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Preface

This booklet contains some questions, expositions, references, and ideas for teaching supplied
by participants at the “Theory and Algorithms of Linear Matrix Inequalities” workshop, held
at the American Institute of Mathematics on August 1 – 5, 2005.
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1.10 Levent Tunçel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.11 Hugo Woerdeman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Ideas for Teaching 13

3 Other Remarks 14

3.1 Leonid Gurvits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Alexandre Megretski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Jiawang Nie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Frank Vallentin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Jan Willems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2



Chapter 1

Questions and Open Areas

1.1 Joseph Ball

In recent years I (and my collaborators) have been looking for multivariable generalizations
(N-D linear systems, operator tuples, analytic functions of several variables) of what we are
familiar with in 1D and applications thereof. Somewhat but not completely surprisingly,
we found that noncommutative versions of these ideas (systems with evolution along a free
semigroup rather than over an integer lattice, noncommuting operator tuples rather than
commuting operator tuples, formal power series in noncommuting indeterminants rather
than analytic functions of several (commuting) complex variables) turn out to be easier to
deal with and lead to results having a stronger parallel with the single-variable case.

Open Areas

As applications of the above, there is the potential for a complete analogue of classical linear
control theory (Kalman state-space theory, LQR and H∞ feedback control theory, etc.) for
linear systems with evolution along a free semigroup.

More relevant, however, are exciting new applications of formal power series to classical
linear control (e.g., analysis of time-varying structured uncertainty for classical linear plants,
systematic search for dimensionless Linear Matrix Inequalities in control theory), where the
noncommutative system theory ideas is merely a tool for dealing with problems concerning
formal power series (a noncommutative version of the state-space method—now applied to
formal power series rather than to rational or analytic matrix-valued functions).

1.2 John Helton, Scott McCullough, and Victor Vinnikov

See the paper “Noncommutative Semialgebraic Geometry and Convexity vs LMI’s” by Hel-
ton, McCullough, and Vinnikov.
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1.3 Didier Henrion

Alternative descriptions of the cone of positive polynomials

It is well-known that the convex cone of globally non-negative one-variable polynomials is
semidefinite representable (in the sense of Nesterov, Nemirovskii, Ben-Tal) in the space of
polynomial coefficients, i.e. it is the projection of the solution set of an LMI. This LMI
involves lifting variables, namely entries of a positive semidefinite matrix ensuring a decom-
position as a sum of squares of polynomials. Lifting variables can be removed using e.g.
quantifier elimination, yielding an explicit semialgebraic description of this cone. Such a
description is likely to be intricate, with a large number of polynomial inequalities of large
degree.

1. Under which conditions does there exist an explicit LMI representation of this cone,
without using lifting variables ?

2. Can we derive efficient, e.g. matrix-wise, algebraic reformulation of these positivity
conditions, without using lifting variables ?

3. A related problem is that of finding algebraic conditions on two real-valued symmetric
matrices A and B such that there exist a real scalar x ensuring positive semidefiniteness
of the matrix A+xB. Note that matrix B is sign indefinite in general.

Applications include the design of restricted complexity robust control laws in the H-
infinity framework.

Conditioning estimates for LMI problems

Following Renegar’s work, a theory of conditioning is available for conic optimization, in
particular for LMI problems. Unfortunately, it seems that there is no satisfying cheap
estimate of the conditioning of an LMI problem: the most efficient methods to date consist
in solving at least two LMI problems of the same dimensions as the original LMI problem
for which we want evaluate the conditioning. This is in sharp contrast with linear system
of equations, where cheap conditioning estimates are available and implemented in standard
numerical linear algebra package such as LAPACK.

4. Could it be possible to compute cheap but still useful conditioning estimates for LMI
problems, using basic linear algebra ?

Detecting convexity of polynomial matrix inequalities

Several difficult design problems in control theory boil down to solving polynomial matrix
inequalities (PMIs) with a few decision variables (typically between 5 and 15). This is
the case for e.g. static output feedback or low order H2 optimal controller design, when
formulated in a polynomial framework using Hermite’s stability criterion.
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Particular cases of PMIs are LMIs (degree one) and bilinear matrix inequalities (BMI,
degree two). Several powerful semidefinite programming packages are available for control
engineering willing to solve LMIs. This is in sharp contrast with BMIs, for which there is
almost nothing. The main reason could be that BMI problems are generally non-convex, in
contrast with LMI problems which are always convex. It may happen however that some
BMI or PMI problems are convex in the set of decision variables. This is the case for example
for PMI problems arising from static output feedback design.

5a. Is it possible to detect efficiently convexity of the solution set of a PMI ?

5b. If the solution set of a PMI is convex, does it admit an LMI representation ?

1.4 Jean Lasserre

Recent developments are:

• the representation of polynomials, nonnegative on a semi algebraic-set S ⊂ Rn or a
real variety V ⊂ Rn.

• the representation of positive semidefinite polynomial matrices, and more generally
noncommutative polynomials.

Indeed, the latter representation results should have a profound impact on various im-
portant potential applications, notably in Control. An open area is to see how the above
representation results can be applied in many important applications, when modelled as a
particular instance of the general problem of moments with polynomial data.

Finally, I would like to emphasize the importance of being able to solve efficiently the
following SDP problem:

miny {c
′y : Mr(y) � 0; Ay ≤ b}

where A is a matrix, Mr(y) is the usual moment matrix associated with a sequence y, indexed
in the canonical basis of monomials {xα}. Indeed, one may show that converging SDP-

relaxations of many polynomial optimization problems can be put in the above form. What
is interesting is that the data of the original problem only appear in the linear inequalities
Ay ≤ b, but not in the (difficult) LMI constraint Mr(y) � 0! So an adhoc and efficient
SDP solver should take into account the specific structure of the moment matrix, which is
independent of the problem data.

1.5 Antonis Papachristodoulou

A topic of considerable interest is LMIs used to solve sum of squares programs. Of particular
interest are, PLMIs (Parameterized Linear Matrix Inequalities), which in general take the
form

F (x, p) , F0(p) + x1F1(p) + · · · + xkFk(p) ≥ 0 (1.1)
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where the Fi’s are n × n given real symmetric polynomial matrices in p = [p1, . . . , pn], a
collection of parameters typically allowed to take values in a compact set P :

P = {p ∈ Rm|gi(p) ≤ 0, i = 1, . . . , N} (1.2)

Such PLMIs appear frequently in systems theory, when considering robust stability for sys-
tems with parametric uncertainty [23, 28] or analysis of time-delay systems [26], performance
analysis etc.

A PLMI is an infinitely constrained LMI, and PLMI problems are known to be NP-hard
in general. Several techniques have been developed in the past [22], which try to turn this
problem into a standard LMI problem, possibly conservative, for particular descriptions of
the set P (typically polytopic) and assumptions on the dependence of the Fi(p)’s on p. For
example, in the special case in which F (x, p) is affine in p, and P is a polytope, it is enough
to test feasibility at the vertices of the polytope, which offers a significant reduction on the
computational cost. Other techniques include discretization methods (not exact), convex
covering (can be conservative) etc.

In many cases the set P is described by a set of polynomial inequalities as shown in
(1.2) and/or the PLMI given by (1.1) is not affine in p. Our aim is to obtain potentially
conservative LMI conditions that guarantee the solvability of the original PLMI. One way
of generating such conditions is through the use of the sum of squares technique, related to
the notion of sum of squares (SOS) matrix [24]. A PLMI F (x, p) can be written as:

F (x, p) = (In ⊗ Z(p))T Q(In ⊗ Z(p)) (1.3)

where In denotes the n × n Identity matrix, Z(p) is a properly chosen vector of monomials
in p, and Q is a symmetric matrix of appropriate dimensions. Then Q � 0 implies that
F (x, p) ≥ 0. In special cases (e.g. for n = 1), Q � 0 is necessary and sufficient for
F (x, p) ≥ 0. In fact the condition Q � 0 is equivalent to

f(v, x, p) = vT F (x, p)v is SOS (1.4)

for all v = [v1, . . . , vm] [27, 25].
The conditions gi(p) ≤ 0, which may describe the set P , can be adjoined to f(v, x, p) ≥ 0

using sum of squares multipliers σi(v, p) = vT Ξi(p)v, where Ξi(p) = Ξ0 + pΞ1 + . . .+ plΞl are
symmetric matrices with polynomial entries of order l:

f̃(v, x, p) = vT

{

F (x, p) +
N

∑

i=1

Ξi(p)gi(p)

}

v

If f̃(v, x, p) is a Sum of Squares then F (x, p) +
∑N

i=1
Ξi(p)gi(p) ≥ 0, which in turn implies

that when p ∈ P , then F (x, p) ≥ 0. For increasing l, a nested family of conditions can be
developed.

The method proposed to solve PLMIs suffers from increasing computational burden when
the number of parameters and/or their order is increased. Even though this increase is
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polynomial as one of these two factors is increased (but not both at the same time), currently
only problems with 5-7 variables in 3-4 order can be dealt with efficiently. More appropriate
representations of the problem, apart from reducing computational cost, can also give better
numerical conditioning. For this, factors such as problem structure, algorithm efficiency etc.,
should be taken into account.

1.6 Mihai Putinar

Here are some problems:

1. Supports for NC Positivstellensatze:

So far we were successful to prove NC positivstellensatze only for: polydisks, spherical
isometries, or product of these supports. It would be desirable to have more general
supports. The difficulty in our proof was related to the GNS construction, and the
possibility of extending, from subspaces of a Hilbert space, partial isometries to full
isometries.

2. A trade-off between commutative and NC SOS decompositions.

When commutative SOS decompositions, on prescribed semi-algebraic supports fail,
how far (in terms of rank) one must go with replacing the variables by matrices to
obtain simple, weighted SOS decompositions?

3. Study carefully the degree bounds in the known NC SOS decompositions, such those
we know for spherical isometries.

4. The optimization theory community has paid little attention to the hermitian SOS,
that is of the form |f(z)|2, with the function f analytic in a certain region. There are
two instances where the positivity with respect to this slightly smaller cone is relevant:

• von Neumann type inequalities, for one or several commuting operators (see the
works of Agler, McCarthy, Cole, Wermer,...)

• positive Hermitian bundles on domains of Cd and the associated isometric em-
beddings (see the works of Quillen, Catlin, d’Angelo)

There are considerable advantages of working with such hermitian positivity, and the
bounds one can expect from the resulting polynomial decompositions.

1.7 Bruce Reznick

My interest in Linear Matrix Inequalities is somewhat oblique. What I am really interested
in is the representation of real polynomials in several polynomials as a sum of squares of
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polynomials. This leads directly to the Gram matrix method. Using multinomial notation,
suppose

p(x) =
r

∑

k=1

h2
k(x), p(x) =

∑

α

a(α)xα, hk(x) =
∑

β

bk(β)xβ,

and let B(β) = (b1(β), . . . , br(β)). Then a direct calculation shows that

a(α) =
∑

β+β′=α

B(β) · B(β ′),

for all α, and the matrix [B(β) · B(β ′)] is psd with rank r. Conversely, if V = [v(β, β ′)] is a
symmetric psd matrix with rank r and for all α,

a(α) =
∑

β+β′=α

v(β, β ′),

then p is a sum of squares of r polynomials; V is called a Gram matrix for p.
This algebraic subject was revolutionized by the realization that the underlying matrix

problem is a semidefinite programming problem, and therefore fast computation is possible!
Suppose p =

∑

k h2
k is a sum of squares and p(u) = 0. Then hk(u) = 0, hence

0 = hk(u) =
∑

β

bk(β)uβ (1 ≤ k ≤ r) =⇒
∑

β

uβB(β) = 0.

It should be noted that this restriction comes from the assumption that the Gram matrix is
psd, and not from the linear equations its entries satisfy. Before the recent software advances,
it was usually only practical to apply the Gram matrix method to psd forms with lots of
zeros.

It is natural to ask whether there may be non-trivial restrictions on the Gram matrix of
a polynomial, which are not a consequence of its zeros. Unfortunately, the answer is yes. It
can be shown that the even symmetric ternary sextic

9(x6 + y6 + z6) − 8(x4y2 + x4z2 + . . . ) + 24x2y2z2 =

x2(3x2 − 2y2 − 2z2)2 + y2(−2x2 + 3y2 − 2z2)2 + z2(−2x2 − 2y2 + 3z2)2

has no non-trivial zeros, and yet has a unique Gram matrix. (For algebraic reasons, the
squares of products of irreducible, indefinite polynomials also have unique Gram matrices.)

As a token of appreciation in the other direction, the following result can be proved using
sums of squares, and, ultimately, the Fundamental Theorem of Algebra. For an n×n square
matrix M = [mij], say that the diagonal sums are the sums of the 2n−1 southwest-northeast
diagonals. Then, if M is a psd matrix, then there is another psd matrix M ′ with rank 2,
and the same diagonal sums as M . (In general, for n ≥ 2, there are 2n−2 such matrices.)
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1.8 Carsten Scherer

It is indisputable that linear matrix inequalities have played a fundamental role for recent
advances in robust control. Many interesting problems could be successfully subsumed, at
least conceptually, to the the generic LMI framework. It has turned out, however, that the
suggested generic schemes suffer in their practical application from substantial trouble with
computational complexity and numerical reliability.

It is our strong believe that the main reason for these deficiencies are rooted in a rather
incomplete understanding of how a particular control theoretic structure can be effectively
reflected in LMI solvers for reduced complexity and improved numerical stability. Research in
these directions could have a profound impact on the further dissemination of LMI techniques
within the whole field of control.

The following questions could provide an initial thrust for progress:

1. If considering an interconnection of linear time-invariant dynamical systems, can one
quantify the relaxation error if searching for structured storage functions in order to
prove dissipativity of the interconnection?

2. How can external structure of a system be systematically translated into internal struc-
tural properties of some/all storage functions?

3. Does there exists an H∞-synthesis algorithm for which the the increase of the McMil-
lan degree of weighting functions only leads to a moderate increase of computational
complexity?

1.9 Konrad Schmüdgen

My research interest at the workshop concerns two topics:

1. Noncommutative Positivstellensaetze

This means possible generalizations of classical Positivstellensaetze to noncommmuta-
tive star algebras such as the Weyl algebra or enveloping algebras of Lie algebras. In
two recent papers I have obtained such generalizations of Bruce Reznicks uniform de-
numerator theorem and of Putinar and Vasilescus results in their Annals paper (2000).

2. Moment problems for closed semialgebraic sets

It is the question for which noncompact closed semialgebraic sets the moment problem
is solvable or the assertion of the Archimedean Positivstellensatz holds.

1.10 Levent Tunçel

Even though it was difficult to pick just a few topics and open problems for the workshop,
I eventually decided to mention the following two areas:
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• Computational complexity theory for LMI based convex relaxation methods

• Representation theory for LMIs

LMI Based Convex Relaxation Methods

There are many methods that solve systems of polynomial inequalities by computing the
convex hull of the solution set. In particular, the procedures proposed by Lasserre [11, 12],
Parrilo [15], and [9, 10] (the last approach works with systems of quadratic inequalities, so
the original polynomial system needs to be reformulated using additional variables) do the
job. The convergence theory for the procedures of Lasserre as well as Parrilo rely on the
various foundational theorems of Putinar [17], Schmüdgen [19], Curto and Fialkow, Reznick,
etc.

Currently, there is a rough complexity analysis for the Successive Convex Relaxation
Methods based on the quadratic inequality representation (see Kojima and Takeda [8]; for
an extension to discretized version see [20]). Given any Polynomial Optimization Problem,
we can first write the polynomial system as a quadratic inequality system and then apply the
existing theory. However, the existing theory can certainly improved. Moreover, it would be
more desirable to directly analyze the computational complexity of the procedures on the
original Polynomial Optimization Problem.

There are some obvious complexity measures one can propose for such analysis. It seems
that interesting measures of distance to convexity of a set, diameter, Lipschitz constants,
amount of nonconvexity of the initial formulation, etc. will come into play.

Representation Theory for LMIs

Generalized Lax conjecture “all hyperbolic cones can be expressed as a linear subspace inter-
sected with a positive semidefinite cone” is perhaps one of the most interesting open problems
here. For progress on this conjecture (including a proof of the original Lax conjecture), see
[7, 13, 21]. (Also mentioned by Henrion and Hilton-McCullough-Vinnikov.)

However, I would like to mention another related problem. Let’s us call the above rep-
resentation LMI representation and define a more general tool of representations. Namely,
those which also allow projecting away some of the variables (for some fundamental results
on these representations, pertaining to optimization, see [4, 6]):

Definition 1.10.1. G ⊂ R
d is said to admit a lifted-LMI representation if there exists

L : R
d ⊕ R

m → R
n a linear map such that

x ∈ int(G) ⇐⇒ L(x, u) � 0 for some u ∈ R
m.

Note that a convex cone G admits a lifted-LMI representation iff its dual cone G∗ does.
In addition to this symmetry property, lifted-LMI representations cover a larger class of
convex sets than the LMI representations and in terms of optimization algorithms which are
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used to solve the underlying optimization problems, lifted-LMI representations provide no
additional difficulty (at least from a theoretical viewpoint).

G admits a poly-time, lifted-LMI representation if

max{m,n} = O(poly(d)),

where poly(·) is a polynomial.

Open Problem 1.10.1. Characterize all d-dimensional, pointed, closed, convex cones in

R
d which admit a lifted-LMI representation. I believe that this set of cones strictly contain

the hyperbolic cones.

Open Problem 1.10.2. Characterize all d-dimensional, pointed, closed, convex cones in

R
d which admit a poly-time, lifted-LMI representation. I believe that this set of cones strictly

contain the hyperbolic cones.

Most specifically:

Open Problem 1.10.3. Are all Hyperbolic Feasibility Problems polynomial-time equivalent

to LMI problems?

This last question needs some definitions and clarifications.

Definition 1.10.2. Let p1, p2, . . . , pm : R
d → R be given polynomials. Then the problem

“does there exist x ∈ R
d such that pi(x) ≥ 0,∀i ∈ {1, 2, . . . ,m} is a Hyperbolic Feasibility

Problem (HFP) if every pi is a hyperbolic polynomial.

Next, we define the size(HFP ). The “size” should involve the basic complexity measures
needed to bound the amount of computational effort required (in the Blum-Shub-Smale
real computation model) to “solve” HFP to ε ∈ (0, 1) accuracy using some general class of
well-established algorithms. For instance, we can define

size(HFP ) := max{m, ln(1/ε), ln(R)},

where R > 1 denotes the volume of a given ellipsoid E0 which determines the region in which
we will decide the solvability of HFP. I.e., our problem is to find x̄ ∈ E0 satisfying all the
inequalities. We require that after

poly(size(HLP )) operations

the algorithm either outputs x̄ ∈ R
d such that pi(x̄) ≥ 0,∀i ∈ {1, 2, . . . ,m} or it outputs

“there does not exist a ball of volume at least ε which is contained in

E0 ∩
{

x ∈ R
d : pi(x) ≥ 0,∀i ∈ {1, 2, . . . ,m}

}

.′′

In this context, when we say HFP is polynomial-time equivalent to LMI we mean that
for every HFP (with m, R and a given ε ∈ (0, 1)), we can explicitly describe an LMI such
that
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• the formulated LMI can be solved to ε accuracy in time poly (size(HFP )),

• solving the LMI within accuracy ε, solves the original HFP.

This notion of poly-time equivalence is quite important in optimization theory.
A problem analogous to Problem 1.10.3 was solved in [5] by showing that Second Order

Cone Programming is poly.-time equivalent to Linear Programming.

1.11 Hugo Woerdeman

One of the questions I am interested in is how to approximate numerically the Schur com-
plement of a positive definite operator supported on a finite subspace. Of course there is the
formula that for a block matrix [A B ; C D] the Schur complement is A B inv(D) C, but this
requires determining the inverse of the infinite operator D. The way this question arose is
through attempts to develop multivariable analogs of the Gohberg-Semencul formula. One
way to prove the Gohberg-Semencul formula is by determining the Schur complement of the
inverse of a Toeplitz operator whose symbol is the reciprocal of a positive trigonometric poly-
nomial. In several variables the analogous attempt runs into difficulties. In order to at least
get a decent numerical approximation of the inverse of a doubly Toeplitz matrix, one may
try to find reasonable numerical methods to determine finitely based Schur complements of
infinite operators.
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Chapter 2

Ideas for Teaching

Mihai: OPEN FOR ADDITIONS, CORRECTIONS, REARRANGEMENTS ToDo

A sketch of a plan:

1. General convexity (Hahn Banach, Minkowski separation theorem, Caratheodory’s the-
orem on generators of convex hulls)

2. Weighted sums of squares in free *-algebras

3. The spectral theorem for commuting self-adjoint operators. Note the spectral measure
in physical terms is just the power spectral density.

4. Multivariate moment problems and their dual: weighted SOS decompositions of poly-
nomials

5. Applications (optimization, Lyapunov functions, ...)

6. Real algebra, logic and the full Positivestellensatz

7. More optimization (see Tuncel, Henrion, Lasserre)
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Chapter 3

Other Remarks

3.1 Leonid Gurvits

The van der Waerden conjecture states that the permanent of n×n doubly stochastic matrix
A satisfies the inequality Per(A) ≥ n!

nn
(VDW bound) and was finally proven (independently)

by D.I. Falikman and G.P. Egorychev in 1981 . They both shared Delbert Ray Fulkerson
prize in 1982 .

It was for more than XX years the most important conjecture about permanents. The
VDW bound is the simplest and most powerful bound on permanents and therefore among
the simplest and most powerful general purpose bounds in combinatorics. We introduce and
prove a vast generalization of the VDW conjecture :

Consider a homogeneous polynomial p(z1, ..., zn) of degree n in n complex variables. As-

sume that this polynomial satisfies the property:

|p(z1, ..., zn)| ≥
∏

1≤i≤n

Re(zi) on the domain {(z1, ..., zn) : Re(zi) ≥ 0, 1 ≤ i ≤ n}.

We prove that | ∂n

∂z1...∂zn

p| ≥ n!

nn
.

Our generalization not only affects the world of permanents, but also has important
implications concerning PDEs, stability and control theory , complexity theory. Besides,
our proof is much shorter and conceptually simpler than original proofs as of the van der
Waerden conjecture for permanents as well of the Bapat’s conjecture on mixed discriminants,
proved by the author . The paper with the proof is available at

http://lanl.arxiv.org/abs/math.CO/0504397,

see also the paper at

http://xxx.lanl.gov/abs/math.CO/0404474.
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3.2 Alexandre Megretski

See separate paper “Optimal Model Order Reduction for Finite Length Segments of LTI
System Unit Sample Response”.

3.3 Jiawang Nie

Some topics in polynomial optimization:

1. Using gradients in SOS for approximating minimizing polynomials

2. Convergence rate of Lasserre’s method for solving constrained polynomial optimzation.

3. Practical sos/moment methods for Maximum-Likelyhood estimations

3.4 Frank Vallentin

I am a beginner (or more precisely a user) in the theory of linear matrix inequalities and
my main interest in the workshop is to learn about applications and possibilities of LMIs as
well as about open problems in this theory.

In the past years I was a user of LMIs for problems in classical lattice geometry. In
my Ph.D. thesis I developed and implemented algorithms for solving lattice packing and
covering problems which are based on semidefinite programming. Currently I am interested
in LMIs and convex optimization problems which have many symmetries and usually come
from discrete geometry or combinatorics.

3.5 Jan Willems

I am especially interested in obtaining new insights concerning the relations between LMI’s
and dissipative systems. In particular, I would like to learn how the recent methods involv-
ing multivariable polynomials lead to the construction of storage functions and Lyapunov
functions for systems described in terms of differential equations using polynomial matrices
or matrices of rational functions.
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