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INTRODUCTION

The following are a set of the questions, conjectures, and possible further research
directions that were discussed at the AIM Workshop on Moment Maps and Surjectivity in
Various Geometries that took place August 9–13, 2004. The questions are roughly grouped
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into topics. Moreover, the name of the workshop participant who offered or posed a particular
question, insight, or comment has (as much was possible) been preserved.

This set of notes was prepared for the purpose of preserving and offering to a wide
audience (including, but not limited to, the workshop participants) a sampling of questions
which the participants feel are interesting and important for future work in this field. We
hope that those who search here will find interesting projects and directions to pursue (and
perhaps Ph.D. dissertation topics for graduate students).

Comments on these notes can be sent to workshops@aimath.org

Good luck! — Megumi Harada

1 HyperKähler Kirwan surjectivity

We first explain briefly some history. Frances Kirwan, in an unpublished manuscript [Kir85],
gave a proof of Kirwan surjectivity for hyperKähler manifolds under certain conditions on
the moment map and the gradient flow. In this manuscript, she gave two different proofs
of this result: one is contained in Sections 3 and 4, and the other is contained in Section 5.
She later found an error in her argument in Section 4 (Lemma 4.2), and she never published
the manuscript.

The existence of this unpublished manuscript was known to some participants at the
AIM workshop, and unknown to others. There were some lively discussions regarding Kir-
wan’s manuscript in the AIM discussion sessions. We summarize below what is stated in the
unpublished manuscript and the results of the discussions at the AIM workshop.

Conjecture 1.1 Let X be a hyperKähler manifold with a hyperHamiltonian action of a
compact Lie group G. Let f denote the norm-square of the hyperKähler moment map. Sup-
pose that for every x ∈ X the forward trajectory of x under the negative gradient flow of f
is contained in a compact subset of X. Then there is a surjection

H∗
K(X)→ H∗

K(µ
−1
HK(0))

in K-equivariant cohomology.

Comment 1.2 Kirwan, in stating her theorems, actually requires that one of the following
hold:

1. The original hyperKähler manifold is compact.

2. The norm-square of the hyperKähler moment map is proper.

3. For every x ∈ X, the forward trajectory of x under the negative gradient flow of the
norm-square of the hyperKähler moment map is contained in a compact subset of X.

(Note that 1 implies 2 implies 3.) The first and second hypotheses are almost never fulfilled,
so the only relevant hypothesis is the last one. We have therefore stated Conjecture 1.1 using
this last hypothesis.
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Comment 1.3 Section 3 of Kirwan’s manuscript deals with the case where the group is
abelian. The participants at the AIM workshop tentatively agreed that in this case, under
the hypotheses of the conjecture above, the argument seems to be identical to the one given
by Kirwan for the original surjectivity (for the symplectic case). The only difference is that
we replace the moment map by the hyperKähler moment map. However, we (the AIM
participants) did not check the details in this case.

Comment 1.4 Kirwan’s third hypothesis (that the gradient flows are contained in compact
sets) holds for linear G-actions on T ∗Cn, by an argument similar to the one given by Sjamaar
[Sja98] for linear G-actions on Cn. Here, G can be nonabelian. Thus, if the conjecture is
correct, we have Kirwan surjectivity for quiver varieties.

Comment 1.5 Section 5 of Kirwan’s manuscript, which gives her second proof of hy-
perKähler Kirwan surjectivity, uses the “plus construction” of Carrell-Goresky [CG83] when
µ−1C (0) is singular. (In almost all examples of interest, µ−1C (0) is indeed singular.) The work-
shop participants were confused on the following points: first, the results in Carrell-Goresky
are stated for homology, not cohomology. Second, their results are not stated equivariantly.
Regarding the first point, S. Wu believes that having the result for homology is not a prob-
lem; as long as there is a filtration, there are spectral sequences for both homology and
cohomology. Regarding the second, S. Wu and J. Weitsman had a discussion during the
workshop in which they seemed to conclude that the flow of the square of the moment map
seems to define an R2 action rather than a C∗ action, so we did not understand why the
theorem in [CG83] can be applied. The workshop participants hope to come to a better
understanding on these points.

2 3-Sasakian surjectivity

Conjecture 2.1 (C. Boyer) Let S be a complete compact 3-Sasakian manifold with a con-
nected compact Lie group G ⊂ Aut(S) acting on S. Consider the 3-Sasakian reduction Sred
(reduction at 0). Then the 3-Sasakian Kirwan map

H∗
G(S)→ H∗(Sred)

is surjective up to the middle dimension. Here we take either Q or R coefficients.

Comment 2.2 (C. Boyer) We know the conjecture is true for S1-reductions of spheres. Note
also that in odd dimension, “up to the middle dimension” is all we can hope for. Boyer,
Galicki, and Piccinni [BGP02] have constructed some examples of 3-Sasakian quotients for
which they don’t know how to compute cohomology, and Kirwan surjectivity would be a
nice way to get at some cohomology.

Comment 2.3 (C. Boyer and T. Hausel) We might need some additional hypotheses for
the nonabelian case, but T. Hausel has some ideas about how to prove something like this
for abelian reductions.

Namely, the surjectivity in the 3-Sasakian case should be related to surjectivity for
hyperKähler quotients.
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We consider a more specific example. Suppose there is an action of Sp(n + 1) acting
on S4n+3. Restrict to an action of a compact subgroup G of this Sp(n + 1). Consider the
3-Sasakian reduction S4n+3///G, and additionally assume that this is orbifold. We conjecture
that, in this case, the 3-Sasakian Kirwan map is surjective to the middle dimension of the
quotient.

Here is a tentative idea of the proof. Look at the correponding hyperKähler quotient.
Consider the same group G acting now on Hn+1, which containes S4n+3 as its sphere. Let X
denote now the hyperKähler quotient. The spaceX might be singular since Gmight not have
a center. But now suppose there exists some ξ in the center of G so that the hyperKähler
quotient is orbifold. Assume also that the quotient is hypercompact (see Definition 6.9),
so the core is middle-dimensional. Then, in this case, the surjectivity of the hyperKähler
Kirwan map should imply the surjectivity (up to middle dimension) of the 3-Sasakian Kirwan
map. T. Hausel thinks this should be an elementary argument. C. Boyer and T. Hausel will
be pursuing this line of thought after the AIM Workshop ends.

Question 2.4 (T. Hausel) Is there a Martin theorem for 3-Sasakian quotients? What
about for Sasakian quotients? Getting a Martin-type formula requires Kirwan surjectivity,
but perhaps surjectivity “up to middle dimension” would be enough to get a Martin-type
theorem for the 3-Sasakian case.

Comment 2.5 (J. Munn) Martin’s theorem probably should be extendable analytically in
the polysymplectic case. Since 3-Sasakian manifolds can arise as boundaries of hyperKähler
manifolds, we can look at compact cohomology based on the 3-Sasakian manifold (regarded
as a boundary). Here we can ignore cone points and do integration theory.

Question 2.6 (C. Boyer) In the case of 3-Sasakian reduction by abelian groups, would it
be possible to extract information about the cohomology of the reductions by using fixed
points of smaller tori?

The question is motivated by the fact that some cases of 3-Sasakian reductions of
spheres by S1 is well-understood. Suppose there is a circle action on S4n+3, where the action
is locally free on the whole sphere, and free on the zero level set. Then one can see explicitly
that H∗

S1(S4n+3;Q) surjects onto H∗(S4n+3///S1;Q), up to the middle dimension.

The idea would be to look at the fixed point set MH for subtori H ⊂ T, where we start
with the abelian group T acting on the 3-Sasakian manifold M . Note that the fixed point
sets MH are contact, and for the Sasakian case, known examples of MH are spheres.

Comment 2.7 (C. Boyer) Main references for 3-Sasakian toral reductions are [BG99, BGM94,
BGMR98].

3 Kirwan surjectivity for contact quotients

Question 3.1 (E. Lerman) Kirwan surjecitivty cannot work for contact quotients. Here is
a counterexample: consider S3 ⊂ C2 with the action of S1 given by λ · (z1, z2) = (λz1, λ

−1z2).
The S1-equivariant cohomology of this S3 is the ordinary cohomology of P1. On the other
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hand, the contact moment map is µ : (z1, z2) 7→ |z1|2 − |z2|2. Hence the contact quotient is
µ−1(0)/S1 = S1. There is no surjective map from H∗(P1) to H∗(S1).

Nevertheless, there are still interesting questions to ask: what is the kernel? What is
the cokernel?

Comment 3.2 (C. Boyer) It would also be interesting to ask under what conditions a
contact Kirwan surjectivity would hold. There may be a class of spaces for which surjectivity
would hold in the 3-Sasakian case (although perhaps with some dimension condition, as in
the “up to middle dimension” clause in the 3-Sasakian surjectivity conjecture above).

4 Orbifold cohomology and surjectivity

The starting point of this discussion is the theorem of Goldin, Holm, and Knutson.

Theorem 4.1 (Goldin-Holm-Knutson) Let (M,ω) be a compact Hamiltonian T -space
with moment map µ. Let α be a regular value of µ. Then the direct sum

⊕g∈TH
∗
T (M

g;Q)

has a ring structure such that there exists a natural ring map

⊕g∈TH
∗
T (M

g;Q)→ H∗
orb(M//αT ;Q)

is a surjection. Here M g denotes the points in M fixed by the element g ∈ T, and orbifold
cohomology H∗

orb is in the sense of Chen and Ruan.

Comment 4.2 (E. Lerman) A more standard definition of Horb
∗ is due to Haefliger; it

precedes Chen-Ruan’s definition by at least a decade or two.

Question 4.3 (M. Pflaum) Is there an analogous theorem for compact non-abelian Lie
group G?

Comment 4.4 (M. Pflaum) The generalization to non-abelian G would be interesting from
the point of view of quantization of singular reduced spaces and cross product algebras, as
they appear in symplectic orbifold theory.

Comment 4.5 (R. Goldin, T. Holm) The main problem would be in defining the product
structure on the ring in the LHS of the statement of the theorem. In the theorem of Goldin-
Holm-Knutson, they use in a fundamental way the commutativity of the group structure
when defining this product structure.

Comment 4.6 (R. Goldin, T. Holm, M. Pflaum) We expect a theorem of this nature to be
true if we take only the additive structure.

Note also that it is clear that we can’t simply replace T by G naively. One idea for
how to adjust the theorem would be to take the product in the LHS over conjugacy classes
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of G instead of all elements of G. Another idea would be to take the product on the LHS to
be ∏

g∈G

H∗
G(∪h∈GMhgh−1

)

instead.

This question on a non-abelian version of the theorem of Goldin-Holm-Knutson was
a topic during the small group discussion sessions at the AIM workshop. We now present
some of the conclusions and comments arising from this discussion (R. Goldin, T. Holm,
M. Pflaum).

One possible approach to this problem would be to use the groupoid language for
orbifold cohomology. In other words, given an orbifold which is a symplectic reduction by
a torus, we may translate the theorem of Goldin-Holm-Knutson into the language of proper
étale Lie groupoids. We may then try to use the approach of Moerdijk on descriptions of
orbifolds by proper étale Lie groupoids [MM03]. This approach could give a new description
of the ring structure of the orbifold cohomology – at least, of orbifolds appearing as global
quotients by a torus. It is possible that this new description would also suggest a product
structure for the non-abelian case.

Comment 4.7 (C. Boyer) There may be some subtleties regarding Morita equivalent groupoids
representing the same orbifold.

Another approach would be to use methods from Hochschild and cyclic homology
theory. One can use

HC∗(C∞ oG)

to obtain the orbifold cohomology H∗
orb(X,C).

Still another approach would be to use crepant resolutions (i.e. the crepant resolution
conjecture for orbifold cohomology).

5 Topological aspects of moment map theory

Question 5.1 (E. Lerman) Kirwan surjectivity is not really a “symplectic” result — it’s
more a topological result which relies on certain topological properties of the moment map.
So a similar result can be obtained for maps other than a moment map. See [LT97] for an
example, where the topology of a small resolution of singular symplectic reduced space was
computed using a map which was not a moment map. Can one prove similar results in the
hyperKähler case?

There is a theory of “abstract moment maps” developed in [GGK02] which isolates
those properties of moment maps that make the familiar theorems hold. The setting is
roughly as follows; see [GGK02] for details. Suppose given an action of G on a manifold M .
Note that M does not necessarily have a symplectic structure. An abstract moment map is
a map µ : M → g∗ satisfying G-equivariance as well as some conditions involving subgroups
H of G and its fixed points MH . However, a valid example of an abstract moment map is
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the constant function on R2, where the group S1 acts by rotation. Thus, to get a function
suitable for Morse-Bott theory, we must add some condition of non-degeneracy.

We define, following [GGK02], an abstract moment map to be non-degenerate if its
components are Morse-Bott, and for each component, the critical sets for that component
correspond to the fixed point set MG.

Conjecture 5.2 (G. Landweber) Kirwan surjectivity holds under these conditions.

Comment 5.3 (M. Harada, T. Holm, L. Mare) For S1-actions, this is shown (under the
additional assumption that M is compact) in [GGK02]. The proof for T -actions in [GGK02]
contains an error.

Comment 5.4 (G. Landweber) Given an action of G on M with abstract moment map,
can one find symplectic forms at least locally? If so, can we do the necessary geometry just
using these local symplectic forms?

Comment 5.5 (M. Harada) The first question in the comment above is addressed in The-
orem G.22 of [GGK02]. Roughly, it says that if the abstract moment map is non-degenerate
and symplectic slices admit an invariant complex structure, then there is a symplectic form
in a neighborhood of an orbit associated to the abstract moment map.

Question 5.6 (G. Landweber) In standard Morse theory, every function is arbitrarily close
to a Morse function. In the space of abstract moment maps, is every abstract moment map
arbitrarily close to a non-degenerate abstract moment map?

Question 5.7 (G. Landweber) We can model the local structure on M using abstract mo-
ment maps. Is there an analogous statement for contact moment maps? Is there a theory of
abstract contact moment maps?

Question 5.8 (E. Lerman) Can we prove Kirwan surjectivity without Morse theory? The
motivation for this question comes from the fact that two fundamental results in the theory
of symplectic moment maps — connectedness and convexity, which were originally proved
using Morse theory have an alternative proof [CDM88]. This alternative approach works
well in the contact setting (equivalently in the setting of symplectic cones) where Morse
theory fails. The reasons for the failure in the contact setting are due to the fact are that
the contact moment maps are not Morse and that there is no relationship between critical
points and isotropy groups. In the equivalent setting of symplectic cones the moment maps
are not proper.

Comment 5.9 (E. Lerman) As mentioned in Question 5.8 above, for contact moment maps,
one can show the convexity of the contact moment map image [Ler02] for tori of high enough
dimension using methods of [CDM88]. A quick note on what “high enough” means: convexity
fails for 2-tori and connectedness fails for circles. However, both are true for tori of dimension
3 and higher, as long as zero level set of the moment map is empty (which is true in the toric
case).

Comment 5.10 (C. Boyer). There exists a version of Morse theory “through a range,” as
in the instanton moduli space. Perhaps this is applicable in the contact case.
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6 The cohomology of hyperKähler quotients

This section is an edited version of T. Hausel’s talk given at AIM during the workshop, in
which he listed many conjectures and open problems. The main examples of hyperKähler
manifolds considered in his talk were the moduli spaces of Higgs bundles on a Riemann
surface, Nakajima’s quiver varieties, and hypertoric manifolds (introduced by Bielawski-
Dancer). Note that all examples hyperKähler quotients that T. Hausel considers here take
the form T ∗A////G, i.e. they are hyperKähler reductions of cotangent bundles to an affine
space.

6.1 Generators for the cohomology ring of the quotient

A version of this conjecture was already presented as Conjecture 1.1, but we state it again
here in T. Hausel’s formulation, for good measure:

Conjecture 6.1 (T. Hausel) The hyperkähler Kirwan map κ : H∗
G(T

∗A) ∼= H∗(BG) →
H∗(T ∗A////ξG) is surjective.

Comment 6.2 Here is what is known about the three main examples (moduli spaces, quiver
varieties, and hypertoric varieties).

• It is known for M1
Dol(GL(2,C)) by (Hausel-Thaddeus 2000), for Md

Dol(GL(n,C)) by
(Markman 2001)

• For quiver varieties it is conjectured by (Nakajima 2002), for hyperpolygon spaces it
is proven in (Konno 2000, Hausel-Proudfoot 2003)

• For hypertoric manifoldsM(A, ξ) it is known by (Konno 2000, Hausel-Sturmfels 2002)

6.2 Integration theory on hyperKähler manifolds

To state the conjectures here, we must first make a few definitions.

Definition 6.3 A smooth oriented manifold M with a circle action U(1) on M is circle-
compact if the set of fixed points MU(1) is compact.

Note that the natural circle action on the fiber directions of T ∗A induces a natural
circle action on the hyperkähler quotients. With this circle action all of our examples (moduli
spaces, quiver varieties, hypertoric varieties) are circle-compact.

Definition 6.4 (T. Hausel, N. Proudfoot) Let M be an oriented manifold with a U(1)
action such that M is circle-compact. Then the rationalized U(1) equivariant cohomology is
defined as the vector space

Ĥ∗
U(1)(M) := H∗

U(1)(M)⊗Q[u] Q(u),

8



over the field Q(u) of rational functions. For α ∈ Ĥ∗
U(1)(M) we define

∫

M

α :=
∑

F

∫

F

i∗F (α)

E(NF )
∈ Q(u)

Comment 6.5 (S. Wu) There is related work of E. Prato and S. Wu [PW94] which takes
the approach of interpreting the right-hand side of the definition above as a tempered dis-
tribution.

Comment 6.6 (T. Hausel) It would be interesting to make sense of this definition in terms
of equivariant differential forms.

Question 6.7 (M. Libine) Here is another way to view integration theory. Let M be a
noncompact symplectic manifold which is real algebraic. Let T be a compact torus, acting
onM Hamiltonianly with a proper moment map µ. Assume that µ is semi-algebraic. Suppose
MT is compact. Let α be an equivariant form on M which is semi-algebraic as a map from g

to the space of differential forms on M (smooth, not necessarily polynomial). Then it should
be possible to define the integral ∫

M

α

geometrically, so that the localization theorem holds. The integration takes values in smooth
functions on the Lie algebra. The hypotheses given here should not be very restrictive.

The first result is

Theorem 6.8 (Hausel-Proudfoot 2003) The pairing on Ĥ∗
U(1)(M) given by

∫

M

α ∧ β

is non-degenarate.

This gives us a “Poincaré duality” for this pairing and allows us to do kernel compu-
tations.

Definition 6.9 A hyperkähler manifold M is hypercompact for the complex structure I, if
there is a ωI-Hamiltonian circle action on M , with proper moment map with finitely many
critical points and a minimum, such that the holomorphic symplectic form ωC := ωJ + iωK ,
for λ ∈ C× satisfies λ∗ωC = λωC.

Using this definition, we make the following

Conjecture 6.10 (T. Hausel 2003) Let M 4n be a hyper-compact hyperkähler manifold and
σ(M) denote the signature (corresponding to the ordering, given by the sign of the leading
term) of the pairing on Ĥ∗

U(1)(M). Then

(−1)nσ(M) ≥ 0.

Comment 6.11 (T. Hausel) This conjecture is known in the hypertoric case, where it is
in fact the Brown-Colbourn inequality for the the h-numbers of a matroid, which was first
proved in the context of reliability of computer networks.
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6.3 Abelianization

We now state some theorems and conjectures related to the abelianization procedure, given
in the symplectic case by S. Martin.

Theorem 6.12 (Hausel-Proudfoot 2003) In the construction of hyperkähler quotients let A
be finite dimensional and G compact. Let T ⊂ G be a maximal torus of G. Suppose that
T ∗A////G and T ∗A////T are both circle compact. If α ∈ Ĥ∗

U(1)×G(T
∗A), then

∫

T ∗A////G

κ̂G(α) =
1

|W |

∫

T ∗A////T

κ̂T (α) ∧ e,

where
e =

∏

a∈∆

a(u− a) ∈ (Sym t∗)W ⊗Q[u] ∼= HU(1)×G(pt).

Theorem 6.13 (Hausel–Proudfoot 2003) Suppose that T ∗A////G and T ∗A////T are equiv-
ariantly formal, circle compact, and that the Kirwan map κG : H∗(T ∗A)→ H∗(T ∗A////G)
is surjective. Then

H∗
U(1)(T

∗A////G) ∼=
H∗
U(1)(T

∗A////T )W

Ann(e)
.

The ring H∗
U(1)(T

∗A////T ) has been calculated in (Harada-Proudfoot 2002). Thus
surjectivity of the hyperkähler Kirwan map ⇒ description of the cohomology ring of the
hyperkähler quotient. This program has been completed only in the case of the hyperpolygon
spaces of Konno by (Hausel-Proudfoot 2003), obtaining the circle equivariant cohomology
ring of the hyperpolygon space of (Harada–Proudfoot 2003).

Conjecture 6.14 (Hausel 2000) Suppose that both T ∗A////G and T ∗A////T are hyper-
compact. Then

H∗(T ∗A////G) ∼= H∗(T ∗A////T )W

Ann(ẽ)
,

where
ẽ =

∏

a∈∆

a ∈ (Sym t∗)W ∼= HT (pt)
W .

6.4 Equivariant intersection numbers on Md
Dol(SL(n, C))

The following theorems and conjectures are motivated by similar work by Witten on other
moduli spaces.

Theorem 6.15 (Hausel-Szenes 2003) Let α ∈ H2
U(1)(M1

Dol(SL(2,C)) ∼= Z be the positive

integral generator, M :=M1
Dol(SL(2,C))

BA(y) =

(
2

u

)g−1
(

2
(1−y/u)2

+ u
)g

(
ey u+y

u−y
− e−y u−y

u+y

)
y2g−2(u2 − y2)g−1

,

10



we have
∫

M

eα = Res
y=0

BA(y) + Res
y=−u

BA(y) + Res
y=u

BA(y)

= −
∑

b

Res
y=b

BA(y),

where the last sum is taken over the solutions of the Bethe-Ansatz equations:

eb
u+ b

u− b
= e−b

u− b

u+ b

Conjecture 6.16 (Nekrasov–Shatasvili–Moore 1998, Hausel–Szenes 2004) The equivariant
volume of Md

Dol(SL(n,C)): ∫

M

eα =
∑

F

∫

F

eα

E(NF )

(and indeed all equivariant intersection numbers ofMd
Dol(SL(n,C))), can be described as an

iterated residue of a certain expression

BA(y1, y2, . . . , yn).

Some of the poles of the expression BA are in one-to-one correspondence with ordered par-
titions of n, and the rest are the solutions of certain Bethe Ansatz equations. The iterated
residue taken at a pole corresponding to the ordered partition n = λ1 + · · ·+ λk, agrees with
the contribution to the equivariant volume by the components of type (λ1, λ2, . . . , λk). More-
over minus of the sum of the residues at the Bethe poles give the equivariant volume of the
Higgs moduli space.

6.5 Arithmetic approach

Fix a compact Riemann surface Σ and a pair of relatively prime integers n and d. Carlos
Simpson’s nonabelian Hodge theory provides a diffeomorphism between Md

Dol(GL(n,C)),
the moduli space of rank n degree d Higgs bundles, and Md

B(GL(n,C)), the moduli space
of twisted n-dimensional representations of π1(Σ):

Md
B(GL(n,C)) := {A1, B1, . . . , Ag, Bg ∈ GL(n,C)|
A−11 B−11 A1B1 . . . A

−1
g B−1g AgBg = ξnId}/GL(n,C)

The strategy of (Hausel–Rodriguez-Villegas 2003) for getting the Betti numbers of
Md

B(GL(n,C)) is to count the rational points of the variety over a finite field Fq. Thus we
have to count points of

MB(GL(n,Fq)) := {A1, B1, . . . , Ag, Bg ∈ GL(n,Fq)|
A−11 B−11 A1B1 . . . A

−1
g B−1g AgBg = ξnId}/GL(n,Fq),
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for which (Frobenius–Schur 1907) gives:

#{MB(GL(n,Fq))} =
∑

χ∈Irr(GL(n,Fq))

|GL(n,Fq)|2g−2
χ(1)2g−1

χ(ξn)

Deligne’s mixed Hodge structure for

M :=Md
B(GL(n,C))

gives two filtrations on the cohomology Hk(M,C) whose associated graded is
⊕

p,q

Hp,q;k(M),

we denote by hp,q;k the dimension of Hp,q;k(M).

Hn(x, y, t) :=
∑

p,q,k

hp,q;k(M)xpyqtk,

is the mixed Hodge polynomial.

Theorem 6.17 (Hausel–Rodriguez-Villegas 2003)

Hn(
√
q,
√
q,−1) = #{MB(GL(n,Fq))}

=
∑

χ∈Irr(GL(n,Fq))

|GL(n,Fq)|2g−2
χ(1)2g−1

χ(ξn)

We now define a function Hn(q, t) which will conjecturally be related to the mixed
Hodge numbers. We define

Vn(q, t) = Hn(q, t)
(qt2)(1−g)n(n−1)

(qt2 − 1)(q − 1)
,

and

Zn(q, t, T ) = exp

(
∑

r≥1

Vn(q
r,−(−t)r)T

r

r

)
.

Then let

Hλ
g (q, t) =

∏

z∈d(λ)

(qt2)(2−2g)`(z)(1 + qh(z)t2`(z)+1)2g

(1− qh(z)t2`(z)+2)(1− qh(z)t2`(z))
.

Here `(z) denotes the leg length and h(z) is the hook length, and h(z) = a(z)+`(z)−1,
where a(z) is the arm length, as in the figure below.

• • • • •
• z• • • • a(z)

• • • •
• • •
• `(z)
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We finally define Hn(q, t), in generating function form:

∞∏

n=1

Zn(q, t, T
n) =

∑

λ∈P

Hλ
g (q, t)T

|λ|.

Using this notation, we have the following conjectures.

Conjecture 6.18 (Hausel–Rodriguez-Villegas 2004) The mixed Hodge polynomial ofMd
B(GL(n,C)),

is given by
Hn(

√
q,
√
q, t) = Hn(q, t)

Example 6.19 The case n = 2 follows from (Hausel–Thaddeus 2000):

H2(
√
q,
√
q, t)/(qt+ 1)2g =

(q2t3 + 1)2g

(q2t2 − 1)(q2t4 − 1)
+
q2g−2t4g−4(q2t+ 1)2g

(q2 − 1)(q2t2 − 1)

−1

2

q2g−2t4g−4(qt+ 1)2g

(qt2 − 1)(q − 1)
− 1

2

q2g−2t4g−4(qt− 1)2g

(q + 1)(qt2 + 1)
,

and when g = 3 :

H2(
√
q,
√
q, t)/(qt+ 1)6 = t12q12 + t12q10 + 6 t11q10 + t12q8 + t10q10

+6 t11q8 + 16 t10q8 + 6 t9q8 + t10q6 + t8q8 + 26 t9q6

+16 t8q6 + 6 t7q6 + t8q4 + t6q6 + 6 t7q4 + 16 t6q4 +

+6 t5q4 + t4q4 + t4q2 + 6 t3q2 + t2q2 + 1.

Conjecture 6.20 (T. Hausel) The Pure rings of Md
Dol(GL(n,C)) and N d(GL(n,C)) (the

moduli space of rank n stable bundles of degree d), i.e. the subrings of the cohomology rings
generated by the classes a2, . . . , an are isomorphic. In particular, unlike the whole cohomology
ring of N d(GL(n,C)), it does not depend on d. Moreover the Poincaré polynomial PPn(t)
of the pure ring is given by:

PVn(t) = PPn(t)
t2(1−g)n(n−1)

(t2 − 1)
,

PZn(t, T ) = exp

(
∑

r≥1

PVn(t
r)
T r

r

)
.

PHλ
g (t) = t4(1−g)n(λ

′)
∏

x∈d(λ);a(x)=0

1

(1− t2h(x))
,

n(λ′) :=
∑

z∈d(λ)

`(z).

∞∏

n=1

PZn(t, T
n) =

∑

λ∈P

PHλ
g (t)T

|λ|.

13



Example 6.21 For the case n = 2, the pure ring is generated by β = a2, and βg = 0,
this is the famous Newstead conjecture for N 1(GL(2,C)), was first proved by (Kirwan 1992,
Thaddeus 1992), while for M1

Dol(GL(2,C)) it was proved in (Hausel–Thaddeus 2000)

Example 6.22 For the case n > 2, similar vanishings for the pure ring of N d(GL(n,C))
was proved by (Earl–Kirwan 1999) using (Jeffrey–Kirwan 1998), which also follow from the
conjecture.

PP3(t) =
1

(t6 − 1) (t4 − 1)
+ t12 g−12

− t8 g−8

t2 − 1
+

1

3

t12 g−12

(t2 − 1)2
− 1

3

t12 g−12

t4 + t2 + 1

− t8 g−8

(t4 − 1) (t2 − 1)
+
t12 g−12

t2 − 1

7 Kernel computations for Kirwan maps

Suppose a compact Lie group G acts linearly on an affine space Cn Hamiltonianly. Consider
the symplectic quotient Cn//αG, for α central and regular. We can also view this space as a
GIT quotient

(Cn \ {the α-unstable locus}) /GC.

Either way, we get a Kirwan map κα

H∗
G(C

n) ∼= H∗
G(pt)→ H∗(Cn//αG).

This gives us a different maps κα and different ideals Iα := ker(κα) depending on our choice
of α.

Note that, from the viewpoint of the GIT quotient, the α-unstable locus for any central
regular α contains points in Cn on which G fails to act locally freely. So instead, let’s look
at

X := (Cn \ { points where G fails to act locally freely}) /GC.

Using this space, we also get a map

f : H∗(Cn) ∼= H∗
G(pt)→ H∗(X/G),

and from the description of the space X it is clear that

ker(f) ⊂ ker(κα), ∀α.

Question 7.1 (N. Proudfoot) In this setting, is it true that we have the equality

ker(f) = ∩αker(κα).

where the intersection is over central regular values α?

14



Comment 7.2 (N. Proudfoot) When G = T is abelian, the conjecture is true. The proof
requires hyperKähler geometry, despite the fact that the statement doesn’t involve anything
hyperKähler. Is it possible to prove it directly?

Question 7.3 (R Goldin) Let G act on Cn as above, and X be as defined above. Then is
the map

H∗
G(C

n)→ H∗(X/G) = H∗
G(X)

surjective? What is the kernel?

Comment 7.4 (M. Libine) We should probably begin by looking at irreducible representa-
tions. Note also that it is possible that X is empty without some additional assumptions on
the action of G.

8 Higgs bundles and relations to gauge theory

Question 8.1 (G. Daskalopolous) For a 3-manifold, the theorem of Corlette gives a corre-
spondence between representations of the fundamental group in SL(2,C) with the space of
Higgs bundles. The question is if under the existence of a contact structure, there is any
additional structure on the space of Higgs bundles as in the surface case. For example, is
there a contact interpretation of the (L2) norm of the Higgs field? Is there a description
of the critical points of the norm of the Higgs field? Can this be used in any way to show
existence of representations of the fundamental group into SU(2) or PSL(2,R)?

9 Intersection Cohomology

Question 9.1 (N. Proudfoot) The intersection cohomology of a singular hypertoric vari-
eties has a “seemingly natural” ring structure (as a quotient of the equivariant cohomology
H∗
T (T

∗Cn) of the original space). Is there, in general, a natural ring structure on the inter-
section cohomology group of a singular hyperKähler quotient?

Comment 9.2 (N. Proudfoot) One setting in which one gets a ring structure on intersection
cohomology is when one has a small resolution, but in the hypertoric examples, Nick is not
aware of any such small resolution.

Question 9.3 (T. Holm) Is there a natural ring structure for the intersection cohomology
of singular Kähler quotients?

Comment 9.4 (E. Lerman) In [LT00], E. Lerman and S. Tolman construct a small resolu-
tion for S1-reduced spaces and thus obtain a ring structure on the intersection cohomology
of the S1-reduction, but their results are special to the S1 case.

Comment 9.5 (R. Sjamaar) In their paper ”ntersection cohomology of symplectic quotients
by circle actions” (to be published in J. London Math. Soc.), Kiem and Woolf produce an
example of a singular symplectic (in fact Kähler) quotient which has two small resolutions
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with distinct cohomology rings. So there appears to be no natural ring structure on the
intersection homology of a singular quotient.

10 Computations over Z

Problem 10.1 (R. Goldin, S. Tolman, J. Weitsman) Describe all the conditions under which
Kirwan surjectivity holds for symplectic reductions over the integers. What are the most
general conditions under which it holds?

Question 10.2 (R. Goldin) Consider the case of smooth toric varieties Cn//T. Is it always
true for all toric varieties?

Question 10.3 (R. Goldin) For which symplectic toric orbifolds [LT97] does the surjectiv-
ity hold over Z? Actually, perhaps the more appropriate question involves looking at the
analogous statement which uses the orbifold cohomology instead of ordinary cohomology.
Also, what happens if we take Z/pZ coefficients?

Comment 10.4 (E. Lerman) Note that in Question 10.3, the issue is not just one of sur-
jectivity but also of the choice of the cohomology theory for the reduced space. I.e. should
one take Chen-Ruan orbifold cohomology? Or that of Haefliger?

One approach to addressing the question would be to look for a good (= optimal)
condition on critical sets of the norm-square of the moment map.

11 Localization formulas for non-compact groups

Question 11.1 (M. Libine) Let M be a compact manifold, and consider T ∗M. Let σ be the
canonical symplectic form on T ∗M . For any other exact symplectic form ω = dα on T ∗M ,
with α|M exact, is it possible to find a diffeomorphism on T ∗M preserving M sending ω to
±σ?

Question 11.2 (M. Libine) If there is no such diffeomorphism, how can we parametrize
symplectic forms on T ∗M up to this equivalence?

Comment 11.3 (M. Libine) Answering this question would provide further extensions to
the Berligne-Vergne localization formula extended to non-compact (reductive) group actions.

12 Volume growth of hyperKähler manifolds

Question 12.1 (H. Konno) Let M be a connected noncompact hyperKähler manifold. Fix
a point p ∈ M. Consider the open ball B(p, r) of radius r around p in M . Describe the
asymptotic behavior of the volume of the ball V ol(B(p, r)) as r →∞. (Fact: this is indepen-
dent of the choice of p ∈M.) It would be interesting to search for examples of hyperKähler
manifolds with different volume growth.
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13 Hodge theory

Question 13.1 (J. Weitsman) SupposeM is a compact Kähler manifold and a Hamiltonian
G-space. Suppose all the ordinary cohomology is of type (p, p). Can we say anything about
the cohomology of the quotient?

Comment 13.2 (R. Sjamaar) Usual quantization-commutes-with-reduction states that the
cohomology H∗(M ;L) with coefficients in the sheaf of the prequantum line bundle L is a
G-module, and further, that the G-invariant part is the cohomology of the GIT quotient
with coefficients in the sheaf of the induced prequantum line bundle Lred. Teleman [Tel00]
says that something similar should work not just for the prequantum line bundle but also
for a sheaf such as L⊗Ωq, where L is still the sheaf of the prequantum line bundle, and Ωq

is the sheaf of holomorphic q-forms. But then since Hp,q(M) = Hp(M ; Ωq), perhaps some
quantization-commutes-with-reduction argument, using just the sheaf Ωq instead of a sheaf
tensored with L, could also be used to show that the appropriate cohomology also vanishes
downstairs.

Comment 13.3 (D. Burns, J. Weitsman) Burns and Weitsman have found one method for
doing this, though it may already be implicit, as suggested by Sjamaar in Comment 13.2, in
earlier work.
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