the
remaining cases? (February 2009: The magnetic field can change the optimal value at
most by an explicit factor depending only on ~ and d; see R. L. Frank A simple proof of
Hardy-Lieb-Thirring inequalities. Comm. Math. Phys., to appear.)

This question is rather speculative, because we do not know the sharp constants even in
the non-magnetic case. But let us put forward the following more specific version:

Can one construct a counterexample to the Lieb—Thirring conjecture that the optimal
constant is the classical one for n = 3, = 1, by using a suitable magnetic field?

(12) (Eric Carlen) Generalization to manifolds. Do there exist Lieb—Thirring inequalities on
manifolds? As a basic first question, do the critical exponents (v = % when n = 1, and
v = 0 when n = 2) depend on the geometry?

Some references to get started here are A. A. llyin, Lieb—Thirring inequalities on the
N-sphere and in the plane, and some applications, Proc. London Math. Soc. (3) 67 (1993),
159-182; and Lieb-Thirring integral inequalities and their applications to attractors of
Navier-Stokes equations, Sb. Math. 196 (2005), 29-61. A classic reference for applications
to turbulence is E. Lieb, On characteristic exponents in turbulence, Comm. Math. Phys. 92
(1984), 473-480.

February 2009: Intuition from recent results on continuous trees suggest that the critical
exponents depend on both the local and global dimension of the manifold (see T. Ekholm,
R. L. Frank, H. Kovarik, Eigenvalue estimates for Schrodinger operators on metric trees,
arXiv:0710.5500v1.)

Analogues of Lieb-Thirring inequalities on tori and spheres have been proved in E. Har-
rell and J. Stubbe, Trace identities for commutators, with applications to the distribution of
eigenvalues, arXiv:0903.0563v1.

(13) (Mark Ashbaugh) Reverse Lieb—Thirring Inequality. For dimension n = 1, Damanik and
Remling have proved a Reverse Lieb—Thirring Inequality in the subcritical range 0 < v <
% (Schrodinger operators with many bound states, Duke Math. J. 136 (2007), 51-80) Sharp
constants seem not to be known. A Reverse Cwikel-Lieb—Rozenblum Inequality for the
eigenvalue counting function for dimension n = 2 in the critical case ¥ = 0 has been
proved by A. Grigor’yan, Yu. Netrusov, S.-T. Yau, Eigenvalues of elliptic operators and
geometric applications, Surveys in Differential Geometry IX (2004), 147-218.



(14) (Rupert Frank) Powers of the Laplacian. Can one prove a critical Lieb—Thirring inequality
for arbitrary powers of the Laplacian? That is, one wants

tr (A =V) <L, / VI g

n

for v = 1 — n/2s > 0. Such an inequality is known for s a positive integer by work of
Netrusov—Weidl.

Timo Weidl remarked that regardless of whether these operators have physical signifi-
cance, the higher order situation can help shed light on what makes the second-order case
work.

(15) (Rupert Frank) Hardy—Lieb—Thirring Inequality. Can one prove a Lieb—Thirring bound
with a Hardy weight, on the half-line? That is, one wants

d2 1 6/2 00
tr <__ — a5 V) < Ca/ V(r)r=fdr
_ 0

for 0 < @ < 1. The inequality is known for § = 1 (Lieb-Thirring). For # = 0 it fails
(although note that if it were true, it would resemble Bargmann’s inequality).

February 2009: The inequality for all 0 < ¢ < 1 has been proved in T. Ekholm, R. L.
Frank, Lieb-Thirring inequalities on the half-line with critical exponent. J. Eur. Math. Soc.
10 (2008), no. 3, 739 - 755. The sharp constant Cj is not known, and there is not even a
conjecture for it.

(16) (Carlo Morpurgo) Cwikel-Lieb—Rozenblum bounds and heat kernel inequalities.
Let Y be the Yamabe operator, or conformal Laplacian, on the euclidean “round” sphere
(8™, g). Thatis, Y = Agn+ 5 (% — 1), where Agn denotes the Laplace—Beltrami operator
on S™.
Consider a positive smooth function W on 5™, normalized so that f gn Wn/2 =yolume
of the round sphere. Define Yy = W~Y/2YW~1/2 acting on L?(S™, g).

CONJECTURE 1. Forn > 3,

n/2 —tYw < n/2 —tY
max {t"/*Tr[e ]} < max {t"*Tr[e™""]}. 3)

(Note that the eigenvalues of Y}y are the same as the eigenvalues of 1~ ("+2)/4y Jy/ (n=2)/4
acting on L*(S™, W g), which is the natural Yamabe operator in the metric Wg.)
In other words we are looking for the best constant C'(1/) in the inequality

- C(W)
ot
Trle W] < ey

t>0, “4)

and the conjecture states that this constant is attained precisely by the right side of (3),
which is the best constant in (4) for W = 1.
If Conjecture 1 is true then we can considerably improve the known CLR bounds, at

least in low dimensions, noting that for a given positive potential V', the eigenvalues of
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the Birman—Schwinger operator V~'/2AV /2 are the same as those of Yy, with W =

(V o m)|J,|?/", m being the stereographic projection and .J, its Jacobian.

CONJECTURE 2. If n > 4 then the function fiy(t) = t"/?>Tr[e "¥W] is decreasing in t.

An asymptotic expansion fy () ~ ag(W)+ta;(W)+...holdsast — 0, with ag(W) =
(47)™/2 [, W™/? and with a, (W) written explicitly in terms of the total curvature. Hence
Conjecture 2 would imply (equality in) Conjecture 1 for n > 4, because Conjecture 1
normalizes the constant term a (/) in the expansion.

It is known that a; (W) is negative for n > 5, zero for n = 4, and positive for n = 3, so
that Conjecture 2 fails for small ¢ when n = 3.

On the other hand, Conjecture 2 holds for large ¢ and any n > 3, since the known sharp
lower bound A\g(W) > Ag(1) = 2 (2 — 1) for the lowest eigenvalue of Yy implies that
fw (t) is decreasing when ¢ > (% — 1)~

Conjecture 2 is true if W =1,n > 4.

3. Gap Inequalities

Consider eigenvalues of the Dirichlet Laplacian on a bounded convex domain 2 C R" with
convex potential V':

(—A + V)U] = )\juj in Q,
uj =0 on 0f2.

Assume n > 1. Notice the operator is written with +1/, not —V like in the previous section.
Van den Berg’s Gap Conjecture is that

32
d?’
with equality holding when n = 1,V = 0. (In dimensions n > 2, the inequality should be strict,
with equality holding only in the limit as the domain degenerates to an interval.) For an extended
treatment of the problem and many references, see Mark Ashbaugh’s introduction The Fundamen-
tal Gap on the AIM website. Also see the overhead transparencies of Rodrigo Bafiuelos’s talk.

In dimension n = 1 the conjecture has been completely proved by Richard Lavine (1994).

In dimensions n > 2, the best partial result says that Ay — \; > 72 / d?, which is missing the
desired factor of 3 on the righthand side. The first proof of this result used P-function techniques
based on the maximum principle. The second proof adapted the methods of Weinberger, who
resolved the analogous Neumann gap problem long ago.

/\2 — /\1 Z d= dlam(Q),

Now we state open problems, beginning with one dimension and then considering higher di-
mensional problems.

(1) (Richard Lavine) Can one expand the class of potentials for which the gap inequality holds,
in one dimension? It is known for convex potentials, but also for single well potentials with
a centered transition point. See the write-up by Mark Ashbaugh.
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(2) (Richard Lavine) Normalize the eigenfunctions u; in L* and define (V'); = [, Vu} dx.
Are these means (V); an increasing sequence as j increases? The question is already
interesting in one dimension.

(3) (Richard Lavine) Can one strengthen the gap inequality by adding to its righthand side a
term that involves V'? The question is already interesting in one dimension.

(4) (Rodrigo Bafiuelos) Can Lavine’s approach be extended to higher dimensions?

(5) (Mark Ashbaugh) In dimensions n > 2, one should try to understand whether genuine
barriers exist to pushing the P-function techniques beyond the known 72 /d? bound. One
seems to need to improve the log-concavity bound on the groundstate u; (due to Brascamp—
Lieb). That is, instead of just discarding the Hessian of log u; when it arises, on the grounds
that it is < 0, one seems to want to bound the Hessian strictly away from 0. Can this be
achieved by the methods of Brascamp-Lieb, or of Korevaar?

(6) (Antoine Henrot) The Gap Conjecture is already very interesting in the case of vanishing
potential V' = 0. A possible approach is as follows.

(a) Prove the gap infimum infoen (A2 — Aq) is not attained, when O is the class of convex
domains with diameter 1.

(b) Prove that minimizing sequences shrink to a segment of length 1.

(c) Prove that the gap for a sequence of shrinking domains behaves like the gap of a
one-dimensional Schrodinger operator with convex potential (semiclassical limit ar-
guments).

(d) Complete the proof using the results in the one dimensional case (Lavine’s Theorem).

It seems that points (b), (c) and (d) are OK. It remains to prove point (a)!

(7) (Helmut Linde) Operator-valued potentials. In order to prove the gap conjecture one could
consider the Laplacian on a two-dimensional domain as being a one-dimensional operator
with a matrix-valued potential. This makes it possible to approach the problem via a se-
quence of simplified “toy models”. For example, one can try to prove the gap conjecture
first for very special classes of matrix-valued potentials, like potentials that have constant
eigenvectors and whose eigenvalues are convex functions. Then one could gradually gen-
eralize this theorem to approach the “real” gap conjecture.

(8) (Timo Weidl and Richard Laugesen) Magnetic Schrodinger operators. For magnetic Schro-
dinger operators, the Gap Conjecture cannot hold as stated because the eigenvalue gap can
be reduced to zero by the introduction of a magnetic field.

Can one still obtain a valid gap inequality by subtracting from the righthand side a term
depending on the magnetic potential A?
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(9) (Rodrigo Bafiuelos) Powers of the Laplacian. Is the groundstate of v/—A log-concave?
See also the comments above on log-concavity of the groundstate of —A.

(10) (Rodrigo Bafiuelos) Properties of the eigenfunction ratio. The Hot Spots conjecture of
Bernhard Kawohl says that the first nontrivial eigenfunction of the Neumann Laplacian at-
tains its maximum and mimimum values on the boundary of the convex domain 2. This has
been proved only for some special classes of domains. The analogous conjecture for the
Dirichlet Laplacian would be that the ratio uy/u4 attains its maximum and mimimum val-
ues on the boundary of €. Note us/u; satisfies Neumann boundary conditions (by explicit
calculation, assuming the boundary is smooth) and satisfies a certain elliptic equation.

(11) (Robert Smits) Robin boundary conditions. Turn now from the Dirichlet boundary con-
dition to the Robin condition Ju/0v = —au (for some given constant o > 0, with v
denoting the outward normal). Is the gap Ao — A\; minimal when V' = 0 and {2 degenerates
to a segment having the same diameter as {2?

In one dimension, is the gap minimal when V' = 0 and (2 is a segment? Can Lavine’s
methods be adapted to Robin boundary conditions, in one dimension?

If one could prove the groundstate v, is log-concave, then existing methods could be
adapted to imply Ay — A\; > 72/d?, like is already known for the Neumann and Dirichlet
situations. Incidentally, the Rayleigh quotient for the gap can be shown (like in the Dirichlet
case) to equal )

A2 — A1 = min —fQ VT de
Jo futda=0 [, f2uf dx
with the potential entering implicitly through the dependence of w; on V.
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