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Abstract

The workshop, Spectra of Families of Matrices described by Graphs, Digraphs and Sign Patterns,
was held at the American Institute of Mathematics Research Conference Center on October 23 to
October 27, 2006, focused on three problems: 1. Determination of the minimum rank of real sym-
metric matrices described by a graph; 2. The 2n-conjecture for spectrally arbitrary sign patterns;
and 3. The energy of a graph. This is a report for the workshop that is mainly concerned with the
open questions raised during the workshop regarding those three problems. This report is based on
the group reports by the participants and the final report by the organizers.

1 Minimum Rank of Symmetric Matrices described by
a Graph

The workshop has extended research on the relationship between spectral properties of real symmetric
matrices and the combinatorial arrangements of their nonzero entries described by graphs in several
directions. Research projects developed at the workshop are concerned with (1) minimum rank over
fields other than the field of real numbers R, (2) effect of graph operations on minimum rank such
as the complement and powers of a graph, (3) inertially balanced graphs and (4) computation of the
minimum rank of a graph.

Let G be a (simple) graph and let S,(F) be the set of symmetric matrices over a field F. The
minimum rank of G over field F is

mr' (@) = min{rank(A) : A = [ai;] € S, (F) and for i # j, a;; # 0 if and only if ij is an edge of G}.

When F = R, mr(G) denotes mr®(G). The following two questions concern a relationship among the
minimum ranks of a graph over various fields. Henceforth, the questions Q are open problems raised
at the workshop.

Q1. Does there exist a graph G for which mr®(G) > mr®(G)?

Q2. Does there exist a graph G for which mr%(G) > mr®(G)?

It was shown at the workshop that if G is a connected graph with at most 6 vertices and F is an
infinite field of characteristic not 2, then mr%(G) = mr®(G@) = mr(Q).

Let |G| denote the number of vertices of a graph G and let §(G) be the minimum degree of a
vertex in graph G.



Q3. For any graph G and infinite field F, mr*(G) < |G| — §(G).

Question Q3 is true for any bipartite graph and some graphs with some further restrictions on |G/,
a cut vertex and/or §(G). Minimum rank of non-symmetric matrices described by a graph was also
investigated. A non-symmetric version of Q3 was established and used to prove the result on bipartite
graphs.

The basic question regarding the minimum ranks of a graph G and its complement G is

Q4. How large can mr(G) 4+ mr(G) be? There are two possibilities:

1. Does there exist a constant ¢ > 2 such that mr(G) + mr(G) < |G| + ¢? if so, find the
smallest such c.

2. If not, find the best constant d < 2 such that mr(G) 4+ mr(G) < d|G|.
It was shown at the workshop that all the graphs for which the minimum ranks of both mr(G) and

mr(G) are known so far satisfy mr(G) + mr(G) < |G| + 2.

Consider a more general set of graphs. Given a set S of size n, together with a collection § =
{S1,...Sm} of subsets of S, let Gs be the graph with vertex set S, where two subsets S; and S; are
adjacent whenever they intersect. Thus if every S; has size 2, then G is a line graph.

If we restrict S to all subsets S with a given size k, then Gs is the complement of the Kneser
graph K(n, k). It is known that if S consists of all subsets of S, then mr(Gs) = n. It is also known
that the minimum rank equals n — 2 if k = 2. It is not difficult to show that the minimum rank is at

most n — 1 and at least n — 2k + 2 (provided 1 < k < n/2).
Q5. Is the lower bound on the minimum rank of such graphs sharp?

The conjecture if true if k =2 and k =n/2.

Let G = (V, E) be a graph with vertex set V = {1,2,...,n} and edge set E. The j-th power of
graph G is the graph G = (V, F) where uv € F (u # v) if and only if there is a walk of length j
between u and v. The question considered on powers of a graph G are

Q6. What is the relationship between mr(G) and mr(G?)?
Q7. Characterize the graphs G for which mr(G’) > mr(G’*!) for all j > 1.

For trees T', Q7 can be rephrased as the following.

Q8. Is it the case that for each tree T # Ki -1, the sequence mr(T), mr(T?),... decreases
strictly until it hits 27

In order to determine the minimum rank for several classes of graphs, a central role is played
by the relative position of the packet of zero eigenvalues in the spectrum of a matrix (so called an
optimal matriz) that achieves the minimum rank. The inertia of a real symmetric matrix A is an
ordered integer triple (i4(A),i—(A),i0(A)) where iy (A) (resp. i—(A) and i9(A)) is the number of
positive (resp. negative and zero) eigenvalues of A. A matrix A is inertially balanced if i—(A) <
i+(A) <i_(A) 4+ 1. An inertially balanced graph is a graph that has an inertially balanced optimal
matrix. A graph G is minimal non-inertially-balanced if G is not inertially balanced, while all proper
induced subgraphs of G are inertially balanced. The fact that at present there are no examples of
graphs that fail to be inertially balanced leads us to the following question.

Q9. Are all graphs inertially balanced?

Balanced inertia is related to the notion of rank-spread r,(G) of a graph G at a vertex v that is
defined to be r,(G) = mr(G) — mr(G \ v), where G \ v is the induced subgraph of G obtained by
deleting vertex v and all the incident edges to v. For instance, it was shown at the workshop that a
minimal non-inertially-balanced graph has no (so called rank-strong) vertices v with r, = 2 and no
(pendant) vertices of degree one. From this result, it can be shown that the existence of a sequence of
rank-strong vertices provides a method for the construction of optimal inertially balanced matrices.
A natural question arising in this context is



Q10. Do there exist graphs with only rank-strong vertices?

2 Spectrally Arbitrary Sign Patterns and the 2n-Conjecture

An n x n zero-nonzero pattern A over a field F is an n X n matrix whose entries are in {*,0} where
x denotes a nonzero element in F. If F = R and x* is replaced by =+, then A is a sign pattern.
Spectrally arbitrary sign (or zero-nonzero) patterns allow every possible spectrum of a real matrix, or
equivalently allow every monic real polynomial as the characteristic polynomial. Inertially arbitrary
sign (or zero-nonzero) patterns allow every possible inertia.

The 2n-conjecture asserts that an n x n spectrally arbitrary pattern must contain at least 2n
nonzero entries. It is known that an n X n irreducible spectrally arbitrary matrix has at least 2n — 1
nonzero entries, and numerous examples of n X n spectrally arbitrary sign patterns with 2n nonzero
entries are known. The crux of each known proof for the existence of at least 2n — 1 nonzero entries
is the simple fact that if a polynomial function f : R¥ — R™ is surjective, then necessarily k > n.
The particular polynomial function of interest for an n X n sign (or zero-nonzero) pattern A with m
nonzero entries is constructed by choosing a collection of n — 1 nonzero entries that correspond to
a spanning tree in the underlying graph of the digraph of A; setting A(z1,...,Tm-n+1) to be the
matrix with the chosen n — 1 entries equal to 1 and the remaining m — n 4+ 1 nonzero entries being in-
determinates 1, .. ., Zm—n+1; and then defining fa = (p1(z1,. .., Tm-n+1),-- -, Pn(T1, -+, Tm-nt1)),
where det(z] — A) = 2™ + p1(x1, ... ,xm,nﬂ):c"*l + -+ pa(x1,. .., Tm—n+1). If the irreducible
2n-conjecture is true, then it is suspected that the polynomial function f4 for a spectrally arbitrary
pattern A has special properties.

Q1. What are the necessary and sufficient conditions for a polynomial function f to be
equal to f4 for some spectrally arbitrary sign (or zero-nonzero) pattern A7

Q2. Is there anything special about f4 coming from det(zI — A(x1,...,Zm—n+1)) rather
than x(zI — A(x1,...,Zm-n+1)) Where x is an immanent?

In order to gain additional insight into the 2n-conjecture, the following related problem was
posed and studied at the workshop. Let A be an n X n sign (or zero-nonzero) pattern and let
B = {i1,...,ix} be a subset of {1,...,n}. Then A is a (-spectrally arbitrary pattern provided
that for each k-tuple (r1,...,7%) of real numbers, there is a realization A of A whose characteristic
polynomial " + 37| ;™" satisfies a; =r;forj=1,... .k

Q3. For an integer k with 1 < k < n, what is the minimum number of nonzero entries
in an n x n irreducible sign (or zero-nonzero) pattern that is S-arbitrary for some
8 with |3] = k?

The notion of a spectrally arbitrary zero-nonzero pattern can be extended to an arbitrary field
as follows. An n X n zero-nonzero pattern A is spectrally arbitrary over a field F provided that every
monic polynomial of degree n in F[z] is the characteristic polynomial of some matrix with zero-nonzero
pattern A and entries in F.

Q4. Does every n x n zero-nonzero pattern over an infinite field with nonzero charac-
teristic have at least 2n nonzero entries?

It was shown at the workshop that the 2n-conjecture is true for zero-nonzero patterns over finite field,
and that the classes of spectrally arbitrary zero-nonzero patterns over R and over C are different.
The recent discoveries of very sparse, reducible inertially arbitrary zero-nonzero patterns and a
spectrally arbitrary sign pattern (SAP for short) that is a direct sum of a non-SAP and an SAP
suggest that one might be able to use direct sums of non-SAPs to construct an n x n SAP with fewer
than 2n nonzero entries. Research in this direction is concerned with the following two problems.



Q5. Does there exist a reducible n x n spectrally arbitrary sign pattern with fewer than
2n nonzero entries?

Q6. Does there exist a spectrally arbitrary sign pattern that is a direct sum of two sign
patterns that are not spectrally arbitrary?

The necessary conditions for a sign pattern A = [a;;] to be inertially or spectrally arbitrary are
that (N1) there exist indices 4, j such that a;; = + and aj; = — and (N2) there exist indices k, £ such
that ag rapr = —. Since a full sign pattern (with no zeros) has so much freedom in choosing values
for its nonzero entries, it is natural to ask if a full sign pattern A satisfying the necessary conditions
(N1) and (N2) is spectrally arbitrary. An investigation suggests that we need at least one addtional
condition that A has a nilpotent realization.

Q7. Is a potentially nilpotent full sign pattern A with the conditions (N1) and (N2)
necessarily spectrally arbitrary (or inertially arbitrary)?

Another question regarding full sign patterns is:

Q8. Is there a spectrally (inertially) arbitrary sign pattern having a (full) superpattern
that is not spectrally (inertially) arbitrary?

3 Energy of Graphs

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of the adjacency
matrix. It has applications to chemistry. Certain quantities of importance to chemists, such as the
heat of formation of a hydrocarbon, are related to m-electron energy that can be calculated as the
energy of an appropriate “molecular” graph. The following questions arose as a result of the study
on the effect on energy of adding, removing or subdividing an edge of a graph. The subgraph of a
graph G obtained by deleting an edge e is denoted by G\ e.

Q1. If e is an edge of a connected graph G such that E(G) = E(G \ e) + 2, then is it true
that G = K> where K> is the complete graph of order 27

Q2. Are there any graphs G such that
E(G\e)=E(G)+2

for some edge e of G?
Q3. Which connected graphs have an edge e such that E(G\e) = E(G)?

Q4. Let H be a graph obtained by subdividing an edge of a connected graph G. If
E(H) < E(G), then what are necessary conditions for G?

A quantity investigated at the workshop is the maximal energy per vertex over k-regular graphs

G on n vertices,

flk) = max%.

Q5. If ¢ is a prime power, then is it true that

1
f(fZ+1):\/§+m7

Let G be a graph on n vertices with m edges and let L be the Laplacian matrix of G with
eigenvalues A1,...,A\n. The Laplacian energy Er(G) of graph G is the sum of the absolute values of
eigenvalues A1,..., A, minus the average degree sz Let d = (du,...,dn) be the degree sequence of
G, A= (A1,...,\n) and let d* = (d7, ..., d;,) be the conjugate sequence of d.



Q6. (Grone-Merris conjecture) Is A majorized by d*?

It was shown at the workshop that if the Grone-Merris conjecture is true, then

d;f_2_m
n

EL(G) < zn:




