MOTIVIC GALOIS GROUPS

BRUNO KAHN
1. **Tannakian categories ([26], cf. [7])**

K field of characteristic 0, \mathcal{A} rigid tensor K-linear *abelian* category, L extension of K.

Definition 1. An L-valued fibre functor is a tensor functor $\omega : \mathcal{A} \to \text{Vec}_L$ which is *faithful* and *exact*.

Definition 2. \mathcal{A} is

- neutralised Tannakian if one is given a K-valued fibre functor
- neutral Tannakian if \exists K-valued fibre functor
- Tannakian if \exists L-valued fibre functor for some L.

Example 1. G affine K-group scheme, $\mathcal{A} = \text{Rep}_K(G)$, $\omega : \mathcal{A} \to \text{Vec}_K$ the forgetful functor.
(\mathcal{A},\omega) neutralised Tannakian category: \(G_K := Aut^\otimes(\omega) \) is (canonically) the \(K \)-points of an affine \(K \)-group scheme \(G(\omega) \).

Theorem 1 (Grothendieck-Saavedra [26]).

a) For \((\mathcal{A},\omega)\) as in Example 1, \(G(\mathcal{A},\omega) = G \).

b) In general \(\omega \) enriches into a tensor equivalence of categories

\[\tilde{\omega} : \mathcal{A} \xrightarrow{\sim} \text{Rep}_K(G(\mathcal{A},\omega)) \].

\(c) \) **Dictionary** (special case): \(\mathcal{A} \) semi-simple \(\iff \) \(G \) proreductive.

When \(\mathcal{A} \) Tannakian but not neutralised, need replace \(G(\mathcal{A},\omega) \) by a *gerbe* (or a groupoid): Saavedra-Deligne [8].

Theorem 2 (Deligne [8]). \(\mathcal{A} \) rigid \(K \)-linear abelian. Equivalent conditions:

- \(\mathcal{A} \) is Tannakian
- \(\forall M \in \mathcal{A}, \exists n > 0: \Lambda^n(M) = 0. \)
- \(\forall M \in \mathcal{A}, \dim_{\text{rigid}}(M) \in \mathbb{N}. \)
2. Are motives Tannakian?

Ideally, would like $Mot_{\text{num}}(k, \mathbb{Q})$ Tannakian, fibre functors given by Weil cohomologies H. Two problems:

- $Mot_{\text{num}}(k, \mathbb{Q})$ is never Tannakian because $\dim_{\text{rigid}}(X) = \chi(X)$ may be negative (e.g. X curve of genus g: $\chi(X) = 2 - 2g$).

Second problem: matter of commutativity constraint – need modify it.

Yields Grothendieck’s *standard conjectures* ([13], cf. [20]):

- (HN) $\sim_H \sim_{\text{num}}$.
- (C) $\forall X$ the Künneth components of $H(\Delta_X)$ are algebraic.
Another conjecture (B) (skipped):

- (HN) \Rightarrow (B) \Rightarrow (C).
- (HN) \iff (B) in characteristic 0.

Theorem 3 (Lieberman-Kleiman [19]). *Conjecture (B) holds for abelian varieties.*

Theorem 4 (Katz-Messing [18]). *Conjecture (C) is true if k finite.*

Corollary 1 (Jannsen [14]). *If k finite, a suitable modification $\widetilde{\text{Mot}}_{\text{num}}(k, \mathbb{Q})$ is (abstractly) Tannakian.*

Apart from this, wide open!

Definition 3. When $\widetilde{\text{Mot}}_{\text{num}}(k, \mathbb{Q})$ exists, the gerbe that classifies it is called the [pure] motivic Galois group $GMot_k$. H Weil cohomology with coefficients K: fibre of $GMot_k$ at H is proreductive K-group $GMot_{H,k}$.

More generally, \mathcal{A} thick rigid subcategory of Mot_{num}, get an “induced” Galois group $GMot(\mathcal{A})$ of \mathcal{A}, quotient of the motivic Galois group. E.g. \mathcal{A} thick rigid subcategory generated by $h(X)$: get the motivic Galois group of X $GMot_{H,k}(X)$(of finite type).
Examples 2.

1. $\mathcal{A} =$ Artin motives (generated by $h(\text{Spec } E), [E : k] < \infty)$: $\text{GMot}(\mathcal{A}) = G_k$.

2. $\mathcal{A} =$ pure Tate motives (generated by L or $h(\mathbb{P}^1)$): $\text{GMot}(\mathcal{A}) = \mathbb{G}_m$.

3. $\mathcal{A} =$ pure Artin-Tate motives (put these two together): $\text{GMot}(\mathcal{A}) = G_k \times \mathbb{G}_m$.

4. E elliptic curve over \mathbb{Q}, $H = H_{Betti}$.
 - E not CM $\Rightarrow \text{GMot}_{H,\mathbb{Q}}(E) = GL_2$.
 - E CM $\Rightarrow \text{GMot}_{H,\mathbb{Q}}(E) =$ torus in GL_2 or its normaliser.
Example 3. Suppose Conjecture (HN) true.

- **Characteristic 0**: Betti cohomology yields (several) \mathbb{Q}-valued fibre functors, as long as $\text{card}(k) \leq \text{card}(\mathbb{C})$: $\text{Mot}_{\text{num}}(k, \mathbb{Q})$ is neutral. Comparison isomorphisms \Rightarrow isomorphisms between various motivic Galois groups.

- **Characteristic p**: $k \supseteq \mathbb{F}_{p^2}$ finite \Rightarrow $\text{Mot}_{\text{num}}(k, \mathbb{Q})$ is *not* neutral: if $K \subseteq \mathbb{R}$ or $K \subseteq \mathbb{Q}_p$, no K-valued fibre functor (Serre: endomorphisms of a supersingular elliptic curve = quaternion \mathbb{Q}-algebra nonsplit by \mathbb{R}, \mathbb{Q}_p).
3. Connection with Hodge and Tate conjectures

3.1. Tate conjecture.

k finitely generated, $G_k := \text{Gal}(\overline{k}/k)$, $H = H_l (l \neq \text{char} k)$: the \otimes-functor

$$H_l : \text{Mot}_H \rightarrow \text{Vec}_{\mathbb{Q}_l}^*$$

enriches into a \otimes-functor

$$\hat{H}_l : \text{Mot}_H \rightarrow \text{Rep}_{\mathbb{Q}_l}^{\text{cont}}(G_k)^*.$$

Tate conjecture $\iff \hat{H}_l$ fully faithful (it is faithful by definition).

Proposition 1. Tate conjecture \Rightarrow Conjecture (B).

Hence under Tate conjecture, Conjecture (C) holds and can modify commutativity constraint:

$$\hat{H}_l : \hat{\text{Mot}}_H \rightarrow \text{Rep}_{\mathbb{Q}_l}^{\text{cont}}(G_k).$$
(\text{Rep}_{\mathbb{Q}_l}^{\text{cont}}(G_k), \text{forgetful functor}) \text{ neutralised Tannakian } \mathbb{Q}_l\text{-category with fundamental group } \Gamma_k: \text{ for } V \in \text{Rep}_{\mathbb{Q}_l}^{\text{cont}}(G_k), \Gamma_k(V) = \text{Zariski closure of } G_k \text{ in } GL(V).

\textbf{Proposition 2} (folklore, cf. [27], [17]). \textit{Assume Tate conjecture. Equivalent conditions:}

- Conjecture (HN);
- \text{Im}\tilde{H}_l \subseteq \text{Rep}_{\mathbb{Q}_l}^{\text{cont}}(G_k)_{ss} \text{ (full subcategory of semi-simple representations)}.

Under these conditions, Mot_{\text{num}} \text{Tannakian, reduce to } \Gamma_{k,ss} \text{ (for } \text{Rep}_{\mathbb{Q}_l}^{\text{cont}}(G_k)_{ss} \text{) proreductive and canonical epimorphism}

\[\Gamma_{k,ss} \longrightarrow GMot_{H_l,k}. \]

In particular, \(\forall X, GMot_{H_l,k}(X) = \text{Zariski closure of } G_k \text{ in } GL(H_l(X)). \)

\textbf{Delicate question:} essential image of \(\tilde{H}_l \)? Conjectural answers for \(k \) finite (see below) and \(k \) number field (Fontaine-Mazur [11]).
3.2. Hodge conjecture.

$\sigma : k \hookrightarrow \mathbb{C}, H = H_\sigma$: this time enriches into \otimes-functor

$$\hat{H}_\sigma : \text{Mot}_{H_\sigma} \to PHS^*_\mathbb{Q}$$

(graded pure Hodge structures over \mathbb{Q}). Hodge conjecture $\iff \hat{H}_\sigma$ fully faithful.

Proposition 3. Hodge conjecture \Rightarrow Conjecture (B) \iff Conjecture (HN).

Hence, under Hodge conjecture, get modified fully faithful tensor functor

$$\tilde{H}_\sigma : \text{Mot}_{\text{num}} \to PHS_{\mathbb{Q}}.$$

Latter category semi-simple neutralised Tannakian (via forgetful functor). If extend scalars to \mathbb{R}, fundamental group = Hodge torus $S = \mathbb{R}_c/\mathbb{R}\mathbb{G}_m$. Over \mathbb{Q} it is the Mumford-Tate group MT: for $V \in PHS_{\mathbb{Q}}$, $MT(V) = \mathbb{Q}$—Zariski closure of S in $GL(V)$.

Hodge conjecture $\iff \forall X, GMot_{k,H_\sigma}(X) = MT(X) \subseteq GL(H_\sigma(X))$.

Sometimes gives proof of Hodge conjecture (for powers of X, X abelian variety)!
4. **Unconditional motivic Galois groups**

Want an unconditional theory of motives (not assuming the unproven standard conjectures)

4.1. **First approach (Deligne, André).**

Both are in characteristic 0.

- **Deligne** [10]: replace motives by systems of compatible realisations: motives for **absolute Hodge cycles** (systems of cohomology classes corresponding to each other by comparison isomorphisms). Gives semi-simple Tannakian category.

 Hodge conjecture \Rightarrow absolute Hodge cycles are algebraic so same category.

- **André** [3]: only adjoin to algebraic cycles the inverses of the Lefschetz operators: motives for **cycles**. Gives semi-simple Tannakian category.

 Conjecture (B) \Rightarrow motivated cycles are algebraic so same category.

 (Hodge conjecture \Rightarrow Conjecture (B) so cheaper approach!)
A abelian variety over number field:

Theorem 5 (Deligne [9]). Every Hodge cycle on A is absolutely Hodge.

Corollary 2. Tate conjecture \Rightarrow Hodge conjecture on A.

Better:

Theorem 6 (André [3]). Every Hodge cycle on A is motivated.

Corollary 3. Conjecture (B) for abelian fibrations on curves \Rightarrow Hodge conjecture on A.

Tannakian arguments:

Theorem 7 (Milne [23]). Hodge conjecture for complex CM abelian varieties \Rightarrow Tate conjecture for all abelian varieties over a finite field.

Theorem 8 (André [4]). A abelian variety over a finite field: every Tate cycle is motivated.
4.2. Second approach (André-K): tensor sections.

A pseudo-abelian \(\mathbb{Q} \)-linear category, \(\mathcal{R} \) Kelly radical of \(\mathcal{A} \) (like Jacobson radical of rings): smallest ideal such that \(\mathcal{A}/\mathcal{R} \) semi-simple.

If \(\mathcal{A} \) tensor category, \(\mathcal{R} \) may or may not be stable under \(\otimes \). True e.g. if \(\mathcal{A} \) Tannakian.

Theorem 9 (André-K [6]). Suppose that \(\mathcal{R} \) is \(\otimes \)-ideal, \(\mathcal{A}(1,1) = \mathbb{Q} \) and \(\mathcal{R}(M,M) \) nilpotent ideal of \(\mathcal{A}(M,M) \) for all \(M \). Then the projection functor

\[\mathcal{A} \rightarrow \mathcal{A}/\mathcal{R} \]

has tensor sections, and any two are tensor-conjugate.
Application:
H classical Weil cohomology,

$$
\mathcal{A} = \text{Mot}_H^\pm(k, \mathbb{Q}) := \{ M \in \text{Mot}_H(k, \mathbb{Q}) \mid \text{sum of even K"unneth projectors of } M \text{ algebraic}\}.
$$

Then \mathcal{A} satisfies assumptions of Theorem 9: in characteristic 0 by comparison isomorphisms, in characteristic p by Weil conjectures.

Theorem 10 (André-K [5]).

a) $\text{Mot}_\text{num}^\pm := \text{Im}(\text{Mot}_H^\pm \to \text{Mot}_\text{num}^\pm)$ independent of H.

b) Can modify commutativity constraints in Mot_H^\pm and $\text{Mot}_\text{num}^\pm$, yielding $\widetilde{\text{Mot}}_H^\pm$ and $\widetilde{\text{Mot}}_\text{num}^\pm$.

c) Projection functor $\text{Mot}_H^\pm \to \widetilde{\text{Mot}}_\text{num}^\pm$ has tensor sections σ; any two are tensor-conjugate.

\[
\begin{array}{ccc}
\text{Mot}_H^\pm & \xrightarrow{H} & \text{Vec}_K^* \\
\downarrow & & \downarrow \sigma \\
\text{Mot}_\text{num}^\pm & \xrightarrow{H} & \widetilde{\text{Mot}}_\text{num}^\pm \\
\end{array}
\]

Variant with

$$
\text{Mot}_H^*(k, \mathbb{Q}) := \{ M \in \text{Mot}_H(k, \mathbb{Q}) \mid \text{all K"unneth projectors of } M \text{ algebraic}\}.
$$
5. Description of motivic Galois groups

Assume all conjectures (standard, Hodge, Tate).

5.1. In general:

Short exact sequence

\[1 \to GMot_{\bar{k}} \to GMot_k \to G_k \to 1 \]

Last morphism: \(G_k \) corresponds to motives of 0-dimensional varieties (Artin motives). The group \(GMot_{\bar{k}} \) is connected, hence \(= GMot_k^{0} \).

If \(k \subseteq k' \), \(GMot_{k'}^{0} \to GMot_k^{0} \) (but not iso unless \(k'/k \) algebraic: otherwise, “more” elliptic curves over \(k' \) than over \(k \)).

Conjecture (C) \(\Rightarrow \) weight grading on Mot_{num} \(\iff \) central homomorphism

\[w : \mathbb{G}_m \to GMot_k. \]

On the other hand, Lefschetz motive gives homomorphism

\[t : GMot_k \to \mathbb{G}_m \]

and \(t \circ w = 2 \) (\(-2\) with Grothendieck’s conventions).
5.2. Over a finite field:

Theorem 11 (cf. [22]). a) Mot_{num} generated by Artin motives and motives of abelian varieties.

b) Essential image of $\tilde{\mathcal{H}}_l$: l-adic representations of G_k whose eigenvalues are Weil numbers.

Uses Honda’s theorem [16]: every Weil orbit corresponds to an abelian variety.

Corollary 4. $G\text{Mot}^0_k = \text{group of multiplicative type determined by action of } G_{\mathbb{Q}} \text{ on Weil numbers.}$

Even though $\tilde{\text{Mot}}_{\text{num}}$ not neutral, $G\text{Mot}^0_k$ abelian so situation not so bad!
5.3. Over a number field:

\(S := (GMot_k^0)^{ab} \): the Serre protorus: describe its character group \(X(S) \):

\[
\mathbb{Q}^{cm} = \bigcup \{ E \mid E \text{ CM number field} \}
\]

Complex conjugation \(c \) central in \(Gal(\mathbb{Q}^{cm}/\mathbb{Q}) \) (largest Galois subfield of \(\overline{\mathbb{Q}} \) with this property).

Definition 4. \(f : Gal(\mathbb{Q}^{cm}/\mathbb{Q}) \to \mathbb{Z} \) CM type if \(f(s) + f(cs) \) independent of \(s \). \(G_{\mathbb{Q}} \) acts on CM types by \(\tau f(s) = f(\tau s) \).

Theorem 12 ([24]). \(X(S) = \mathbb{Z}[CM \text{ types}] \).

Can also describe the centre \(C \) of \(GMot_k^0 \) (pro-isogenous to \(S \)), etc.: cf. [25].
6. Mixed (Tate) motives

Expect Tannakian category of mixed motives

$$\text{Mot}_{\text{num}}(k, \mathbb{Q}) \subset \text{MMot}(k, \mathbb{Q})$$

with socle $\text{Mot}_{\text{num}}(k, \mathbb{Q})$, classifying non smooth projective varieties. Corresponding motivic Galois group extension of $G\text{Mot}_k$ by a pro-unipotent group (or gerbe).

Constructions of MMot:

- Conjecturally, heart of “motivic t-structure” on DM (Deligne, Beilinson: cf. Hana- mura [15]).
- In characteristic 0: explicit category constructed by Nori.
- Over a finite field: Tate conjecture $\Rightarrow \text{Mot}_{\text{num}} = \text{MMot}$ (cf. [22]).
- Can settle for subcategory: mixed Tate motives $T\text{MMot}_k$. Exists unconditionally if k number field (cf. Levine’s talk and [21]).
Goncharov [12]: TM\text{Mot}_\mathbb{Z} \text{ (mixed Tate motives over } \mathbb{Z}) \text{ defined as full subcategory of } \text{TM}\text{Mot}_\mathbb{Q} \text{ by non-ramification conditions.}

Γ the motivic Galois group corresponding to TM\text{Mot}_\mathbb{Z}: \text{Proreductive quotient of } Γ \text{ is } \mathbb{G}_m \text{ (see above).}

Theorem 13 (Goncharov [12]). Action of \(\mathbb{G}_m \) on prounipotent kernel \(U \) yields a grading on \(\text{Lie}(U) \): for this grading, \(\text{Lie}(U) \) is free with one generator in every odd degree \(\leq -3 \).