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Chapter A: Lecture Notes

Notes of selected lectures, by John Voight.

A.1 Colliot-Thelene 1: Rational points on surfaces with a pencil of
curves of genus one

Symmetrizing the Computation of the Selmer Group
Let k be a field, char k = 0, E : y2 = (x − e1)(x − e2)(x − e3) an elliptic curve with

ei ∈ k so that all 2-torsion of E is rational. We have the exact sequence

0→ E[2]→ E
2−→ E → 0

where E[2] ∼= (Z/2Z)2. The long exact sequence in Galois cohomology gives

0→ E(k)/2E(k)→ H1(k,E[2])→ H1(k,E)[2]→ 0

where H1(k,E[2]) ∼= (k∗/k∗2)2 classifies 2-coverings : that is, given (α1, α2) ∈ (k∗/k∗2)2, we
have the 2-cover defined by the equations: x−e1 = α1u

2
1, x−e2 = α2u

2
2, x−e3 = (α1α2)

−1u23.
The group H1(k,E) classifies principal homogeneous spaces.

Now let k be a number field, Ω the set of places of k. We have the diagram

Sel(E, 2) //

²²

X2(k,E)[2] //

²²

0

0 // E(k)/2E(k) //

²²

55llllllllllllll
H1(k,E[2]) //

²²

H1(k,E)[2] //

²²

0

∏
v∈ΩE(kv)/2E(kv) //

∏
vH

1(kv, E[2]) //
∏

vH
1(kv, E)[2] // 0

so Sel(E, 2) gives 2-covers with points everywhere locally, and X2(k,E) measures the differ-
ence.

Over a local field, we have a pairing

H1(kv, E[2])×H1(kv, E[2])→ H2(kv, µ2)

induced by the Weil pairing, which is nondegenerate and alternating, so that (x, x) = 0.

Fact (Tate). E(kv)/2E(kv) ↪→ H1(kv, E[2]) is maximal isotropic for the above pairing.

If E/k has good reduction at kv, then E(kv)/2E(kv) = E(Ov)/2E(Ov) ' H1(Ov, E[2]),
which is (O∗v/O∗2v )2 ⊂ (k∗v/k

∗2
v )2, the maximal isotropic subgroup.

Suppose S ⊂ Ω is a finite set of places, and suppose S contains the primes above∞, 2,
and the primes of bad reduction. Then

⊕
v∈S E(kv)/2E(kv)

²²

× H1(OS, E[2])

i
²²

e

))SSSSSSSSSSSSSSSSS

⊕
v∈S H

1(kv, E[2]) × ⊕
v∈S H

1(kv, E[2])
∑
ev // Z/2Z

Then Sel(E, 2) is the right kernel of e.

Fact. If Cl(OS) = 0, then i is injective.
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This follows from class field theory. So we choose S0 such that Cl(OS0
) = 0, and take

S ⊃ S0. If Cl(OS) = 0, i is an injection, and the image of i is a maximal isotropic subgroup
of VS =

⊕
v∈S Vv, Vv = H1(kv, E[2]).

What we have achieved: the Selmer group Sel(E, 2) is now a kernel of ‘a square ma-
trix’, since

⊕
v∈S E(kv)/2E(kv) and H

1(OS, E[2]) have the same dimension over F2. Letting
h(A) = (A∗/A∗2)2, we have

WS × h(OS)→ Z/2Z
where

WS =
⊕

v∈S
Wv, Wv = E(kv)/2E(kv).

Proposition. Assume S ⊃ S0 (containing primes above ∞, 2 and those of bad reduction
and such that Cl(OS0

) = 0) is a finite set of places. Suppose that h(OS) ⊂ VS is a maximal
isotropic subgroup. Then there exist Kv ⊂ Vv for v ∈ S maximal isotropic such that Kv =
h(Ov) for v ∈ S \ S0, and

h(OS)⊕
⊕

v∈S
Kv = VS.

This is purely a result in linear algebra.

Recall we have WS × h(OS)→ Z/2Z from WS ⊂ VS and h(OS) ⊂ VS.

Definition. We let Sel(E, 2) ⊂ IS ⊂ h(OS), where
IS = {ξ ∈ h(OS) : for all v ∈ S, ξ ∈ Kv +Wv}.

We let
WS =

⊕

v∈S
Wv/(Wv ∩Kv).

We then have a pairing

WS × IS eS−→ Z/2Z.

Proposition. The Selmer group is the kernel of eS. The map τ : IS ' WS is an isomor-
phism. For µ ∈ IS, we define a map

µ =
∑

v∈Sαv + βv 7→
∑

v∈Sαv;

via τ , the new pairing WS × IS → Z/2Z is symmetric.

Example. For E : y2 = (x− e1)(x− e2)(x− e3), ei ∈ Ov, v(
∏
(ei − ej)) = 1 (reduction is of

type I2). Then

E(kv)/2E(kv) //

))RRRRRRRRRRRRRR
(k∗v/k

∗2
v )2

²²
E(kv)[2]

OO

// // Z/2Z ⊂ (Z/2Z)2

Here Wv/(Wv ∩Kv) = Z/2Z, Wv
∼= (Z/2Z)2.

Algebraico-Geometric version of Selmer group
Let k be a field, char k = 0, E : y2 = (x − c1(t))(x − c2(t))(x − c3(t)), so E is defined

over F = k(t). To simplify, we assume that all pi = ci − cj are of the same even degree.
We also assume that r(t) =

∏
(ci − cj) is separable, r(t) = ρ

∏
M∈M rM(t) where ρ ∈ k∗, rM

monic irreducible, so E has reduction type I2.
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Now assume k is a totally imaginary number field. The Neron model E/P1 has

0→ E∗ → E →⊕
M∈MiM∗Z/2Z→ 0.

Let V ⊂ A1 = Spec k(t) be V = A1 \ {r = 0}.
Let S ⊂ h(k(V )) consist of triples (m1,m2,m3), mi ∈ k(t) squarefree, (

∏3
i=1mi) is a

square which divides r(t)2, and gcd(mi, pi) = 1.

Put another way, we have

0 // E(F )/2E(F ) // S //

²²

H1
ét(P1, E) //

²²

0

(F ∗/F ∗2)2 // H1(F,E)[2] // 0

Corresponding to m = (m1,m2,m3), we have the surface Xm defined by the equations
x − ei(t) = mi(t)u

2
i , i = 1, 2, 3. Then Xm/P1 has a minimal model if and only if Xm/P1 is

locally isomorphic for the étale topology with E/P1.

We have a map

S δ−→
⊕

M∈M
(k∗M/k

∗2
M)

where kM = k[t]/rM(t). We see that E(F )/2E(F ) ⊂ ker δ.

Theorem (Theorem A). Suppose that ker δ is the image of E(F )[2]. (In particular, the
generic rank is zero.) Assume Schinzel’s hypothesis. Then there exist infinitely many x ∈
P1(k) such that rkEx(k) = 0.

Theorem (Theorem B). Let m ∈ S, and assume that

ker

(
S →

⊕

M

k∗M/(k
∗2
M , δM(m))

)
= E(F )[2]⊕ Z/2Z.

Assume Schinzel’s hypothesis. Assume Xm(Ak)
Br1(X) 6= ∅. Then there exist infinitely many

x ∈ P1(k) such that Ex(k) is of rank one and Xm,x(k) 6= ∅.

A.2 Colliot-Thelene 2: Rational points on surfaces with a pencil of
curves of genus one

We had y2 = (x− c1(t))(x− c2(t))(x− c3(t)), E/F = k(t), and

r(t) =
∏

i<j

(ci − cj) = ρ
∏

M∈M
rM(t)

separable, all rM irreducible, even degree, S ⊂ h(F ) = (F ∗/F ∗2)2, m = (m1,m2,m3),
m3 = m1m2 up to F ∗2. Xm/P1, x− ci(t) = mi(t)u

2
i , i = 1, 2, 3.

δ : S →
⊕

M∈M
k∗M/k

∗2
M

and δ′ is the composition with the map
⊕

M∈M
k∗M/k

∗2
M →

⊕

M∈M
k∗M/(k

∗2
M , δM(m)).

where kM = k[t]/rM .
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Fact. E(F )/2E(F ) ⊂ ker δ.

Theorem (Theorem B). Assume Schinzel’s hypothesis, and the finiteness of X. Let m ∈ S,
m 6∈ E(F )[2]. Let X = Xm/P1. Assume: ker δ′ = E(F )[2]⊕Z/2Z(m), and X(Ak)

Brvert(X) 6=
∅.

Then R = {x ∈ P1(k) : #Xx(k) =∞} is infinite, and X(k) is Zariski dense.

Here,

Brvert(X) = {ξ ∈ Br(X) : ξη|Xη comes from Br(F )} ⊂ Br1(X).

Schinzel’s hypothesis: Let Pi(x) ∈ Z[x] for i = 1, . . . , r be distinct irreducible polyno-
mials with leading coefficient positive (plus technical condition, to exclude polynomials like
X2 +X + 2); then there exist infinitely many values n ∈ N such that each Pi(x) is a prime.

Remark. The assumption that ker δ′ = E(F )[2] ⊕ Z/2Z(m) is satisfied for general ci. For
the assumption that X(Ak)

Brvert(X) 6= ∅, in general we have Brvert(X) = Br k so this reduces
to X(Ak) 6= ∅.

The proof of this theorem will take up the rest of these notes.

We shall define a finite set S ⊂ Ω of ‘bad places’. For each v ∈ S, we have some
xv ∈ kv, and we look for x ∈ OS, with x very close to xv for v ∈ S, and find one x such that:

• Xx(Ak) 6= ∅;
• dimF2

(Sel(Ex, 2)) = 3, spanned by Ex[2] and m(x).

We have S ⊃ S0, containing 2-adic places and those over ∞ (note we are being sloppy
for real places), and places of bad reduction of E/k, of Xm = X/k, and such that Cl(OS0

) = 0.
If v 6∈ S, then rM(t) ∈ OS[t] is separable (finite étale cover).

We look at rM(x) and look at its prime decomposition; it will have some part in S
and another part T xM of primes of multiplicity 1, and one prime vM , the ‘Schinzel prime’.
We realize (TM ∪ vM) ∩ (TN ∪ vN) = ∅ for M 6= N . Then Ex/k has bad reduction in
S ∪ (

⋃
M TM) ∪ (

⋃
vM).

First we find x such that Xx(Ak) 6= ∅. For M ∈M, we introduce the algebra AM(t) =
coreskM/k(KM/kM , t− θM), where KM/kM is the quadratic extension connected to m. Then
rM(t) = NkM/k(t− θM). A priori, AM(t) ∈ Br k(t)→ BrXη. Since rM is even, AM ∈ Br(X).

Let (Pv) ∈ X(Ak)
Brvert(X), with projection (xv) ∈ A1(kv). We know that

∑
v∈ΩAM(xv) =

0. For almost all places of k, X(kv)
AM−−→ Br(kv) is trivial.

Fix S as before plus places where someAM is not trivial onX(kv). Now
∑

v∈S AM(xv) =
0. Fix xv ∈ kv for v ∈ S with this property. Note Xxv(kv) 6= ∅. Suppose x ∈ OS is very
close to xv for v ∈ S and the decomposition of rM(x) has all primes in TM split in KM/kM .

Claim. For such x, Xx(Ak) 6= ∅.
Proof. The only places where it will fail to have a point are those of bad reduction. For
v ∈ S, Xx(kv) 6= ∅, as x is close to xv. For v ∈ TM , Xx(kv) 6= ∅ since the two rational curves
are defined. For v = vM , write

0 =
∑

v∈Ω
AM(x)v =

∑

v∈S
AM(x)v +

∑

v∈TM

AM(x)v + AM(x)vM = 0 + 0 + AM(x)|vM

the second because v splits in KM ; therefore the prime that is left over forces the prime vM
to split in KM/kM , we again have points locally. ¤
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For the second part, we now need to control the Selmer groups uniformly in the family
Ex, for x satisfying (∗), namely, x is very close to xv for v ∈ S, rM(x) decomposes into primes
in S, TM primes splitting in KM/kM , and the Schinzel prime vM .

Let T = Tx = S ∪⋃M∈M Tm, and T̃ = T̃x = S ∪⋃TM ∪
⋃
vM . We have

0 // h(OT ) //

²²

h(OT [u])
ordM//

evx

²²

⊕
M∈M(Z/2Z)2 //

²²

0

0 // h(OT ) // h(OT̃ )
ordM//
⊕

M∈M(Z/2Z)2 // 0

Here

Sel(Ex) ⊂ I T̃ ⊂ h(OT̃ ),

and Nx the Cartesian square from h(OT [u]) evx−−→ h(OT̃ ). Then Sel(Ex) is the kernel of a
symmetric pairing on Nx.

We find two ‘constant’ subgroups Nx. First, we find N0 = h(OS) ∩ I T̃x , fixed because
x very close to xv for v ∈ S. For the second pair:

Proposition. For each M ∈ M, there exists a unique (aM , bM) ∈ h(OS) such that for any

x with (∗), (aMrM(x)fM , bMrM(x)gM ) ∈ I T̃x, and for each v ∈ S, its component in Vv belongs
to Kv.

We define the subgroup

A =
⊕

M∈M
Z/2(aMrM(t)fM , bMrM(t)gM ).

Note (fM , gM) ∈ {(0, 1), (1, 0), (1, 1)}.
Proposition.

Nx = N0 ⊕ A⊕ φ−1x


⊕

v∈T\S
(Wv/Wv ∩Kv)


 .

Proposition. On N0 ⊕ A ⊂ Nx, the restriction of the pairing ex is independent of x.

To prove this, use various reciprocity laws.

To conclude, write N0⊕A = B0⊕B1⊕B2 ⊂ h(k(t)), where B0 = E(F )[2]⊕Z/2Z(m),
B0⊕B1 = ker ex|N0⊕A, and B2 is the supplement. Use the assumption that ker δ′ = (Z/2Z)3
to get rid of B1...

Now use finiteness of X and Cassels-Tate pairing, dim(X(Ex)[2]) ≤ 1 implies X(Ex)[2] =
0, so the rank is 1.

A.3 de Jong: Rationally Connected Varieties

Deformation theory
Let X be a nonsingular projective variety over C, and let C ↪→ X be a one-dimensional

closed subscheme. We have OX ⊃ IC , the ideal sheaf of C, and we assume that C is a local
complete intersection, or what is equivalent, IC/I

2
C is a locally free sheaf of OC-modules of

rank dimX − 1. For example, this holds if X is a nodal curve.



8

Definition. The normal bundle of the curve C in X is

NCX = H omOC
(IC/I

2
C ,OC).

We have that
ÕHilbX ,[C] = C[[t1, . . . , td]]/(f1, . . . , fr),

where d = h0(C,NCX), and r ≤ h1(C,NC(X)). We say that H0 is the deformation space,
and H1 are the obstructions to deformation. In particular, the dimension the Zariski tangent
space of the Hilbert scheme at [C] has T[C]HilbX = H0(C,NCX), and it has dimension at
least χ(NCX), the Euler characteristic.

Example. In the case where [f : C → P1] ∈ Mg(P1, d), with C is a smooth genus g curve,
and f having at worst simple branchings, then there are no obstructions to deformation and

T[f ]Mg(P1, d) =
⊕

P∈Ram(f)

TP1 |f(P ).

This is a canonical way of understanding how to move branch points on maps to P1.

A map of moduli spaces
Let f : X → P1 be a nonconstant morphism with X a nonsingular projective variety

over C, and let C ⊂ X be a closed subscheme which is a smooth curve of genus g, such
that the ramification of f |C is simple. In a (formal) neighborhood of [C ⊂ X], the spaces
Mg(X, [C]) and the HilbX are the same. The map

Mg(X, [C])→Mg(P1, d)

where d is the degree of f on C, induces on tangent spaces

H0(C,NCX)→⊕
P∈Ram(f |C)TP1 |f(P )

induced by the right vertical arrow in the diagram

0 // TC
// TX |C

²²

// NCX

²²

// 0

0 // TC
// f ∗TP1 |C // (f ∗TP1 |C)/TC

// 0

If C is contained in the smooth locus of f , then the middle vertical map TX |C → f ∗TP1 |C
is surjective, hence also the right vertical map NCX → (f ∗TP1 |C)/TC is also surjective as
maps of sheaves. This will not give a surjection on global sections, however one has:

Corollary. If C is contained in the smooth locus of f , and NCX is “sufficiently positive”,
then the morphism

Mg(X, [C])→Mg(P1, d)

analytically locally around [C ⊂ X] is a projection Ca+b → Cb.

One argues that the Hilbert scheme is smooth at the point [C ⊂ X] since one can twist
by a small number of points and keep that the H1 vanishes. In particular, the corollary
implies that the morphism is surjective.

We are now ready to prove:

Theorem (G, Harris, Starr). If k = k, char k = 0, then any rationally connected variety
over k(C) for C a curve has a rational point.
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Proof. Assume that (∗): all fibres of X → P1 are reduced.

Step 1. Take a general complete intersection C ⊂ X; it will be smooth, irreducible,
of say genus g and degree d. The condition (∗) implies that C is in the smooth locus and
C → P1 (by Bertini) has at worst simple branching.

Step 2. Choose a large integer N and choose general points c1, . . . , cN ∈ C, and rational
curves Ci ⊂ X such that:

(i) C ∩ Ci = {ci};
(ii) Ci ⊂ f−1(f(Ci));

(iii) NCiXf(ci) is very ample;

(iv) TciCi ⊂ TciXf(ci) is in general position.

Now let Cnew = C ∪ C1 ∪ · · · ∪ CN . The basic property is that NCnewX|Ci ⊃ NCiX.
Moreover, NCnewX|C ⊃ NCX with colength N and assumption (iv) gives that this is “gen-
eral”. This gives that the sheaf NCnewX on Cnew is sufficiently positive.

Now deform this curve to a simply branched curve, and this gives the result; conclude
by the corollary. ¤

Multiple fibres
We must deal with the case when (∗) fails. Suppose we have a family of varieties

X → P1 with fibres at t1, . . . , tr irreducible of multiplicity m1, . . . ,mr. Since the curve must
intersect these fibres transversally, this must be preserved in any deformation, meaning that
the ramification index at ti will be divisible by mi.

In this case, the problem is: Mg(X, β) → Mg(P1, d) cannot dominate. Instead, we

consider consider the subset Z
(ti,mi)
g,d ⊂ Mg(P1, d) consisting of stable maps f : C → P1, C

of genus g, f of degree d, such that all ramification indices above ti are equal to mi.

Now we have the additional problems: Which reducible curves are in Z
(ti,mi)
g,d ? And

perhaps dimZ is too small? To resolve both problems, enlarge the genus g (but not d) by
adding loops to C: join two points with a good rational curve. This allows you to break off
a component even in this case.

Conclusion
This is work with Jason Starr. What will guarantee the existence of a rational point

on a variety over a function field in two variables? Is there a geometric condition which
would be like rational connectedness in this case? This is too much to hope for, there are
many surfaces S with a nontrivial Brauer-Severi variety X → S. Maybe there are geometric
restrictions on the fibres X → S such that one obtains a rational section.

A good guess for this condition: demand that certain moduli spaces of rational curves
on the fibers are themselves rationally connected. For example, Starr and Harris proved that
for hypersurfaces X of degree d in Pn with d2 + d + 2 ≤ n, the moduli spaces of rational
curves of fixed degree on X are themselves rationally connected.

A.4 Graber: Rationally Connected Varieties

Introduction

Definition. A field K is quasi-algebraically closed (C1) if any polynomial F ∈ K[x0, . . . , xn]
with degF ≤ n has a root in K.
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Any finite field is quasi-algebraically closed, as is any function field k(C) of a curve
over an algebrically closed field. This implies that any Laurent series ring k[[t]] is C1.

These generalize to the following three possible definitions:

Definition. A projective variety X is rationally connected (RC) if any two general points
p, q ∈ X can be joined by a rational curve f : P1 → X.

Definition. X is rationally chain connected (RCC) if any two general points p, q ∈ X can be
joined by a chain of rational curves.

Definition. X is separably rationally connected (SRC) if X is normal and there exists a
rational curve f : P1 → Xsm such that f ∗TX is ample, i.e. f ∗TX =

⊕
O(di), di > 0.

Theorem. If X is smooth projective over C, then X is rationally connected (RC) if and only
if X is rationally chain connected (RCC) if and only if X is separably rationally connected
(SRC).

In characteristic zero, X a smooth hypersurface of degree d in Pn is rationally connected
if and only if d ≤ n.

The main result we will consider is the following:

Theorem (G, Harris, Starr). If k = k, char k = 0, then any rationally connected variety
over k(C) for C a curve has a rational point.

Remark. In characteristic p, the same is true for SRC. (de Jong, Starr)

Theorem. Over k((t)), any rationally connected variety has a rational point.

This follows from the function field case. Geometrically, you can find a nonsingular
integral model over k[[t]]; to find a section, it is equivalent to find a reduced component of
the central fiber.

Theorem (Ernault). If X/Fq is smooth, projective, and geometrically rationally chain con-
nected, then X has a rational point.

Proof, a Beginning
We now prove the theorem that an RC variety over k(C) has a rational point.

Choose an integral model f : X → B. First, we reduce to the case B ∼= P1. By
restriction of scalars, have a map X → B → P1; the fibres of X → P1 are products of fibres
of f , and the product of rationally connected varieties is rationally connected.

Next, choose a curve C ⊂ X which dominates P1. Deform C and specialize until it
breaks off a section. We have a map of moduli spaces

{curves in X} πf−→ {coverings of P1}.
The latter is built out the data of the branch points plus monodromy; fixing the genus of
the curve and the degree of the cover, we know that this moduli space is irreducible. It is
possible to degenerate any branched cover of P1 to a reducible cover with a section as one
component. It is enough to show that this map πf on moduli spaces is surjective. Now it
is just a matter of tracing the monodromy as the branch points move around (at least in
characteristic zero). In characteristic p, it can also be done (look, for example, at P1 → P1).
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To make all of this more precise, we look at stable maps. Given X a smooth projective
variety over C, and given g ∈ N and β ∈ H2(X,Z), we construct a spaceMg(X, β) consisting
of maps f : C → X such that C is a connected nodal curve of arithmetic genus g, f is a
morphism, and f∗(C) = β, together with a stability criterion.

This space Mg(X, β) is projective, and given any morphism f : X → Y , one has an
induced mapMf :Mg(X, β)→Mg(Y, f∗β) from C → X → Y . If Y = P1, thenMg(P1, d) is
a compactification of the space of branched covers. We want to show that Mf is surjective.
(We only need the coarse moduli space; in fact, at least in characteristic zero we have a
Deligne-Mumford stack.)

When K is C1, the bound d ≤ n is sharp. If K is not algebraically closed, then pick a
finite extension K ⊂ L, and consider NL : L → K; this has a polynomial of degree [L : K]
with no nontrivial zeros; therefore it is impossible to get a larger class of hypersurfaces.

Is the notion of rational connectivity sharp? In the case of finite fields, we also get: if
X/Fq smooth projective, and either H i(X,OX) = 0 for i > 0 or H0(X,

∧iΩX) = 0 for i > 0,
then X has a rational point. (These two are equivalent in characteristic zero.) The analog
over function fields is false. In particular, there exists a family X of Enriques surfaces over
k(C) (C is a curve over C) which has no section.

The general statement: Let π : X → M be a proper morphism of varieties over C.

Suppose that for all maps f : C → M , there exists a pullback f̃ : C → X. It would suffice
for there to exist Z ⊂ X dominating M such that the general fibre of π|Z is rationally
connected. It is a theorem that this is necessary and sufficient (G, Harris, Mazur, Starr).

A.5 Harari 1: Weak approximation on algebraic varieties (intro-
duction)

Let k be a number field, and let kv be the completion of k at v. Let Ωk be the set of
all places of k.

Basic Facts

Theorem (Weak Approximation). Let Σ ⊂ Ωk be a finite set of places of k. Let αv ∈ kv for
v ∈ Σ. Then there is an α ∈ k which is arbitrarily close to αv for v ∈ Σ.

This is a refinement of the Chinese remainder theorem. One reformulation of it is as
follows: the diagonal embedding k ↪→ ∏

v∈Ωk kv is dense, the product equipped with the
product of the v-adic topologies.

We have the slight refinement: P1(k) is dense in
∏

v P1(kv).

Definition. Let X/k be a geometrically integral algebraic variety. Then X satisfies weak
approximation if given Σ ⊂ Ωk a finite set of places and Mv ∈ X(kv) for v ∈ Σ, there exists
a k-rational point M ∈ X(k) which is arbitrarily close to Mv for v ∈ Σ.

Care must be taken if
∏

v∈Ωk kv is empty; by convention, we will say that in this case
X satisfies weak approximation even if X(k) is empty.

We see weak approximation is equivalent to the statement that X(k) is dense in∏
vX(kv).

Remark. If X is projective, X(Ak) =
∏

vX(kv) and weak approximation is equivalent to
strong approximation, namely, X(k) is dense in X(Ak) for the adelic topology. (Here,
X(kv) = X (Ov), X → SpecOk a flat and proper model of X.)
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Let X,X ′ be smooth. Assume that X is k-birational to X ′. Then X satisfies weak
approximation if and only if X ′ satisfies weak approximation (a consequence of the implicit
function theorem for kv).

We can speak about weak approximation for a function field k(X): this means that
weak approximation holds for any smooth (projective) model of X.

Example. The spaces A1
k,P1

k, and more generally, An
k ,Pnk , satisfy weak approximation, as does

any k-rational variety, e.g. a smooth quadric with a k-point.

More Examples

Theorem. Let Q ⊂ Pnk a (smooth) projective quadric. Then Q satisfies weak approximation.

Here, we do not assume that there is a k-rational point. This is the difficult part, the
Hasse-Minkowski theorem: if Q(kv) 6= ∅ for all v, then Q(k) 6= ∅.

There are several results for complete intersections:

A. A smooth intersection of 2 quadrics X ⊂ Pnk (Colliot-Thélène, Sansuc, Swinnerton-
Dyer 1987) satisfies weak approximation if n ≥ 8 or if n ≥ 4 and there exists a pair
of skew-conjugate lines on X.

B. Châtelet surfaces: y2−az2 = P (x), where degP = 4, a ∈ k∗−k∗2. If P is irreducible,
then X (a smooth projective model) satisfies weak approximation. (Uses descent
method.)

C. The circle method: X ⊂ Pnk a smooth cubic hypersurface, then weak approximation
holds for n ≥ 16 (Skinner 1997).

There are also results for linear algebraic groups:

A. If T is a k-torus, and dimT ≤ 2, then T satisfies weak approximation beacuse T is
k-rational (Voskreseskii).

B. If G is a semi-simple, simply connected linear k-group, then G satisfies weak approx-
imation (Kneser-Platonov, around 1969).

Conjecture. A smooth intersection of 2 quadrics in Pn for n ≥ 5 satisfies weak approxima-
tion.

A smooth cubic hypersurface (of dimension at least 3) satisfies weak approximation.

The Fibration Method

Theorem. Let p : X → B be a projective, flat surjective morphism (with X smooth, to
simplify). Assume that

(i) B is projective and satisfies weak approximation;

(ii) Almost all k-fibers of p satisfy weak approximation; and

(iii) All fibers of p are geometrically integral.

Then X satisfies weak approximation.

(Here almost all means on a Zariski-dense open subset).

There are refinements when B is the projective space : you can accept degenerate fibers
on one hyperplane (using the strong approximation theorem for the affine space).
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Applications: (i) Hasse-Minkowski theorem, from four variables to five; (ii) intersection
of 2 quadrics in Pn for n ≥ 8 (here one uses a fibration in Châtelet surfaces) and n ≥ 5 with a
pair of skew conjugate lines (to go from n = 4 to n ≥ 5 by induction); (iii) cubic hypersurfaces
of dimension ≥ 4 with 3 conjugate singular points (Colliot-Thélène, Salberger).

Proof. Start with Mv a smooth kv-point for any v on X. Project p(Mv) = Pv ∈ B(kv).
Use weak approximation on B, so can approximate Pv by P ∈ B(k) for v ∈ S. Consider
the fiber p−1(P ) = XP ⊂ X; XP has a kv-point M

′
v close to Mv for v ∈ Σ by the implicit

function theorem. To apply weak approximation on XP , we check that XP (kv) 6= ∅ for
v 6∈ Σ; this is OK if Σ is sufficiently large by the Weil estimates : here we use that all
k-fibers are geometrically irreducible, which implies that the reduction mod. v of XP also is
for a sufficiently large v (independent of P ). ¤

Some Counterexamples
Cubic surfaces: the surface 5x3 + 9y3 + 10z3 + 12w3 = 0 fails the Hasse Principle

(Cassels, Guy).

Certain intersections of two quadrics in P4
k (see above).

Looking (over the rationals) at y2+z2 = f(x)g(x), deg(f) = deg(g) = 2, gcd(f, g) = 1,
it is possible to construct counterexamples to weak approximation. The idea: K = Q(i),
Kv = K⊗Q Qv; there exists a finite set Σ0 such that if v 6∈ Σ0 and Mv ∈ X(Qv), then f(Mv)
is a norm of Kv/Qv (use a computation with valuations). If you find Σ ⊃ Σ0 and v0 ∈ Σ
such that there exists Mv0 such that f(Mv0) is not a local norm and v 6= v0 there exists
Mv such that f(Mv) is a local norm, then there is no weak approximation. (Think: global
reciprocity of class field theory.)

For tori, let K/k be a biquadratic extension, then there are counterexamples like T :
NK/k(x1w1 + · · ·+ x4w4) = 1, where w1, . . . , w4 is a basis of K/k; this holds e.g. for k = Q,

K = Q(i,
√
5).

Theorem (Minchev). Let X be a projective, smooth k-variety, assume that π1(X) 6= 0,
where X = X ⊗ k, k an algebraic closure. Assume X(k) 6= ∅, then X does not satisfy weak
approximation.

Sketch of proof. Enlarge the situation over SpecOk,Σ0
where Σ0 is a finite set of places. By

assumption, there is a nontrivial geometrically connected covering Y → X, which for models
gives Y → X . Take an arbitrary M ∈ X(k), the fibre YM = SpecL where L is an étale
algebra L = k1×· · ·×kr; each ki is unramified outside Σ0. Only finitely many ki are possible
(by Hermite’s Theorem). Find v 6∈ Σ0 such that v is totally split for each ki (by Cebotarev’s
Theorem); find Mv such that the fiber of Y at X for Mv is not (this is possible because Y is
geometrically connected, via a “geometric” Cebotarev-like Theorem). Then Mv cannot be
approximated by a rational point M . ¤

A.6 Harari 2: Weak approximation on algebraic varieties (coho-
mology)

Let X be a smooth, geometrically integral variety over k (a number field), and suppose

that X is projective. We denote by X(k) the closure of X(k) in
∏

v∈Ωk X(kv) = X(Ak).
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Here our aim is to: (i) explain the counterexamples to weak approximation; (ii) find

‘intermediate’ sets E between X(k) and X(Ak); (iii) in some cases, prove that E = X(k).

General setting
Let G/k be an algebraic group (usually linear, but not necessarily connected, e.g. G

finite). If G is commutative: define H i(X,G) the étale cohomology groups (i = 1, 2; the
cohomological dimension of a number field forgetting real places makes the higher coho-
mology groups uninteresting). In general, we have only the pointed set H1(X,G) (defined
by Cech cocycles for the étale topology). If X = Spec k, H1(X,G) = H1(Γ, G(k)), where
Γ = Gal(k/k). If G is linear, H1(X,G) corresponds to G-torsors over X up to isomorphism.

Take f ∈ H i(X,G), define

X(Ak)
f =

{
(Mv) ∈ X(Ak) : (f(Mv)) ∈ img(H i(k,G)→∏

vH
i(kv, G))

}
.

Obviously X(k) ⊂ X(Ak)
f . We will see that in many cases X(k) ⊂ X(Ak)

f

Example.

(a) BrX = H2(X,Gm);

X(k) ⊂ X(Ak)
Br =

⋂

f∈BrX
X(Ak)

f .

(Indeed the Brauer group of the ring of integers of kv is zero). X(Ak)
Br is the Brauer-Manin

set of X. Manin showed in 1970 that for a genus one curve with finite Tate-Shafarevich
group, the condition X(Ak)

Br 6= ∅ implies the existence of a rational point.

(b) Let f : Y → X be a Galois, geometrically connected, nontrivial étale covering with group

G. Then f ∈ H1(X,G), where G is considered as a constant group scheme. Then X(k) ⊂
X(Ak)

f (via Hermite’s Theorem). It is possible to find (Mv) 6∈ X(Ak)
f , which implies

Minchev’s result that X does not satisfy weak approximation.

Remark. If X is rational, then BrX/Br k = H1(k,PicX) is finite, where X = X×k k. Then
X(Ak)

Br is ‘computable’.

Theorem (H, Skorobogatov). If G is linear and f ∈ H1(X,G), then X(k) ⊂ X(Ak)
f (and

X(Ak)
f is “computable”).

Abelian descent theory
This was developed by Colliot-Thélène and Sansuc, and recently completed by Sko-

robogatov.

Theorem. Define

X(Ak)
Br1 =

⋂

f∈Br1X
X(Ak)

f

where Br1X = ker(BrX → BrX). Assume that X(Ak)
Br1 6= ∅. Then:

(a) We have

X(Ak)
Br1 =

⋂

f∈H1(X,S)
S of multiplicative type

X(Ak)
f .
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(b) Assume further that PicX is of finite type, set S0 such that Ŝ0 = PicX; then there exists a
torsor f0 : Y → X under S0 (a universal torsor, i.e. “as nontrivial as possible”) such that

X(Ak)
Br1 = X(Ak)

f0 .

This Theorem is difficult, see Skorobogatov’s book for a complete account on the
subject. One of the ideas is to recover the Brauer group of X (mod. Br k) making cup-

products [Y ] ∪ a, where a ∈ H1(k, Ŝ0) and [Y ] is the class of Y in H1(X,S0).

Now assume that X is a rational variety, so X(Ak)
Br = X(Ak)

Br1 (since BrX = 0).

Assume X(Ak)
Br 6= ∅. Consider a universal torsor f : Y

S0−→ X. If σ ∈ H1(k, S0), can define
fσ : Y σ → X where

[Y σ] = [Y ]− σ ∈ H1(X,S0).

Then
X(Ak)

f =
⋃

σ∈H1(k,S0)

fσ(Y σ(Ak)).

If you can prove that the torsors Y σ satisfy weak approximation, thenX(k) = X(Ak)
f =

X(Ak)
Br, so the Brauer-Manin obstruction is the only one.

Example. There are many examples of this:

(a) Châtelet surface: y2 − az2 = P (x), a ∈ k∗/k∗2, degP = 4. Colliot-Thélène, Sansuc,

Swinnerton-Dyer showed that X(k) = X(Ak)
Br, so the Brauer-Manin obstruction is the

only one. If P is irreducible, then BrX/Br k = 0, so X satisfies weak approximation.

If P is reducible, we can have a counterexample to weak approximation, e.g. y2 − az2 =
f1(x)f2(x), where deg f1 = deg f2 = 2, gcd(f1, f2) = 1, in some cases there is an obstruction
given by the Hilbert symbol f = (a, f1).

(b) Conic bundles over P1 with at most 5 degenerate fibres. Results of Colliot-Thélène, Salberger,
Skorobogatov covered at most 4. In the case of 5, the existence of a global rational point
is easy to show, so the only problem is weak approximation, and which is due to Salberger,
Skorobogatov 1993 (using descent and K-theory).

Theorem (Sansuc 1981). Let G be a linear connected algebraic group over k, X a smooth
compactification of G, then the Brauer-Manin obstruction is the only one:

X(k) = X(Ak)
Br.

Back to fibration methods
If p : X → B is a fibration, we saw that if the base and the fibres satisfy weak

approximation, under certain circumstances then X satisfies weak approximation.

Here we consider p : X → P1, a projective, surjective morphism (and the generic fibre
Xη is smooth). Assume also that all fibres are geometrically integral (can do with all but
one because of strong approximation on the affine line).

Question. If XP (k) = XP (Ak)
Br for almost all fibres XP , P ∈ P1(k), can you prove that

X(k) = X(Ak)
Br?

Theorem (H 1993, 1996). Yes, X(k) = X(Ak)
Br if you assume that:

(i) PicXη is torsion-free, where Xη = Xη×KK, K = k(η); e.g. Xη rational, or smooth complete
intersection of dimension at least three.
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(ii) BrXη is finite.

Two ideas:

(a) BrXη/BrK → BrXP/Br k is an isomorphism for many k-fibres XP (‘many’ in the
sense of Hilbert’s irreducibility theorem).

(b) If α1, . . . , αr are elements of BrXη, assume αi ∈ BrU , U ⊂ X an open subset. Use
the ‘formal lemma’: Take (Mv) ∈ X(Ak)

Br, Mv ∈ U , Σ0 a finite set of places; then
there exists (Pv) ∈ X(Ak), Pv ∈ U , Σ ⊃ Σ0 finite such that:

1. Pv =Mv for v ∈ Σ0;
2.
∑

v∈Σ jv(αi(Pv)) = 0 for 1 ≤ i ≤ r, where jv : Br kv → Q/Z is the local
invariant.

Applications: (i) Recover Sansuc’s result just knowing the case of a torus; (ii) If you

know that X(k) = X(Ak)
Br for X a smooth cubic surface, then by induction the same holds

for hypersurfaces, so if dimX ≥ 3, then X satisfies weak approximation.

Nonabelian descent
If G/k is a finite but not commutative k-group, it is possible that for f ∈ H 1(X,G),

X(Ak)
f 6⊃ X(Ak)

Br.

Theorem (Skorobogatov 1997). There exists X/Q a bi-elliptic surface such that X(Q) = ∅,
X(AQ)

Br 6= ∅.

Actually: X(AQ)
f = ∅ for some f ∈ H1(X,G), G(Q) = (Z/4Z)2 o Z/2Z.

There are similar statements for weak approximation (H 1998), e.g. take X/k any

bi-elliptic surface, X(k) 6= ∅, then X(k) ( X(Ak)
Br.

Nevertheless the Brauer-Manin condition is quite strong, as shows the following result :

Theorem (H 2001). We have:

(a) If G/k is a linear connected k-group, f ∈ H1(X,G), then

X(Ak)
Br ⊂ X(Ak)

f .

(b) If G is any commutative k-group, f ∈ H2(X,G), then

X(Ak)
Br ⊂ X(Ak)

f .

Open question : is the first part of this theorem still true for a G which is an extension
of a finite abelian group by a connected linear group ? My guess is “no”.

A.7 Hassett 1: Equations of Universal Torsors

Cox Rings
This follows an exposition due to Hu and Keel (Yi Hu and Seán Keel, Mori dream

spaces and GIT, Michigan Math. J., 48 (2000), 331-348). Let K = C, and X a projective
smooth variety over K. Let L1, . . . , Lr be line bundles on X. If ν = (n1, . . . , nr) ∈ Nr, then
Lν = L⊗n1

1 ⊗ · · · ⊗ L⊗nrr .

We have a multiplication map Γ(X,Lν1)⊗ Γ(X,Lν2) → Γ(X,Lν1+ν2). We have a ring
R(X,L1, . . . , Lr) =

⊕
ν∈Nr Γ(X,L

ν), which is often not finitely generated.

If L1, . . . , Lr are (semi)ample (a semiample bundle is a pullback of an ample bundle),
then R(X,L1, . . . , Lr) is finitely generated.
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Definition. Let X be smooth and projective, and assume Pic(X) ∼= Zr (e.g. a Fano variety).
The Cox ring Cox(X) is Cox(X) = R(X,L1, . . . , Lr) where:

(i) L1, . . . , Lr is a basis for Pic(X);

(ii) Every effective divisor D can be written D = n1[L1] + · · ·+ nr[Lr] for nj ≥ 0.

Remark.

A. Cox(X) is (multi)graded by Pic(X); for ν ∈ Pic(X), there is a ν-graded piece Cox(X)ν . This
gives a natural action by TNS, the Neron-Severi torus, t(ξ) = χv(t)ξ, t ∈ T , χv ∈ X∗(TNS)
corresponding to v ∈ Pic(X).

B. Graded pieces which are nonzero are in one-to-one correspondence with effective divisor
classes of X.

C. Definition does not depend on choice of {Lj}; R(X,L1, . . . , Lν) ' R(X,M1, . . . ,Mv) is
natural up to the action of the Neron-Severi torus.

The Hilbert function h(ν) = dimCox(X)ν = χ(OX(v)) if ν has no higher cohomology,
so is a ‘polynomial in ν’. For example, if ν ∈ KX + (ample cone), Kodaira vanishing implies
that h(ν) = χ(OX(ν)).

If −KX is nef (D is nef if D · C ≥ 0 for every curve C) and big (D is big if D is
in the interior of the effective cone), for example if X is Fano, then h(ν) = χ(O(ν)) for
all ν nef and big. Our basic strategy: use knowledge of the Hilbert function to read off
the structure of Cox(X). There is hope that the ring will be finitely generated from this
polynomial expression.

Finite Generation
What are necessary conditions for Cox(X) to be finitely generated? (Part of a theorem

of Hu, Keel which give necessary and sufficient conditions.) We must have:

A. The effective cone of X should be finitely generated. (It is an open problem if the
effective cone of a Fano variety is finitely generated, either in the sense that the closed
cone is rational polyhedral or the associated monoid is finitely generated.)

B. The nef cone is finitely generated.

There are also sufficient conditions:

A. Cox(X) ∼= k[xσ] for σ ∈ Σ(1) if X is a toric variety.
B. If X is (log) Fano of dimension ≤ 3. Then Cox(X) is finitely generated (Shokurov).

Conjecture (Hu, Keel). If X is (log) Fano, then Cox(X) is finitely generated.

Remark. The universal torsor T ⊂ SpecCox(X) as an explicitly defined open subset, if
Cox(X) is finitely generated.

E6 Cubic Surface
This is joint work with Tschinkel. The E6 cubic surface S is defined by the equation

xy2 + yw2 + z3 = 0 embedded in P3; it contains a unique line ` : y = z = 0, and a unique
singularity P : x = y = z = 0.

Analysis of the singularity: In affine coordinates, we have Y 2 + YW 2 + Z3 = 0. We
rewrite this as (Y +W 2/2)2 − (1/4)W 4 + Z3 = 0, and up to analytic equivalence, this is
Y ′2 +W ′4 + Z3 = 0, which is the normal form of an E6 singularity.
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The resolution β : S̃ → S has six −2 exceptional curves in an E6-diagram, and Pic(S̃)
has intersection form

F1 F2 F3 ` F4 F5 F6

−2 0 1 0 0 0 0
0 −2 0 0 0 0 1
1 0 −2 0 0 0 1
0 0 0 −1 1 0 0
0 0 0 1 −2 1 0
0 0 0 0 1 −2 1
0 1 1 0 0 1 −2

with numbering as

2

1 3 6 5 4 `.

The inverse of this matrix is given by

A1 A2 A3 L A4 A5 A6

0 1 1 2 2 2 2
1 1 2 3 3 3 3
1 2 2 4 4 4 4
2 3 4 3 4 5 6
2 3 4 4 4 5 6
2 3 4 5 5 5 6
2 3 4 6 6 6 6

The inverse proves that:

Proposition. The effective cone of X is generated by {Fj, `}; the nef cone is generated by
{Aj, L}.

We have
Cox(S̃) =

⊕

n1,...,n6

Γ(OS̃(n1F1 + · · ·+ n6F6 + n``));

we choose ξj generating Γ(OS̃(Fj)). (Descent to k involves rescaling these ξj such that the
relations are defined over k.)

We have k[ξ1, . . . , ξ6, ξ`] ↪→ Cox(X), but this is not surjective. We need additional
generators. We let ξα(j) ∈ Γ(O(Aj)); since A1 is semiample, we have dimΓ(O(Aj)) = 2 by

Riemann-Roch, and S̃ → P1 is a conic bundle. Then

Γ(O(A1)) = 〈ξα(1), τ1〉.
Similarly, dimΓ(O(A2)) = 3, so we have an additional generator

Γ(O(A2)) = 〈ξα(2), ξα(2)−α(1)τ1, τ2〉.
Since dimΓ(O(A`)) = 4, we have a fourth generator

Γ(O(A`)) = 〈ξα(`), ξα(`)−α(1)τ1, ξα(`)−α(2)τ2, τ`〉.
Fact. We have a surjection C[ξ1, . . . , ξ`, τ1, τ2, τ`]→ Cox(X).
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Now we look for relations among these generators. By the Hilbert function, we know
that dimΓ(O(A6)) = 7, but we have 8 elements of degree α(O) in the polynomial ring:

{ξα(6), ξα(6)−α(1)τ1, . . . , ξα(6)−α(`)τ`}.
Since O(A`) = OS(+1), Y = ξα(`), Z = ξα(`)−α(1)τ1, W = ξα(γ)−α(2)τ2 after renormal-

ization, so the original equation Y 2 + YW 2 + Z3 = 0 gives the relation

F : τ`ξ
3
` ξ

2
4ξ5 + τ 22 ξ2 + τ 31 ξ

2
1ξ3 = 0.

With this,

Cox(S̃) = C[ξ1, . . . , ξ`, τ1, τ2, τ`]/〈F 〉;
by a computation of the Hilbert function of the quotient, there are no more relations.

This method should also work for other very singular cubic surfaces.

A.8 Hassett 2: Weak approximation for function fields

Weak Approxmation
We start with the diagram:

X //

²²

X

²²
SpecF // SpecOF

where X(F ) = X (OF ), X smooth projective over a number field, and X an integral model
of X.

Definition. The F -rational points of X satisfy weak approximation if for each {vj} a finite
set of places, with completions Fvj , and open sets Uj ⊂ X(Fvj), there exists an x ∈ X(F )
with x ∈ Uj for each j.

Note that for nonarchimedean places, pj ∈ SpecOF , Fpj = OF/pj, then we have
reduction maps

X(Fvj) = X(ÔF,vj )
ρj,n−−→ X(OF/pn+1

j ) 3 sj.
The basic open subsets ρ−1j,n(sj) have ‘fixed reduction modulo pn+1

j ’.

Remarks. By Hensel’s lemma, xj ∈ X(Fpj) gives a point in X(Fvj) if xj is smooth.

If X is regular, then if xj ∈ X(Fpj) comes from a point in X(Fvj), then xj is regular.

Function field analog
Now consider the diagram

X //

²²

X

²²
SpecF // B

where B is a smooth projective curve over C, F = C(B), and X a smooth projective variety
over F with a regular projective model X → B. Fix a finite set {bj} ⊂ B, xj ∈ Xbj smooth

points, and local Taylor series data at these points, sj ∈ X (OB,bj/m
nj+1
bj

), sj(bj) = xj.
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Definition. X satisfies weak approximation if for any such set of data there exists s : B → X

so that s = sj (mod m
nj+1
bj

).

Remarks.

A. X satisfies weak approximation if and only if for each regular model X1 → X , and points
{bj} ⊂ B and smooth points x′j ∈ (X1)bj , there exists a section s : B → X1 with s(bj) = x′j.

B. If X1,X2 are models of X, then X1 satisfies weak approximation if and only if X2 does, so it
makes sense to say X satisfies weak approximation.

C. F -rational varieties satisfies weak approximation.

Rationally connected case
Let X → F = C(B) be rationally connected, with model X → B. Here we have the

theorem:

Theorem (Graber, Harris, Starr; Kollár). There exists a section s : B → X . Choose points
{bj} ⊂ B such that the fibres Xbj are smooth, and choose points xj ∈ Xbj ; then there exists
a section s : B → X with s(bj) = xj.

This will not give Taylor series data, because once one blows up to get the second-order
Taylor series, the fibres are no longer irreducible.

All the fibers of X → B are rationally chain connected, except for the degenerate fibers
(e.g., reducible fibers), which might have to go through singular points. Also, for example,
the cone over an elliptic curve x3 + y3 + z3 = 0 is rationally chain connected but is not itself
rationally connected.

Problem. Let X/F be a smooth projective variety, F = C(B), B a curve. If X is rationally
connected, show that X satisfies weak approximation.

Effectivity

Problem. Given bj ∈ B, Djk ∈ Xbj of multiplicity one, does there exist an effective curve
class [M ] such that [M ] · Xb = m, and [M ] ·Dij = m.

Let Y be a projective smooth variety over C. We have NS(Y ) ⊂ H2(Y,Z), the Néron-
Severi group, and N1(Y ) ⊂ H2(Y,Z), the 1-cycles. We have the cone NE

1
(Y ) ⊂ NS(Y )R,

the cone of effective divisors; we also have the cone of moving curves Mov1(Y ) ⊂ N1(Y )R,
consisting of cycle classes [M ] such that M is irreducible and passes through the generic
point of Y .

Given an effective divisor D and a moving class M , then D ·M ≥ 0.

Note that NE
1
(Y ) ⊂ Mov1(Y )∗, the dual cone.

Theorem (Demailly, Peternell). Equality holds, NE
1
(Y ) = Mov1(Y )∗.

As an application, this allows us to find [M ] ∈ Mov
1
(X ) with the desired intersection

properties.

A.9 Heath-Brown: Rational Points and Analytic Number Theory

Analytic number theory is often quite useful in questions on rational points on varieties.
For example, using the circle method, weak approximation gives formulas of the type

N(B) ∼ CBk(logB)j
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where

C = σ∞
∏

p

σp.

What kind of asymptotic formulae can we expect when weak approximation fails?

Look at

L1(x1, x2)L2(x1, x2) = x23 + x24

L3(x1, x2)L4(x1, x2) = x25 + x26

where Li(x1, x2) are linear forms over Z. This is the intersection of two quadrics in P5. In
this case, the Hasse principle may fail, and weak approximation may fail. We take

H(x1, . . . , x6) = max(|x1|, |x2|).
We have the following “theorem”: There is a modification of the Hardy-Littlewood

formula in which

C = κσ∞
∏

p

σp

where κ ∈ [0, 2], κ vanishes precisely when the Hasse principle fails, κ is built from infor-
mation at a finite number of ‘bad’ places, and κ ∈ Q is easily calculable. To do this, use a
“descent” process followed by variation of the circle method.

Theorem (H-B, Moroz). Let a, b ∈ N be coprime, with a ≡ ±2,±3 (mod 9). Then the
surface

x31 + 2x32 + ax33 + bx34 = 0

has a nontrivial rational point.

To prove this, there are two ingredients. First, a result of Satgé: x31 + 2x32 = p has a
rational point if p is prime, p ≡ 2 (mod 9) (proved by Heegner point construction). Second,
ax33 + bx34 takes infinitely many prime values 2 (mod 9).

In the other direction, analytic number theorists are often interested in rational points
on varieties. We take the counting function

N(F ;B) = #{F (x1, . . . , xn) = 0 : max |xi| ≤ B, x ∈ Zn}.
For instance, take F (x) = a1x

3
1 + · · · + anx

3
n; there exists an asymptotic formula n ≥ 8

(Vaughan). In the case n = 7, analytic methods establish a local-global principle, but not
an asymptotic formula. To handle this case, we would want:

Conjecture. We have

N(F0;B)¿ Bθ

for some constant θ < 7/2, where

F0(x) = x31 + x32 + x33 − x34 − x35 − x36.

This is known for any θ > 7/2, and conjectured to be true for any θ > 3, so it is
reasonable to expect.

What about N(F0, B) for F0 = xd1 + xd2 + xd3 − xd4 − xd5 − xd6? We can show θ < 7/2 for
d ≥ 24. This variety has lines in trivial planes of the type x1 = x4, x2 = x5, x3 = x6, and no
other lines if d ≥ 5; what other quadric or low degree curves can be found?
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Proposition (Green 1975). Any curve of genus 0 or 1 in F0 = 0 has xi/xj constant for
some i, j, as soon as d ≥ 25.

(Here 25 = (6− 1)2.) This involves meromorphic functions and Nevanlinna theory.

Question. To what extant can one reduce the number 25 for quadratic curves?

Proposition (Davenport 1963). Any cubic form F (x) ∈ Z[x] in n ≥ 16 variables has a
nontrivial integer zero.

This applies to an arbitrary cubic form; there is a better result for smooth forms with
n ≥ 9. Define a matrix J(X) with entries

J(X)ij =
∂2F

∂xi∂xj

and Vm = {x : rk J(x) ≤ m} ⊂ Pm−1. Assume that F (x) = 0 has no nontrivial rational
point; then any component C of Vm which has a rational point has dimC ≤ m− 1.

Question. What about components C without a rational point?

Vinogradov’s mean value theorem refers to the counting function of the variety defined
by the equations

xj1 + · · ·+ xjs = yj1 + · · ·+ yjs
for 1 ≤ j ≤ k, V (k, s) ⊂ P2s−1, count 0 < xi, yi ≤ B. This is a cone with vertex (1 : · · · :
1; 1 : · · · : 1).

One can easily show N(B) À Bs, B2s−k(k+1)/2 for all s, k; if k ≥ s then x is a permu-
tation of y, N(B) ∼ s!Bs. In fact, N(B) ∼ cBs for s = k + 1 (Vaughan, Wooley).

For s ≥ s0(k) ∼ k2 log k, we have N(B) ∼ cB2s−k(k+1)/2.

Question. Can we find how N(B) behaves for ‘in-between’ values?

Applications: Exponential sums, zero-free region for ζ(s) and the error term in the
prime number theorem. So this question has several far-reaching implications!

Question. Can one prove N(B) ∼ cBs for k = 4, s = 6? If L is a linear space of projective
dimension `, and C ⊂ V (4, 6)∩L, such that C is not contained in the subset of points where
x is a permutation of y, is dimC ≤ (2`− 1)/3?

A.10 Mazur: Families of rationally connected subvarieties

Introduction
This is joint work with Graber, Harris, and Starr.

Throughout, we let k be any finite field and K a field of transcendence degree 1 over C.
We have two classical results, due to Chevalley-Warning and Tsen, for k and K, respectively:
a hypersurface of low degree has a rational point; a hypersurface of low degree X is one with
degX ≤ dimX + 1.

Inspired by these theorems, one (i.e. Artin) defines a field F to be quasi-algebraically
closed if every hypersurface of low degree over F has a F -rational point. In view of resent re-
sults due to Kollár, Kollár-Miyaoka-Mori, and Graber-Harris-Starr, we ask similar questions
not for hypersurfaces but for certain other classes of varieties.
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We generalize the notion of hypersurfaces of low degree to rationally connected varieties
over C which are projective and smooth: a variety X is rationally connected if for any two
points p, q ∈ X, there exists a rational curve C ⊂ X with p, q ∈ C. Rationally connected
varieties are closed under birational transformation, products, domination (if X → Y is
dominant, and X is rationally connected, then Y is rationally connected), and specialization.
This is a much better class of varieties than, say, rational varieties (consider the difficulty in
determining which cubic 4-folds are rational).

There is another candidate for a generalization of hypersurfaces of low degree: a variety
X over F is O-acyclic if

hi(X,OX) =

{
1, i = 0

0, i > 0.

Rationally connected varieties are O-acyclic.

The only rationally connected curves are rational curves; the only rationally connected
surfaces are rational surfaces. However, there are O-acyclic surfaces which are not rational,
e.g. Enriques surfaces.

Theorem. If X is a smooth hypersurface over C, then it is equivalent for X to be of low
degree, rationally connected, and O-acyclic.

Theorem (Generalized Chevalley-Warning; Katz). Any O-acyclic variety over k has a k-
rational point.

Over C, and given an endomorphism f : X → X, one defines the Lefschetz number
L(f) =

∑
(−1)i tr(F |H i); this complex number measures the fixed point locus of f . Over a

finite field, the Lefschetz number counts the number of fixed points, at least modulo p; one
computes that the Lefschetz number is 1 mod p.

For the generalization to rationally connected varieties over K, a variety X over K can
be thought of as a family of rationally connected varieties over a curve X → C. By family
we always mean that although the base C might not be proper or smooth, the morphism is
proper and generically smooth.

Theorem (Generalized Tsen; Graber, Harris, Starr). Any rationally connected variety over
K has a K-rational point.

A converse
Given a family X → B, a section is a triangle

B //

=

ÃÃA
AA

AA
AA

A X

²²
B.

We define a pseudo-section to be a triangle

S //

ÂÂ@
@@

@@
@@

X

²²
B;

where S → B is a family of rationally connected varieties. Since a point is rationally
connected, a section gives a pseudo-section.
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We can rephrase the GHS theorem in this language as follows: If f : X → B is a family
with a pseudo-section, then its restriction fC : XC → C to every smooth curve C ↪→ B has
a section.

Theorem (Weak converse to GHB). If f : X → B is a family such that every restriction
fC : XC → C for every smooth curve C ↪→ B has a section, then f : X → B has a
pseudo-section.

This theorem is related to Lefschetz’s theorem about π1 as can be seen by restricting
attention to finite étale covers.

Applications
This theorem has application to finding varieties X/K with no rational point; in par-

ticular:

Corollary. There exists an Enriques surface over some K with no K-rational point.

This is completely ineffective; an open question is to find the genus of the curve given
by this counterexample.

Question. Is there an Enriques surface over Q(t) with no rational point over C(t)?

Every Enriques surfaces over k has a point over k; this is not the case over K, so we
have distinguished finite fields from function fields of transcendence degree 1 over C. We
ask: in the Artin-Lang philosophy, what kinds of varieties are cut out by O-acyclic varieties?

We have another corollary:

Corollary. A family of curves of genus 1 over a base B has a section if and only if it has a
section over every curve C ⊂ B.

The corollary is clear: a family of curves of genus 1 has no room for a pseudo-section.

Number Theoretic Applications
Now we consider π : X → B a family defined over a number field; we say π is arith-

metically surjective if and only if X(L)→ B(L) is surjective for all finite extensions L/F .

If X → B is a family of curves of genus ≥ 1, is it the case that arithmetic surjectivity
is equivalent to the existence of a section over F? This question is unapproachable in full
generality.

Instead, let us take a very small fragment of it: let B be a nonempty open subset of
P1 over F = Q, X → B a family of genus 1 curves, we say it belongs to its Jacobian E → B.
We consider quadratic twist elliptic pencils; given any E1/Q : y2 = g(x), we have the pencil
Et/Q : ty2 = g(x). We have the problem: For all X → B belonging to Et, is is true that
arithmetic surjectivity holds if and only if a section exists? Work of Skinner-Ono can be
used to establish this for all elliptic curves E1/Q.
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A.11 Peyre: Motivic height zeta functions

Manin’s principle in the functional case

The setting

Notation: let p be a prime number, q = pk, C a smooth projective curve over Fq,
K = Fq(C). A point x ∈ PNK induces a function

x̃ : C → PNFq
and we define a height

hN(x) =

{
deg(x̃∗(O(1)) if x̃ is not constant

0 otherwise

Now let V be a smooth, geometrically integral projective variety over K, let U ⊂ V be
an open subset, and define

ZU,k(T ) =
∑

x∈U(k)
T h(x), ζU,k(s) = ZU,k(q

−s). (1)

We make the following assumptions

• ω−1V is very ample
• ω−1V = φ∗(O(1))
• H1(V,OV ) = 0, H2(V,OV ) = 0
• V (K) is Zariski dense

Problems

• Find the value of θ = inf{σ|ζV,k(s) converges if the real part <(s) = σ}.
• Find the order of the pole of ζU,k at θ.
• Find the leading coefficient of the Laurent series at θ.

Questions For small enough U ,

• Is θ = 1?
• Is the order of ζU,k(s) at θ equal to t = rankPic(V )?
• Is the leading term of ζU,k(s) at θ equal to θ∗h(V )/(s− 1)t, where

θ∗h(V ) = α∗(V )wh(V (K))

where α∗(V ) can be defined in terms of the cone of effective divisors C1
eff (V ) ⊂

PicV ⊗ R, w(h) is some adelic measure, and V (K) is the closure of the rational
points?

Results Answers are positive if

• V = G/P where G is a reductive group over K and P is a smooth parabolic subgroup
of G (Morris, EP).
• V is a smooth toric projective variety (D. Bourgui), U an open orbit of V .
• V ⊂ PNK is a hypersurface with N >> deg V (circle method).
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Simplest example: V = PnK . Let g be the genus of C.

ZV,k(t) = qn(1−g)
ζK((n+ 1)s− n)
ζK((n+ 1)s)

+ q(n−1)(1−g)
ζK((n+ 1)s− (n− 1))

ζK((n+ 1)s)
+ . . .

+ q1−g
ζK((n+ 1)s− 1)

ζK((n+ 1)s)
+

Q(q−s)

ζ((n+ 1)s)
.

where Q is a polynomial.

Motivic setting
Work in progress with A Chambert-Loir.

The ring of motivic integration

(Kontsevich, Denef, Loeser)

Definition: Let k be a field, and letMk be the ring with generators [V ] as V ranges
through varieties over k, subject to the relations [V ] = [V ′] if V = V ′ and [V ] = [U ]+[V −U ],
for U open in V , and with multiplication given by the product of varieties.

(Note: De Jong pointed out some problem with this definition in positive characteris-
tic.)

Now let L = [A1
k],Mloc =Mk[L−1]. Define a filtration by

FmMloc = subring generated by [V ]L−i if i− dimV ≥ m.

Let M̂ = invlimMloc/F
mMloc.

Motivic height Let the notation be as in Section . Given an embedding φ : V → PNK
we get a height h : V (K) → N. Given an open U ⊂ V , we can define varieties Un/k such
that for all k′/k,

Un(k
′) = {x ∈ V (K ′)|hK′(x) = n},

where K ′ = k′(C). Then define

ZU,k(T ) =
∑

n∈N
[Un]T

n ∈Mk[[T ]].

Examples:

• If V is defined over k, V0 = V , Vn = Morn(C, V ), morphisms of degree n
• If V = PnK ,

ZK(T ) =
∑

i∈N
[C(i)]T i

where C(i) is the ith symmetric product.

ZPNK ,h(T ) = Ln(1−g)ZK(T
n+1Ln)

ZK(T n+1)
+

Q(T )

ZK(T n+1)

Proposition (Kapanov). A. ZK(T ) is a rational function.
B. (1− T )(1− LT )ZK(T ) is a polynomial.
C. ZK(1/LT ) = L1−gT 2−2gZK(T ).

Theorem (Follows from Kapanov). Let G be a split semi-simple proper algebraic
group over k, P ⊂ G a standard parabolic subgroup, V = G/P . Assume that
φ∗(O(1)) = ω−1V . Then



27

A. ZV,k(T ) converges in M̂ for T = L−k, k > 1.

B. [(1− LT )tZV,k(T )](L−1) converges in M̂.
C. One can give a description of its value similar to the functional case.

Theorem (D. Bourgui). Suppose that V is a split toric variety over k. Then 1, 2,
and 3 of the previous theorem hold for U ⊂ V , U an open orbit.

Hope: generalize this to smooth cellular varieties over k.

Remark: Batyrev has a nice idea to attack this when V is defined over k. But we have
no idea what the relevant harmonic analysis is in this case.

A realization map Suppose k = Fq, and define a map Mk → Z, [V ] 7→ #V (Fq).
Then we get a map

Mloc → Z[q−1]
L−1 7→ q−1

which takes ZMot
U,k (T ) to Zfunct

U,k (T ).

A.12 Raskind: Descent on Simply Connected Algebraic Surfaces

This is joint work with V. Scharaskin.

K3 Surfaces of Picard Number 20
Let k be a field, usually finitely generated over the prime subfield (Q), k a separable

closure of k. Let X/k be a smooth, projective geometryicall connected, geometrically simply
connected surface. (π1(X) = {1}, where X = X×kk.) Let G = Gal(k/k), ` a prime number,
` 6= char k.

Point of the talk: It should be possible to do descent on (at least some) surfaces with
nonzero geometric genus.

For example, we consider K3 surfaces with geometric Picard number 20 (maximal) in
characteristic zero:

Proposition (Inose-Shioda). All K3 surfaces over C with Picard number 20 are defined
over Q, and may be realized as (double covers) of Kum(E × E ′), where E,E ′ are isogenous
elliptic curves with CM.

Kummer theory says: There is an exact sequence

0→ Pic(X)/`m Pic(X)→ H2(X,Z/`m(1))→ Br(X)[`m]→ 0;

since Pic(X) ∼= NS(X), as you pass to the limit over m, one has the exact sequence

0→ NS(X)⊗ Z` → H2(X,Z`(1))→ T`(Br(X))→ 0.

The term NS(X)⊗ Z` is algebraic, the term T`(Br(X)) transcendental.

Tensoring with Q`, we expect:

Conjecture (Tate Conjecture). The map

Pic(X)⊗Q` → H2(X,Q`(1))
G

is surjective.
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Proposition. If X is a geometrically simply connected surface, and the Tate conjecture is
true, then the `-primary component of Br(X)/Br(k) is finite.

Proposition. Suppose X as above has a good reduction modulo p with the same geometric
Picard number (not always true), and k is a number field. If the Tate conjecture is true,
then Br(X)/Br(k) is finite.

Corollary. If X is a K3 of geometric Picard number 20, then Br(X)/Br(k) is finite.

Sketch of proof. Use Inose-Shioda result and Faltings-Deligne which prove Tate for X, and
go modulo a prime that splits in the CM-field of E. ¤

Rapid review of descent
Descent by Colliot-Thélène and Sansuc. Let X be a geometrically simply connected

surface, and pg = 0. Let Sk be the torus whose group of characters is Pic(X), and SX =
Sk ×k X. There is an exact sequence

0→ H1(k, S)→ H1(X,S)
χ−→ H1(X,S)G → H2(k, S)→ H2(X,S)

coming from the Hochschild-Serre spectral sequence. We identify

H1(X,S)G ∼= HomG(PicX,PicX),

and we think of H1(X,S) as principal homogeneous spaces under S; an element [T ] ∈
H1(X,S) is a universal torsor if χ([T ]) = id.

One has a pairing

X(k)×H1(X,S)→ H1(k, S)

P, [T ] 7→ TP ;
every torsor T comes with a map fT : T → X, and TP = 0 if and only if P ∈ fT (T (k)).

Now assumeX only geometrically simply connected (not necessarily pg = 0). H2(X,Z`(1))
has no integral structure (i.e. there is not a Z[G] module M such that M ⊗ Z`

∼=G

H2(X,Z`(1)), so we must use étale cohomology.

If p : X → Y is any morphism of schemes, and F a sheaf on Y ét, G a sheaf on X ét,
then there is a spectral sequence

Er,s
2 = ExtrY (F , Rsp∗G )⇒ Extr+sX (p∗F ,G ).

Apply this general situation with p : X → Spec(k) the structure morphism, F =
H2(X,Z/nZ(1)), G = Z/nZ(1). One obtains a map

Ext2X(p
∗H2(X,Z/nZ(1)),Z/nZ(1))→ Endk(H

2(X,Z/nZ(1)))

coming from theE0,2
2 term in the spectral sequence. We expect that the group Endk(H

2(X,Z/nZ(1)))
will play the role of HomG(PicX,PicX) in the above.

Why is there a shift, and how does this relate to the Colliot-Thélène-Sansuc result
when pg = 0? Kummer theory on S gives

0→ S[n]→ S
n−→ S → 0

and

0→ H1(X,S)/nH1(X,S)→ H2(X,S[n])→ H2(X,S)[n]→ 0.



29

We have a map

H2(X,H om(p∗H2(X,Z/nZ(1)),Z/nZ(1))
→ Ext2X(p

∗H2(X,Z/nZ(1)),Z/nZ(1))

coming from the local-to-global spectral sequence, and we can identify

H2(X,H om(p∗H2(X,Z/nZ(1)),Z/nZ(1)))) ∼= H2(X, p∗H2(X,Z/nZ(2))).

Let χ be the composite of these three maps. Let n = `m.

Definition. A universal n-gerbe is an element G ∈ H2(X, p∗H2(X,Z/nZ(2))) such that
χ([G]) = id.

One can (with care and difficulty) pass to lim−→m
to speak of universal `-adic gerbes.

The set of universal `-adic gerbes is either empty or a principal homogeneous space under
the image of H2(k,H2(X,Z`(2))) in H

2(X, p∗H2(X,Z`(2))).

One has a pairing

X(k)×Gerbes(X, k, `)→ H2(k,H2(X,Z`(2)))

P,G 7→ GP

which gives a partition of X(k). This can be extended to a map

θG : CH0(X)→ H2(k,H2(X,Z`(2)))

where G is a chosen universal gerbe. On A0(X), zero-cycles of degree 0, this is the higher
`-adic Abel-Jacobi map, and the image of this map is a finitely generated Z`-module; if k is
a number field, one can show in some cases that that the image is finite, e.g. K3 of Picard
number 20 over Q or over the CM field.

So, in these cases, have X(k) =
⊔
fαGα(k), where α ranges over a finite set.

We can show X(Ak)
Br` 6= ∅ if and only if there exists a universal gerbe G with points

everywhere locally.

A.13 Rotger: Shimura varieties

Let k be an algebraically closed field, A, L/k a polarized abelian variety. We are
interested in:

A. Field of moduli of (A,L) and field of moduli of End(A)
B. Fields of definition of (A,L) and fields of definition of End(A).

The field of moduli of (A,L) KA,L is the unique minimal field in k such that (A,L)σ =

(A,L) for all σ ∈ Gal(k/KA,L).

KEnd(A)

KS

vvvvvvvvv

K(A,L)

xxxxxxxx
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Z ⊂ S ⊂ End(A). The top field is the unique field fixed by all σ such that there exists
A = Aσ making the following diagram commute:

A //

β∈End(A)
²²

Aσ

βσ

²²
A // Aσ

Shimura: the generic odd dimensional polarized abelian variety admits a model over KA,L.
The generic even dimensional polarized abelian variety does not admit a model over KA,L.

(Silverberg) Fix KA,L. There is a (unique, Galois) minimal field of definition KS/K(A,L)
of S ⊂ End(A).

(Silverberg) There is a Hd,r such that |Gal(KS/KA,L)| ≤ Hd,r for any abelian variety
A such that dimA = d and S ⊂ End(A) with [S : Z] = r.

If A is simple, End(A) is an order in either a totally real field, a division algebra over
a CM-field, or a quaternion algebra.

We will focus on the latter case.

Forgetful maps between Shimura varieties and rational points
Let F be a totally real number field, with [F : Q] = n. Let B be an indefinite

quaternion algebra over F (that is, B ⊗Q R = M2(R)n). Let OB be a maximal order in B.
Let

ΓB = {γ ∈ OB : NB/F (γ) = 1} ⊂ SL2(R)n.

Moduli problem (OB, µ): classify principally polarized abelian varieties (A, i,L) where
A is an abelian variety of dimA = 2n, i : OB → End(A),and the Rosati involution has the
form ∗L : OB → OB, b 7→ µ−1bµ where µ ∈ OB such that µ2 + δ = 0 and δ ∈ F×.
Proposition. If (A,L) is a principally polarized abelian variety, then it forces δ = D where
D is a totally positive generator of disc(B).

(Shimura): The moduli functor is coarsely represented over Q by a complete algebraic
variety XD/Q = X(OB ,µ)/Q, with dimXD = n. We havea XD(C) = ΓB\hn, where h is the
Poincaré upper half plane.

Let RF be the ring of integers of F , RF ⊂ S ⊂ OB, where S is a totally real quadratic
order over RF . There are forgetful finite maps over Q

XOB ,µ //MS
//MRF

// A2n

[A, i,L] = P Â // [A, i|S,L] Â // [A, i|RF ,L] Â // [A,L]
whereM is the Hilbert modular variety classifying varieties with real multiplication by the
subscript. The dimensions of these moduli spaces are, respectively, n, n, 3n, 2n2 + n.

The picture in n = 1 is

Shimura curve: X(O,µ) → Hilbert surface:MS → Igusa’s space:A2.

We have a tower of fields

KEnd(A) = Q(P ) ⊂ KS = Q(P |S) ⊂ KRF = Q(P |F ) ⊂ KA,L = Q(P0).
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The automorphism group of XD = X(OB ,µ): is

(Z/2)2r = W =
NormB×

+
(ΓB)

ΓB · F×
⊂ AutQ(XD)

where 2r = #{p| disc(B)}.
Theorem.A.

X(O,µ)
πF //MRF

birational onto the image, isomorphism away from Heegner points

²²
X(OB ,µ)/W0

where

W0 =

{
(Z/2)2w if B + F + Fµ+ Fχ+ Fµχ =

(−D,m
F

)
(twisting case)

(Z/2)2 otherwise (non twisting case)

w = #{primitive roots of unity in F (
√
−D) of odd order}

B.
X(O,µ)

πF //MS

birational onto the image, isomorphism away from Heegner points

²²
X(OB ,µ)/V0

where V0 ⊂ W0,

V0 =

{
(Z/2) in the twisting case

{1} otherwise

Corollary. Let (A,L) be a principally polarized abelian variety with End(A) = OB, dimA =
2n. Then

Gal(KEndA/KF ) ⊂
{
(Z/2)2w twisting case

(Z/2)w otherwise

For any totally real RF properly in S properly in OB.

Gal(KEndA/KS) ⊂
{
(Z/2) twisting case

{1} otherwise

Field of definition for abelian surfaces
Let (A,L)/K be a principally polarized abelian surface over a number field K with

EndK(A) = OB, disc(B) = D. There is a diagram

KEnd(A)

|G| ≤ 2 (Jordan)

KKKKKKKKKK

|G||48 (Silverberg)xxxxxxxxx

K
|G| ≤ 2 (Mestre)

FFFFFFFFF KEnd(A)

KA,L
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A. If B =
(
−D,m

Q

)
for 0 < m < D, m|D, then (with Dieulefait)

Gal(KEnd(A)/K) =





Z/2× Z/2 in this case EndK(A) = Z
Z/2 EndK(A)⊗Q = Q(

√
−D),Q(

√
m),Q(

√
D/m)

{1} EndK(A) = OB
B. Otherwise,

Gal(KEnd(A)/K) =

{
Z/2 EndK(A)⊗Q = Q(

√
−D)

{1} otherwise

A.14 Salberger: Arithmetic Bezout and Rational Points of Bounded
Height

We take the height function

H : Pn(k)→ R>0

x = (x0 : · · · : xn) 7→
∏

v

sup
0≤i≤n

|xi|v

If X ⊂ Pn is a closed subvariety over k, U ⊂ X an open subvariety also over k, we have the
counting function

N(U,B) = #{x ∈ U(k) : H(x) ≤ B}.
Conjecture (Batyrev-Manin). We have

N(U,B)¿X,ε B
α(D)+ε

if U is sufficiently small, X is smooth, and D a hyperplane divisor.

Already the case of smooth cubic surfaces, away from the 27 lines, this conjecture
would imply linear growth, but it was only known recently for quadratic growth; therefore
this is hard enough, looking for asymptotic formulas is often asking for too much.

Recently, there has been work which also works in low dimension (curves and surfaces),
due to Heath-Brown (2002); this also has applications to other problems (e.g. Waring’s
problem).

Theorem (Heath-Brown). Let Xd ⊂ Pn be an absolutely irreducible curve of degree d; then

N(Xd, B)¿n,d,ε B
2/d+ε.

The implicit constant does not depend onXd; the results of Faltings have no uniformity.
We have applications to surfaces. This result is also best possible, taking the Veronese
embedding of P1. There was a result of Bombieri-Pila which proved ¿d,ε B

1+1/d+ε. Broberg
treats arbitrary number fields k (and the case n > 3).

This theorem relies on the following result, which is Theorem 14 in the paper of Heath-
Brown.

Theorem (Theorem 14). Let Xd ⊂ Pn be an absolutely irreducible projective Q-variety of
dimension r defined by forms of degree ≤ δ. Let ε > 0, B ≥ 1 be given. Then there exists a
Q-hypersurface Y ⊂ Pn such that:

(i) Xd 6⊂ Y ;
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(ii) All Q-points on Xd of height ≤ B lie on Y ;

(iii) We have

deg(Y )¿n,δ,ε B
r+1

d1/r
+ε
;

(iv) The irreducible components of Y have degrees bounded in terms of n, δ, ε.

Remark. Heath-Brown treats only the case r = n − 1. Taking r = 1, the result of Heath-
Brown is an immediate consequence of this theorem if one applies Bezout’s theorem in the
plane. The case r < n− 1 is due to Broberg, and with arbitrary k.

If X is smooth, then you may replace δ by d in (iii) and (iv).

Lemma (Colliot-Thélène). Let Xd ⊂ P3 be a smooth projective surface. Then there exists
at most ¿d 1 curves of degree d− 2 on X.

This implies that a cubic has only finitely many lines, a quartic has only finitely many
conics, and so on. This is best possible, for d−1 one might have infinitely many such curves,
for example, infinitely many conics on a cubic surface. Removing these curves, we still have
a surface, and we get:

Theorem (Heath-Brown). Let Xd ⊂ P3 be a smooth projective surface and let U be the
complement of all curves of degree ≤ d− 2. Then

N(U,B)¿d,ε B
3√
d
+ 2
d−1

+ε
.

This is the best known result if d ≥ 6. To do this, apply Theorem 14 by cutting

with an auxiliary hyperplane; the same implicit constant applies everywhere, the B3/
√
d+ε is

the maximum number of irreducible components. We considering for example the Veronese

embedding of the projective plane to see that we would expect ¿ B3/
√
d+ε.

Theorem (S). Let Xd ⊂ Pn be a smooth absolutely irreducible projective Q-variety of di-
mension r defined by forms of degree ≤ δ. Let ε > 0, B ≥ 1 be given. Then there exists a
Q-hypersurface Y ⊂ Pn such that:

(i) Xd 6⊂ Y ;

(ii) All Q-points on Xd of height ≤ B lie on Y ;

(iii) We have

deg(Y )¿n,δ,ε B
r+1

rd1/r
+ε
.

For the moment, it is not clear how to use this theorem to deduce ¿ B3/
√
d+ε.

Proof. Let Q1(x), . . . , Qm(x) be monomials in x = (x0, . . . , xn) which form a basis of

img(H0(Pn,O(D))→ H0(X,O(D))),

where D ∼ B(r+1)/(rd1/r)+ε. Let P1, . . . , P` ∈ An+1(Z) represent the Q-points on Xd of height
≤ B. We need to show that the rank of the matrix



Q1(P1) . . . Q1(P`)

...
. . .

...
Qm(P1) . . . Qm(P`)




is < m. This is trivial if m > `; otherwise, we must look at all sub (m ×m)-determinants.
Since these points are of bounded height, each term in the determinant is bounded by BD,
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so one has a bound on the archimedean height of the determinant. With more points, the
determinants are divisible by high powers of prime numbers (by the Weil conjectures, points
must coincide); under certain circumstances, these divisibilities contradict the bounds on the
determinant. We use for example that

∑

p≤R

log p

p
∼ logR.

This gives the result. ¤

Remark. The theorem is also true for surfaces with at most rational double points. Already,
the theorem is not known for elliptic singularities.

We apply this theorem to count Q-points on Xd ∩ Y when dimXd = 2. Then

deg(Y )¿d,ε B
3/(2

√
d)+ε. By the adjunction formula (and Bezout),

#(Xd ∩ Y )sing(Q)¿d deg(Y )2 ¿ B3/
√
d+ε.

All Q-points on irreducible, not absolutely irreducible components are singular. There-
fore it suffices to count smooth Q-points on absolutely irreducible components of Xd ∩ Y .
Let Z1, . . . , Zs be absolutely irreducible components of Xd ∩ Y of degree ≤ f(d, ε), then

s∑

i=1

#N(Zi, B)¿d,ε (
∑

i degZi)B
(2/e)+ε

where e = min deg(Zi). This is

(
∑

i degZi)B
(2/e)+ε ¿d,ε B

3/(2
√
d)+2/e+ε.

If you throw out curves of smallest degree, this is smaller than ¿ B3/
√
d.

But we still must deal with curves of high degree, e.g. the case when Xd ∩ Y is
irreducible.

Lemma. Let Zδ ⊂ Pn be an absolutely irreducible degree δ, and p a prime Àn,ε B
(2/δ)+ε.

Then:

(i) The number of Q-points on Zδ of height ≤ B which specializes to a given smooth Fp-point
on Zδ is ¿n,ε δ.

(ii) The number of Q-points on Zδ with smooth specialization at p is ¿n,ε δB
(2n/δ)+ε.

Corollary. We have
#N(Zδ,smooth, B)¿n,ε δ

4B(2n/δ)+ε.

If we could replace δ4 by δ2, then we would have get N(U,B) ¿ B(3/
√
d)+ε. It might

still be useful to find something like δ5/2. Using arithmetic Bezout, bounding the heights
of the subvarieties (due to Faltings), this might succeed. It would also be better to work
systematically with all primes p, some savings might arise.

A.15 Skorobogatov: Counterexamples to the Hasse Principle...

This is joint work with Laura Basile.

We work over a field k with char k = 0, k its algebraic closure.

Definition. A bielliptic surface X is a k/k-form of a smooth projective surface of Kodaira
dimension 0 that is not K3, neither abelian nor Enriques.
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There is a complete list of such available. We haveKX 6= 0, but nKX = 0, for n = 2, 3, 4
or 6. Over the algebraic closure, X = E × F/Γ, where Γ acts on E ′ by translations.

Proposition. There exists an abelian surface A/k, a principal homogeneous space Y of A,
and a finite étale morphism f : Y → X, deg f = n.

Proof. Since nKX = (g), then consider tn = g and normalize; the map is unramified, so
KY = f ∗KX = 0. By the classification of surfaces, Y is an abelian surface. (f is a torsor
under µn.) ¤

Remark. This will not hold in higher dimension; there are just many more possibilities.

Consider A = E×F , Y = C ×D, C a principal homogeneous space of E, and likewise
D for F . Now µn acts on Y so that µn acts on D by translations, µn ⊂ F ; the action on µn
on C cannot be by translations or else X itself would be a principal homogeneous space, so
the action has fixed points.

Proposition. [C] ∈ img(H1(k,Eµn)→ H1(k,E)).

Proof. Take x ∈ C(k), fixed by µn, and write down the usual cocycle: if g ∈ Gal(k/k),
gx− x ∈ Eµn(k).

(It arises from [Cµn ].) ¤

Corollary. Let α : E → E1 be the isogeny with kernel Eµn. Then [C] ∈ H1(k,E)[α∗].

We have one of the following possibilities:

n #Eµn

6 1 (so C(k) 6= ∅)
4 2
3 3
2 4

Now assume k = Q, and X(AQ) =
∏

vX(Qv); we want an example where X(AQ)
Br 6=

∅, but X(Q) = ∅. We do the case n = 3.

With the notation as above:

Theorem. Assume that:

(i) Gal(Q/Q) acts nontrivially on Eµ3, which is ∼= Z/3Z as an abstract group;

(ii) #X(E)[α∗] = 3;

(iii) [C] ∈X(E)[α∗];

(iv) µ3 ⊂ F ;

(v) Sel(F, µ3) = 0, that is, for any principal homogeneous space of F obtained from a class in
H1(Q, µ3), there exists a place v where it has no point.

Then X = (C×F )/µ3 is a counterexample to the Hasse principal not explained by the Manin
obstruction.

Example. If C : x3 + 11y3 + 43z3 = 0, µ3 acts by (x : y : z) 7→ (x : y : ζ3z), F = D :
u3 + v3 +w3 = 0, with µ3 acting by (u, v, w) 7→ (u : ζ3v : ζ23w); looking at the Selmer group,
you look at principal homogeneous spaces of the form u3 + av3 + a2u3 = 0, so if p | a, this
has no Qp point.
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We have BrX = Hom(NS(X)tors,Q/Z) as Galois modules (this holds more generally if

X is a surface and h2,0 = 0), and NS(X)tors = Eµ3 . Then (i) implies that (BrX)Gal(Q/Q) = 0.

The kernel of the restricted Cassels pairing X(E)[α∗] ×X(E)[α∗] → Q/Z consists of

elements in the image of X(E1)
αt∗−→ X(E), where αt : E1 → E is the dual isogeny. Since

X(E)[α∗] ∼= Z/3Z must be zero because it is alternating, so lift C1 → C; then we have étale
maps

C1 × F = Y1 → C × F = Y → X;

to find an adelic point, find a rational point R ∈ F (Q) and a collection {Pv} ∈ C1(AQ); then
f1 : Y1 → X has f ∗1 (Br1X) ⊂ π∗(BrF ), where π : Y1 → F is the projection.

The last condition (v) says that there are no rational points on X; rational points on
X comes from twists of Y , but by assumption these have no point over a place v, so they
arise from X.

A.16 Vojta: Big semistable vector bundles

Bigness
Throughout this talk, k is a field of characteristic zero, algebraically closed unless

otherwise specified.

A variety is an integral scheme, separated and of finite type over a field.

Throughout this talk, X is a complete variety over k.

Definition: Let L be a line sheaf on X. We say that L is big if there is a constant c > 0
such that h0(X,L⊗n) ≥ cndimX for all sufficiently large and divisible n ∈ Z.
Lemma. (Kodaira) Let L be a line sheaf and A an ample line sheaf on X. Then L is big
iff L⊗n ⊗A∨ has a (nonzero) global section for some n > 0.

Proof: “⇐= ” is obvious.

“ =⇒ ”: Write A ∼= O(A1 − A2) with A1 a reduced effective very ample divisor. It
will suffice to show that L⊗n(−A1) has a global section for some n > 0. Consider the exact
sequence

0→ H0(X,L⊗n(−A1))→ H0(X,L⊗n)→ H0(A1,L⊗n) .
The middle term has rankÀ ndimX , but the rightmost term has rank¿ ndimX−1, for nÀ 0
divisible. ¤

Definition: A vector sheaf E of rank r on X is big if there is a c > 0 such that

h0(X,SnE) ≥ cndimX+r−1

for all nÀ 0 divisible.

Equivalently, E is big iff O(1) on P(E) is big.
Essential base locus
Definition: Assume that X is projective, and let L be a (big) line sheaf on X. The
essential base locus of L is the subset⋂

n∈Z>0

(base locus of L⊗n(−A))

for any ample divisor A on X (it is independent of A). The essential base locus of a vector
sheaf E on X is the set π(E), where E is the essential base locus of O(1) on P(E) and
π P(E)→ X is the canonical morphism.
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Question: If E is a big vector sheaf, is its essential base locus properly contained in X?

Answer: No. Example: Unstable E over curves.

Question: What if E is big and semistable?

Curves
Throughout this section, X is a (projective) curve.

Definition: (Mumford) A vector sheaf E on X is semistable if, for all short exact
sequences

0→ E ′ → E → E ′′ → 0

of nontrivial vector sheaves on X,

deg E ′
rk E ′ ≤

deg E
rk E

or (equivalently)

deg E ′′
rk E ′′ ≥

deg E
rk E .

Theorem. Let E be a big semistable vector sheaf on X. Then E is ample (i.e., O(1) is
ample on P(E)). In particular, the essential base locus of E is empty.

Proof: By Kleiman’s criterion for ampleness, the sum of an ample and a nef divisor is again
ample, so by Kodaira’s lemma it suffices to show that if E is a semistable vector sheaf on X,
then all effective divisors D on P(E) are nef.

So, let D be an effective divisor and C a curve on P(E). We want to show:

(DC) ≥ 0 .

Since E is semistable, so is
(
π
∣∣
C

)∗E (proof later).

Therefore we may assume that C is a section of π, and that D is a prime divisor.

Since C is a section, it corresponds to a surjection E → L → 0. Moreover, L ∼= O(1)
∣∣
C
.

By semistability, therefore,

(O(1)C) ≥ deg E
rk E . (∗)

Now consider D. Let d be the degree of D on fibers of π; d > 0. Then O(D) ∼=
O(d)⊗ π∗M for someM∈ PicX. Thus D corresponds to a section ofM⊗ SdE , hence we
have an injection

0→ OX →M⊗ SdE
with locally free quotient.

Since E is semistable, so is SdE (proof later); hence

deg(M⊗ SdE) ≥ 0 (∗∗)

Let r = rk E ; then SdE has rank r′ :=
(
r+d−1
d

)
. The diagram

GLr(k) //

²²

GLr′(k)

²²
k∗ // k∗
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commutes for all diagonal matrices, hence for all diagonalizable matrices, hence for all ma-
trices. Thus

deg(M⊗ SdE) = r′ degM+

(
r + d− 1

d− 1

)
deg E

= r′ degM+
d

r
r′ deg E

and therefore by (**),

degM≥ −d
r
deg E .

Thus by (*),

(DC) = d(O(1)C) + degM≥ d

r
deg E − d

r
deg E ≥ 0 . ¤

Higher Dimensional Varieties
Let X again be a complete variety of arbitrary dimension.

Construction: Given a vector sheaf E on X of rank r and a representation

ρ : GLr(k)→ GLr′(k) ,

we can construct a vector sheaf E (ρ) on X of rank r′ by applying ρ to the transition matrices
of E . Equivalently, if E corresponds to ξ ∈ H1(X,GLr(OX)), then ρ(ξ) ∈ H1(X,GLr′(OX))
corresponds to E (ρ).

Examples of this include Sd, det, and ∧d.
Definition: (Bogomolov) A vector sheaf E of rank r on X is unstable if there exists a
representation ρGLr(k)→ GLr′(k) of determinant 1 (i.e., factoring through PGLr(k)) such
that E (ρ) has a nonzero section that vanishes at at least one point. It is semistable if it is
not unstable.

Theorem. (Bogomolov) If X is a curve, then Bogomolov’s definition of semistability agrees
with Mumford’s.

Remark: If ρ has determinant 1 then Imρ ⊆ SLr′(k), but not conversely.

Indeed, the representation GL1(k) → GL2(k), z 7→
(
z 0
0 z−1

)
, has image contained

in SL2(k) but its does not factor through PGL1(k).

To see that the (true) converse holds, first show that the vanishing of the determinant

defines an irreducible subset of kr
2

; this is left as an exercise for the reader. Now suppose
that ρ GLr(k) → GLr′(k) is a representation that factors through PGLr(k), and suppose
also that its image is not contained in SLr′(k). Then det ◦ρ is a nonconstant regular function

PGLr(k) → k∗, hence it determines a nonconstant rational function on Pr2k with zeros and
poles contained in {det = 0}. But the latter is irreducible, so it can’t have both zeroes and
poles there, contradiction.

So now we can pose:

Question: If X is a projective variety and E is a big, semistable vector sheaf on X, then
is the essential base locus of E a proper subset of X?

Remark: We can’t conclude that E is ample in the above, as the following example
illustrates. Let X be a projective variety of dimension > 1, let E be a big semistable vector
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sheaf on X of rank > 1, let π X ′ → X be the blowing-up of X at a closed point, and let F
be the exceptional divisor. Then the essential base locus of π∗E must contain F .

My Mitteljahrentraum
The question of an essential base locus being a proper subset comes up in Nevanlinna

theory, and I hope to be able to use it in number theory, as well. Here’s how.

Bogomolov has shown that Ω1
X is semistable for a smooth surface X. One would hope

to generalize this, to Ω1
X(logD) for a normal crossings divisor D on X, and also to higher

dimensions. Then it would suffice to prove that one of these bundles is big to get arithmetical
consequences.

Moreover, Bogomolov’s definition of semistability can be generalized to defining semista-
bility of higher jet bundles. These are not vector bundles, because they correspond to el-
ements of H1(X,G(OX)) for a group G other than GLn. But, one can make the same
definition, using those representations of G having the appropriate kernel: k∗ again (Green-
Griffiths), or a certain bigger group (Semple-Demailly). Probably the latter.

Bigness is easy to define in this context, and then one hopefully can use the two
properties to talk about the exceptional base locus. Already the proof of Bloch’s theorem in
Nevanlinna theory can probably be recast in this mold.

Is Semistability Really Necessary?
The proof of the main theorem of this talk didn’t really need the full definition of

semistability; it only used the condition on the degrees of subbundles for subbundles of rank
1 and corank 1. Would the following definition make sense, and would it be preserved under
pull-back and symmetric power?

Definition: Let X be a projective curve and let E be a vector sheaf of rank r on X. Then
E is ±1-semistable if the condition on degrees and ranks of subbundles holds for all full
subbundles E ′ of rank 1 and corank 1.

Again, what would be a reasonable representation-theoretic formulation of this defini-
tion?

Loose Ends
In the proof of the main theorem it remains to show that semistability is preserved

under pull-back and under taking Sd.

To show the first assertion, let f X ′ → X be generically finite, and let E be a semistable
vector sheaf on X. Suppose that f ∗E is unstable. Let ρGLr(k)→ GL(V ) be a representation
such that (f ∗E)(ρ) has a nonzero global section that vanishes somewhere. Let d = deg f .
Then taking norms gives a global section of

Sd(E (ρ)) = E (Sd◦ρ)

with the same properties, contradiction.

The second assertion is proved similarly: suppose there is a representation

ρ GL(Sd(kr))→ GL(V )

with the required properties. Then ρ◦Sd gives a representation GLr → GL(V ), leading to a
contradiction as before. It only remains to check that ρ ◦Sd has determinant 1. This follows
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by commutativity of the following diagram:

GLr(k) //

²²

GLr′(k)

²²
PGLr(k) // PGLr′(k)

(here r′ is the rank of SdE).
A.17 Wooley: The Circle Method

Introduction
The circle method is the Hardy-Littlewood method (1920s), “any method involving

Harmonic analysis that counts solutions of Diophantine questions”, including Kloosterman
methods.

Example. Consider a homogeneous polynomial F (x1, . . . , xs) ∈ Z[x1, . . . , xs] of degree d. We
count

NF (B) = #{(x1, . . . , xs) ∈ [−B,B]s : F (x) = 0}

=

∫ 1

0

G(α) dα,

where
G(α) =

∑

|x|≤B
e(αF (x1, . . . , xs)),

and e(z) = e2πiz.

Let ψ(B)→∞ as B →∞ as slowly as you like, ψ(B) < Bd/2. We look at

M(q, a) = {α ∈ [0, 1] : |qα− a| ≤ ψ(B)B−d},
and let

M =
⋃

0≤a≤q≤ψ(B)
gcd(a,q)=1

M(q, a),

the major arcs. Then ∫

M

G(α)dα ∼ v∞
∏

p

vpB
s−d,

the product of local densities, where v∞ is the volume of the real manifold defined by F (x) = 0
in [−1, 1]s, and

vp = lim
h→∞

ph(1−s)#{F (x) = 0 (mod pn) : x ∈ (Z/phZ)s}.

This particular statement is true in a very broad sence, provided that s is not small and that
the geometry of F = 0 is not too wild, e.g. nonsingular.

For m = [0, 1) \M, the minor arcs, then G(α) should be “randomly” behaved, so one
tries to show: G(α) = o(Bs−d) when α ∈ m. If true, then

NF (B) =

∫

M

G(α) dα +

∫

m

G(α) dα ∼ v∞
∏

p

vpB
s−d + o(Bs−d).
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For this one needs non-singular R and Qp-points. When this method works, one gets weak
approximation and the Hasse principle.

In particular, this will not work for varieties which fail the Hasse principle. The basic
techniques work for all number fields K/Q, or even for Fq[t] or other function fields.

Scope of the Circle Method
The circle method works with “sufficiently many” variables.

Proposition (Birch 1957). Given forms F1, . . . , Fr ∈ Q[x1, . . . , xs], of respectively odd de-
grees d1, . . . , dr, and provided that s > s0(d1, . . . , dr) is large enough, then there exists a
rational point on F1 = · · · = Fr = 0.

This method diagonalizes each of the forms, but at a great cost:

s0(d1, . . . , dr) ≤ ψ(d−5)/2(d1 + · · ·+ dr)

where d = max di, and ψ0(x) = exp(x), ψ1(x) = (exp ◦ · · · ◦ exp︸ ︷︷ ︸
42 log x

)(x), ψ2(x) = (ψ1 ◦ · · · ◦ ψ1︸ ︷︷ ︸
42 log x

)(x)

and so on.

Example. For d = 3, one has s0(3) = 15 (Davenport 1963); s0(3, . . . , 3︸ ︷︷ ︸
r

) = (10r)5 (Schmidt

1984). s0(3, 3) = 831 (Dietmann-W).

Proposition (Birch 1962). Let F (x) ∈ Z[x1, . . . , xs] be homogeneous of degree d. Let V =
{F (x) = 0}. Then whenever s − dim(Vsing) > (d − 1)2d, one has NF (B) asymptotic to a
product of local densities as before.

The difficulty of this result depends on the singular locus being reasonably small in
dimension. This holds for any number field, and it is probable that this holds for a function
field assuming the characteristic is sufficiently large.

Proposition (Heath-Brown 1983, Hooley 1988). For s0(3) = 8, we have the Hasse principle
for nonsingular cubic forms.

We now turn to some simpler situations.

Proposition (Brudem-W). If F = Φ1(x1, x2) + · · · + Φs/2(xs−1, xs), Φi ∈ Z[x, y] binary,
homogeneous of degree d, then NF (B) is asymptotic to the product of local densities whenever

s >





2d, d = 3, 4

(17/16)2d, 5 ≤ d ≤ 10

2d2 log d+ . . . , d large.

For a diagonal form a1x
d
1 + · · ·+ asx

d
s = 0, work by Hua, Vaughan, Heath-Brown, the

same conclusion holds for

s >





2d, d = 3 ≤ d ≤ 5

(7/8)2d 6 ≤ d ≤ 8

d2 log d+ . . . , d large;
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One also has the weaker statement that NF (B) is greater than a constant times the product
of local densities in the cases that

s ≥





7, d = 3

12, d = 4
...

d(log d+ log log d+ 2 + o(1)), d large.

Presumably: s > 2d should suffice for the method to work.

Simultaneous equations: we expect need s0(d) variables for 1 form of degree d makes
it look we need rs0(d) variables for r forms of degree d. For

∑s
j=1 aijx

d
j = 0, (1 ≤ i ≤ r),

the number of variables required is given by: if the forms are in general position, and
s > (3r + 1)2d−2, then we have an asymptotic formula. For r diagonal cubics, s ≥ 6r + 3.
For 2 diagonal cubics, one has the Hasse principle whenever s ≥ 13 (Brudeur, W).

Keys to Success
We have the major arcs

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ ψ(B)B−d}
with

M =
⋃

0≤a≤q≤ψ(B)
gcd(a,q)=1

M(q, a).

For α = a/q a rational number, we have

G(α) =
∑

|x|≤B
e(αF (x)) =

q∑

r1=1

· · ·
q∑

rs=1

∑

xi≡ri (mod q)
1≤i≤s

e((a/q)F (r1, . . . , rs))

= (B/q)s
q∑

r1=1

· · ·
q∑

rs=1

e((a/q)F (r)) +O((B/q)s−1qs)

∼ q−sS(q, a)Bs.

One can handle the case α = (a/q) + β for β small by using the mean value theorem,

G(α) = q−sS(q, a)v(β) +O((q(1 +Bd|β|))s)
and

v(β) =

∫ B

−B
. . .

∫ B

−B
e(βF (γ1, . . . , γs)) dγ.

One can apply Poisson summation and Kloosterman methods to get the error to be of type
Bds/4.

For the minor arcs, we want to show
∫

m
G(α) dα = o(Bs−d). One has Weyl differencing:

letting f(α) =
∑
|x|≤B e(αx

d), we have

|f(α)|2 =
∑

|x|≤B

∑

|y|≤B
e(α(xd − yd)) =

∑

h∈I

∑

y∈I(h)
e(α((y + h)d − yd))
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where now (y + h)d − yd = hpd−1(y, h). Repeating in this way, one can get down to sums of
linear polynomials. Provided α ∈ R, a ∈ Z, q ∈ N, gcd(a, q) = 1, with |α− a/q| ≤ q−2, then

|f(α)| ¿ B1+ε(a−1B−1 + qB−d)2
1−d
.

Finally, there is recent work of Heath-Brown and Skorobogatov: For at`(1−t)m = N(x),
N a norm form of degree k, then the Brauer-Manin obstruction is the only one to weak
approximation and the Hasse principle. One uses descent to cN(y) + dN(z) = λwk, where
the circle method gives weak approximation and the Hasse principle. One can generalize
this to the case

aL1(x)
`1L2r(x)

`2r = N(v),

where Li(x) ∈ Q[x1, . . . , xr] linear forms, gcd(`1, . . . , `2r) = 1. Again we have that the
Brauer-Manin obstruction is the only one, and one has descent to

2r∑

j=1

cijN(yi) = λiw
k

for (1 ≤ i ≤ r).

A.18 Yafaev: Descent on certain Shimura curves

Joint work with A. Skorobogatov.

LetB be an indefinite division quaternion algebra over Q (indefinite means that R⊗B =
M2(R)). Let OB be a maximal order in B. Let D be the discriminant of B (the product
of primes that do not split B), and suppose D > 1. Let H± be the union of the upper and
lower half planes and consider the Shimura curve

S = O×B\H±.

Then S is a compact Riemann surface S with a canonical model over Q.

Let N be a prime, (N,D) = 1. Let Γ0(N), Γ1(N) be the inverse images in O×B of the
usual subgroups of GL2(Z/N). Let X = Γ1(N)\H±, Y = Γ0(N)\H±. Then X → Y is a
Galois covering, with Galois group Z/NZ×, which is unramified if ∃p, q|D such that p ≡ 1
(mod 4), q ≡ 1 (mod 3).

Theorem (Shimura). We have S(R) = ∅, and if k is imaginary quadratic, k ⊗B =M2(k),
and |Cl(k)| = 1, then S(k) 6= ∅.

• Jordan and Livne gave a complete description of points of S over local fields.
• Jordan gave some results on points of S over imaginary quadratic fields. For example,
if D = 39, k = Q(

√
−3), then Sk does not satisfy the Hasse Principle.

• Skorobogatov and Siksek showed that if Sk does not have a k-rational divisor class
of degree 1 and (Jac(Sk)) is finite, then the failure of the Hasse Principle for Sk is
accounted for by the Manin obstruction.

Consider now the covering X → Y of curves over Q, as defined above. We want
to find an imaginary quadratic field k and X and Y such that for any twist of X by a
character Gal(k/k)

σ−→ (Z/N)×/±1, Xσ(Ak) = ∅ but Y (Ak) 6= ∅. Since, as in Skorobogatov’s
talk, Y (k) =

⋃
σX

σ(k), this shows that the Hasse principle for Y fails and provides a
cohomological obstruction that explains this failure.
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Suppose first that v|p for a prime p dividing D. Then Y has bad reduction at v.
Furthermore, it is known (Jordan-Livne-Varshavsky) that Y (kv) 6= ∅ if p is inert. So we
suppose that all primes dividing D are inert in k.

Now consider what happens at N . We have the usual model of YFN with two compo-
nents SFN , intersecting at supersingular points defined over FN2 . We assume again that N
is inert. It can be shown that |S(FN2) \ {Supersingular Points}| > 0. This then shows that
if N is inert, Y (kv) 6= ∅ for v|N .

Finally, we consider places v which do not divide ND. If σ : Gal(k/k)→ (Z/N)×/± 1
is ramified at such a place v, Xσ(kv) = ∅. So we need only consider characters unramified
outside ND. If we suppose further

A. that (N − 1)/2 is prime to p(p2 − 1) for any p|D
B. |Cl(k)| is prime to (N − 1)/2

then we are left with characters corresponding to Q(ζN)
+k/k.

Now, Y and Xσ have good reduction outside ND. To deal with places v - ND, we
count points to show that the curve has points over Fv (which is Fp or Fp2 according as p is
split or inert in k), then lift them using Hensels Lemma.

The point counts make use of the following trace formulas: p - ND then

Tr(F r
p |H1

ét(YFp ,Q`)) = Tr(pTpr−2 − Tpr |H0(YFp ,Ω
1))

Tr(F r
p |H1

ét(X
σ
Fp ,Q`)) = Tr(γrpTpr−2 − γrTpr |H0(XF p

,Ω1))

where Fp is Frobenius and γ = σ(Fp). We get Y (Fp2)| > 0, and Y (Fp)| > 0 if ∃t ∈ Z,
|t| < 2

√
p such that

A. all primes dividing D are split in Q(
√
t2 − 4p)

B. p - t or p is not split in Q(
√
t2 − 4p)

C. N is not inert in Q(
√
t2 − 4p).

Putting these together we get the following proposition:

Proposition (Local points on Xσ). Suppose that for all m ∈ {0, 1, . . . , (N − 3)/2} there
exists p - ND split or ramified in k such that

p2m + tpm + p 6= 0 (mod N) (for all t ∈ Z, |t| < 2
√
p) (2)

then for all characters σ we have Xσ(Ak) = ∅.
We can now find counterexamples to the Hasse principle as follows:

A. Choose D = q1q2, with q1 ≡ 1 (mod 4) and q2 ≡ 1 (mod 3).
B. Choose N such that (N − 1)/2 is coprime to q1(q

2
2 − 1) q2(q

2
2 − 1).

C. Let p be a prime such that p - ND. Call p good if there exists t such that condition 1
above is satisfied, bad otherwise. (The set of bad primes is finite.) Now find a good
p such that (2) is satisfied.

D. Now choose a field k imaginary quadratic such that q1, q2, N are inert in k, bad primes
are inert, primes from Step 3 are split or ramified, and |Cl(k)| is prime to (N − 1)/2.
Ono can prove that if there is one ksatisfying these conditions there are infinitely
many.

Example: D = 35, N = 23, k = Q(
√
−127).
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Chapter B: Problems

The workshop featured two problem/discussion sessions. The sessions were moderated
by Jean-Louis Colliot-Thélène and William McCallum. People took turns suggesting prob-
lems and the moderator led the other participants to share their thoughts and perspectives.

The material from both sessions has been combined into one list.

A followup session, discussing the progress made during the workshop, was moderated
by Trevor Wooley. The material from the followup session has been incorporated in the
problem list.

B.1 List of open problems

Problem/Question 1. Consider hypersurfaces fd ∈ Z[x0, . . . , xn] of degree d in Pn, n ≥ 2.
Let

N(H) = {fd : max coefficient of fd is ≤ H, fd has a solution in Zn+1 \ {0}}.

(a) For d > n+1, is it true that N(H)/Ntot(H)→ 0? Does this follow from Lang’s conjectures?
(Voloch)

(b) Instead, look at those with those with points locally everywhere Nloc (Poonen). Is this a
positive fraction, i.e. is Nloc(H)/Ntot(H) > c?

(c) As a special case, if you write down a plane cubic, how likely is it to have a rational point?
(Voloch)

(d) For cubic surfaces, there are examples where the Hasse principle fails, but maybe for almost
all values of a parameter in a family, the Hasse principle holds. We should have asympotically
that the N(H)/Ntot(H) ∼ Nloc(H)/Ntot(H)? (Colliot-Thélène) For d ≤ n, we hope this will
hold in general.

Remarks.

(i) The set of reducible such hypersurfaces are a very small fraction (usually codimension ≥ 2)—
they affect this calculation very little (Poonen).

(ii) Serre looked at d = 2; here one has the Hasse principle. (Tschinkel) For d = 2, n = 2,
the proportion of everywhere locally solvable ones tends to zero; but we should exclude this
case because of the codimension 2 condition. (Heath-Brown) Instead, we should restrict to
families X → S such that the codimension of reducible fibers is at ≥ 2.

(iii) Computational evidence is all over the place, so one must rephrase the question better to
get some kind of answer. For example, for cubics, those with prime power discriminant and
the general evidence are quite different. (Swinnerton-Dyer)

(iv) How is this related to 3-torsion elements in X? (Ellenberg)

Update (4/21/04): Poonen and Volloch have tackled this problem: http://www.math.princeton.edu/∼ytschink/papers/aim-
html/poonen-voloch/random.pdf

Problem/Question 2. IfX is smooth projective geometrically rationally connected defined
over a number field k, then the Brauer-Manin obstruction should be the only one to the Hasse
principle. That is, is

X(k) = X(Ak)
BrX?
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As special cases, this should be the case for Fano varieties of dimension ≥ 3, e.g.
(smooth) complete intersections of degree (d1, . . . , dr) in Pn with d1 + · · ·+ dr ≤ n. (Colliot-
Thélène)

Remarks.

(i) It would be worth doing a reasonably large search on diagonal quartic 3-folds. (Swinnerton-
Dyer)

(ii) It is an old problem that for nonsingular cubic forms in at least 5 variables, the Hasse
principle holds. For diagonal cubic forms over Q, this is proved modulo finiteness of X.
(Swinnerton-Dyer)

(iii) For the smooth intersection of two quadrics in P5, the Hasse principle should hold? If it has
a rational point, then it in fact satisfies weak approximation. The critical problem is in 6
variables. (Colliot-Thélène)

Problem/Question 3. Let f1(x0, . . . , xn) = 0, f2(x0, . . . , xn) = 0 define the smooth com-
plete intersection of two quadrics X2,2 ⊂ Pn over k a number field. For simplicity, assume
k = Q. If n ≥ 8, X(R) 6= ∅ implies X(Q) 6= ∅. (Sansuc, Swinnerton-Dyer, Colliot-Thélène)

(a) For n ≥ 9 (10 variables), this can be provably done by the circle method. (Heath-Brown)

(b) For n = 7, there is the concrete problem: given two quadratic forms f1, f2 as above in 8
variables over k a p-adic field, assume f1 = f2 = 0 is smooth, so that det(λf1+µf2) = p(λ, µ)
is separable. Does there exist (λ, µ) ∈ P1(k) such that λf1+µf2 contains 3 hyperbolics (split
off an extra xy in its decomposition). Solution to this problem would give a local-global
principle for n = 7. (Colliot-Thélène)

Remarks.

(i) It is possible in odd characteristic after an odd degree field extension (Heath-Brown), un-
written.

(ii) If in the pencil, there is one of rank ≤ 7, then it is possible; or other conditions with n ≥ 5
(e.g. two conjugate lines or contains a conic defined over the ground field).

Problem/Question 4. Consider the hypersurface given by
∑

i xiy
2
i = 0 in P3 × P3. Take

the height
H(x, y) = sup |xi|3 · sup |yi|2

and throw out the set where some xi = 0, yi = 0. Can one estimate the counting function?
(Peyre)

Remarks. Some people are working on this. What news?

Problem/Question 5. Consider xyz = t(x + y + z)2, with height function H(x, y, z, t) =
max(|x|, |y|, |z|, |t|), and restrict to gcd(x, y, z, t) = 1. Excluding trivial solutions (on lines),
can you prove a counting function which is

∼ cB(logB)6 < B1+ε?

This is a singular cubic surface so we also expect an explicit constant. (Tschinkel)

Remarks.

(i) This has a D4-singular point. On top of the singularity, one gets a configuration of 4 lines
all of which have self-intersection 2.

(ii) Are numerics possible? (Voloch)
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(iii) This is a compactification of the affine plane (solve for t), but it is not equivariantly embed-
ded. (Tschinkel)

(iv) For the singular cubic surface 1/x+ 1/y + 1/z + 1/t = 0, Heath-Brown has established that
the counting function has exact order of magnitude B(logB)6. Proceedings of the session in
analytic number theory and Diophantine equations, Bonner Math. Schriften 360 (2003).

(v) Progress: Using the universal torsor (as calculated by Hassett and Tschinkel) Browning
has established that the counting function has exact order of magnitude B(logB)6. See
math.AG/0403530, http://front.math.ucdavis.edu/math.NT/04042451.

(vi) Update (4/21/04) Tim Browning has shown B(logB)6 ¿ N(B)¿ B(logB)6. He makes use
of the universal torsor. See [arXiv:math.NT/0404245]

(vii) Takloo-Bighash: for w2x+wy2+z3 = 0, have an effective lower bound of B logB, and should
be able to get B log2B by a similar method, but can’t push it any further. Expected upper
bound in this case is again B(logB)6. Hassett: the universal torsor was in his lecture.

(viii) Hassett: there are 13(ish) singular cubics (zero-dimensional in moduli), the list is in a paper,
reference available.

Problem/Question 6. (Swinnerton-Dyer)

(a) Is there aK3 surfaceX over Q which has a finite nonzero number of rational points #X(Q) <
∞?

(b) Is there a nonsingular quartic surface X with this property?

(c) Find a third rational point on X4
1 + 2X4

2 = X4
3 + 4X4

4 . (There are only 2 points with height
≤ 215, and other non-public reasons to believe that there are only finitely many points.)

(d) Find a smooth quartic X4 ⊂ P3 with PicX ∼= Z and X(K) infinite.

Remarks.

(i) Over Q would be the first place to try, but over any number field is OK. It seems as though
this is possible for either all such families or no such family.

(ii) There are K3 surfaces with no rational lines with infinitely many rational points. (Peyre)

(iii) Do you hope that the Brauer-Manin obstruction is the only one to weak approximation?
(Harari)

(iv) The rank of the Neron-Severi group over C is rank 20, but is only rank 1 over Q coming
from the hyperplane section. Therefore it looks like a Kummer surface, the product of two
CM elliptic curves. What are the elliptic curves? (Read the right paper of Shioda.) The
CM is by Q(

√
−2)?

(v) It does not seem helpful to look over a finite extension. (Colliot-Thélène)

(vi) Are there any heuristics looking modulo any primes? (Poonen) The zeta function does not
say anything about solubility. (Swinnerton-Dyer)

(vii) On x4 + y4 + z4 = t4, Elkies found another point, with smallest height on the order of 215

(Colliot-Thélène); he uses a fibered pencil of elliptic curves, looks at values of the parameter
for which there was a point everywhere locally and then looked for a global point. There is
no such fibration in this case. Maybe one could go to an extension and then look for rational
points (Villegas).

(viii) What restrictions are necessary for such a surface to occur? (Poonen) The condition to
ensure that PicX ∼= Z is a black-board full. (Swinnerton-Dyer)

1http://front.math.ucdavis.edu/math.NT/0404245
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(ix) Is it possible for the given surface that (BrX)Gal(Q/Q) is finite? If so, there might be many
rational points. (Harari) In the computations of Brauer-Manin obstructions, there are many
with ker(BrX → BrX) = BrX, there are a lack of examples with ‘transcendental elements’.

We expect (BrX)Gal(Q/Q) to be finite, proven in certain cases because of the Tate conjecture.

(x) Are there any known examples of quartic surfaces with PicX ∼= Z with infinitely many
rational points? (Poonen) Maybe almost always they have infinitely many. (Swinnerton-
Dyer)

(xi) If there are infinitely many points on a quartic, will they be Zariski dense? Look in Mordell’s
book, perhaps. (Colliot-Thélène)

(xii) Silverman has examples of surfaces in P2 × P2 with two noncommuting endomorphisms, so
this gives infinitely many points, but this has Picard group rank 2. (Voloch)

Problem/Question 7. The distribution of rational points on Enriques surfaces has not
been well studied. (Skorobogatov)

Let X be an Enriques surface.

(a) If X(k) 6= ∅, is X(k) Zariski dense?

(b) Is there an X which violates the Hasse principle?

(c) Is there an X such that X(Ak)
Br = ∅ but X(Ak) 6= ∅?

(d) Is there an X with X(k) = ∅, X(Ak)
Br 6= ∅?

Remark. There is a Z/2Z cover of the Enriques surface X which is a K3 surface; is there
some torsor over the K3 surface for the torus for which the total space is a torsor for X
under a nonabelian group? For a bi-elliptic surface, is this possible? (Harari)

Problem/Question 8. Let X an Enriques surface over a number field K, Y
p→ X the

double cover (K3 surface), X(AK)
Br the Brauer-Manin set. Take mv ∈ X(AK)

Br, lift it to
an adelic point Pv on Y . Under what assumptions on mv will it be liftable to Pv on Y (AK)

Br,
or at least Y (AK)

Br1?

Remark. Guess (reported by Harari): there should be some nonabelian torsor Z
φ→ X for

the group G which is the semidirect product T o Z/2, where T is Neron-Severi torus of Y .
The points p(Y (AK)

Br) should correspond to X(AK)
f , where f : Z → X.

Remark. About Pb/question 8 (which is closely related to Pb 7), David Harari adds the fol-
lowing update (2004-09-25): “Skorobogatov and myself have recently proved that there exist
Enriques surfaces X with adelic points in X(Ak)

Br but not in the closure of the set of rational
pointsX(k) (”The Manin obstruction to weak approximation is not the only one”). In partic-
ular, some adelic points of X(Ak)

Br are not liftable to Y (Ak)
Br1 , see the paper “Non-abelian

descent and the arithmetic of Enriques surfaces” at http://www.dma.ens.fr/˜harari/2.”

Problem/Question 9. Use the intermediate Jacobian (when it is an abelian variety) in
arithmetic? To fix ideas, dimX = 3, look at algebraic 1-cycles modulo rational equivalence.

Compute this for a rigid Calabi-Yau 3-fold X (over C), i.e. KX ∼ 0, X simply con-
nected, h1,0 = 0, h2,0 = 0, h2,1 = 0, h3,0 = 1. In this case, the intermediate Jacobian
J2(X) ∼= E is of dimension 1. Determine E given X, i.e. give its j-invariant.

Remarks.

2http://www.dma.ens.fr/∼harari/
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(i) For two quadratic forms f1, f2 in 6 variables, i.e. X2,2 ⊂ P5, look at the Jacobian of the genus
2 curve given by y2 = det(λf1 + µf2). (Colliot-Thélène) Over Fp, you can prove the Weil
conjecture for X2,2. Can you use this to prove something? You can also look at the variety
of lines on X2,2, also a principal homogeneous space for an abelian variety; so over a finite
field, this will have a rational point, so there will be a line over Fp. We can say something
with X2,2 contains a pair of skew conjugate lines or a conic defined over the ground field;
how can you do these things such as finding a line over a quadratic field...?

(ii) Explicit examples of rigid Calabi-Yau 3-folds? Take an elliptic curve E with complex mul-
tiplication by Q(ζ3), take the kernel of the endomorphism ζ3 − 1, T1; T1 × T2 × T3 has 27
singular points, blowing up these points gives h2,1 = 0 (Candela). Also the quintic hyper-
surface

∑5
i=1 x

5
i − 5ψ

∏5
i=1 xi = 0 with ψ5 = 1 has 125 nodes; the resolution has h2,1 = 0.

There are more such examples. (Yui)

Problem/Question 10. Are there results at the level of number fields arising from the
techniques of rationally connected varieties? (Colliot-Thélène)

For example, recently Kollàr got nice results over local fields: if X/k is a projective
variety, we say P,Q ∈ X(k) are R-equivalent if you can link them by a chain of curves of
genus zero over k; if X is smooth with k ↪→ C, then X is rationally connected if X(C)/R is
a single point. Kollar proved that if k is a local field, and X/k is rationally connected, then
X(k)/R is finite. (Szobó)

Kollàr and Szabo proved that if k is a number field, and X/k is rationally connected,
then X(kv)/R is trivial for almost all v.

Remark. If X/k is a variety over a number field, and X is rationally connected, then does
there exist a fieldK ⊃ k such that for all L ⊃ K thatX(L)/R consists of a point? (Ellenberg)
Negative answer by a conic bundle over P2. (Raskind)

Problem/Question 11. Let X/k be a smooth projective rationally connected variety with
the cohomological dimension of k ≤ 1. Does X have a rational point? (Colliot-Thélène)

Remarks.

(i) There was a false proof for X2,2 ⊂ P4.

(ii) Yes if k = Fq. (Esnault) Yes if k is the function field of a curve. (Harris, Graber, Starr)

(iii) At least for surfaces, we hoped that universal torsors would be nice objects, e.g. they are
birational to homogeneous spaces under a nice group, so they would be close to k-rational if
they had a k-point. An example of X/k (k a horrible field) a cubic surface with X(k) = ∅
but (Br k)[3] = 0. (Madore, Colliot-Thélène)

(iv) Colliot-Thélène adds the following: With hindsight, Problem 11, as phrased, had been settled
by J. Ax in Bull. Am. Math. Soc. 71 (1965) p. 717. Ax produced a smooth hypersurface in
9-dimensional projective space, of degree 5, over a field k of cohomological dimension 1, with
no rational point (that such hypersurfaces are rationally connected was proven much later).
Ax’example has index 1, i.e. the g.c.d. of the degree of the finite field extensions over which
the hypersurface acquires a rational point is 1. In Journal of the Inst. of Math. Jussieu
(2004) 3 p. 1-16, J.-L. Colliot-Thélène and D. Madore produce a field of cohomological
dimension 1 and a smooth cubic surface over that field which has index 3, thus settling
negatively a question of Kato and Kuzumaki (1986).
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Problem/Question 12. Describe all pairs of sets A,B ⊂ µ∞, #A = #B, stable under
Gal(Q/Q), where the elements of A and B are alternately placed around the unit circle.
(Rodriguez-Villegas)

Remarks.

(i) There is a solution but it is much more complicated than the statement of the problem. The
solution is used in the classification of algebraic hypergeometric functions.

(ii) There is the infinite family A = µm+n \ {1} and µm ∪ µn with gcd(m,n) = 1.

Problem/Question 13. Find a smooth quintic hypersurface in P3 with Picard number 1
over F2. (Voloch)

Remarks.

(i) This is used in constructing error correcting codes.

(ii) If you compute the analytic rank (the zeta function), by Tate’s theorem, the second Betti
number is 53 so compute the number of points up to something like F228 (Voloch). So testing
them exhaustively would be very costly.

(iii) Shioda has examples over Q of Picard number 1, so they might be defined over F2. (Raskind)
This has been tried once. (Voloch)

Problem/Question 14. Consider cubic hypersurfaces a0X
3
0 + a1X

3
1 + a2X

3
2 + a3X

3
3 = 0.

(Swinnerton-Dyer)

(a) If soluble, give upper bound for smallest solution in terms of the ai.

(b) Look at |ai| < A, tabulate the size of the smallest solution and conjecture a particular growth
rate in terms of A.

Remarks. If a1x
3
1 + · · · + a4x

3
4 = 0 has a solution x ∈ Z4 \ {0}, how large is the smallest

solution? Let x0 be a solution with max{|xi|} minimal. Swinnerton-Dyer had suggested: if
A = max1≤i≤4{|ai|}, then maxx=x0

{|xi|} << A4/3. Wooley had suggested instead A1+ε.

Progress: Stoll, Stein: computations up to |ai| ≤ 60 suggest an upper bound of A2.
Also, assuming Schinzel, finiteness of Sha, and one unproven lemma, Stoll can produce a ∈ Z4

with least solution >> A2−ε. (Need the hypotheses to ensure that the examples do have
rational solutions.)

Shape of examples: if p, q prime, look at px31 + 2px32 + qx33 + 5qx34. Assume 2p and 5q
are approximately of the same size, p ≡ q ≡ 1 (mod 3), that 2 is a cube mod p but not mod
q, and that 5 is a cube mod q but not mod p (plus some additional technical conditions).

Remarks.

(i) The growth rate should be like A4/3. If you do the corresponding thing with 3 squares,
a0X

2
0 + a1X

2
1 + a2X

2 = 0, the answer is A. (Swinnerton-Dyer)

(ii) Seems more like A1+ε. (Wooley)

(iii) Is there a heuristic which suggests this? (Poonen) No. (Swinnerton-Dyer)

Problem/Question 15. Characterize the rational numbers α that can be written as

α =
2

x21 − 2
+

2

x22 − 2
+ · · ·+ 2

x2n − 2

for xi ∈ Q and fixed n. (Poonen)

It is necessary that |α|p ≤ 1 for (2/p) = −1 and p = 2. Is it sufficient?
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Remarks.

(i) You might repeat this kind of problem with any rational function with no rational poles.
(As in Waring’s problem.) Something has already been done for a function with rational
poles. (Poonen)

(ii) You can phrase this problem a different kind of way: prove or disprove the Hasse principle
for this equation for all α ∈ Q. (Swinnerton-Dyer) You can probably show for n sufficiently
large (and fixed) that there is a solution locally.

(iii) There are applications to Diophantine definitions: this would show that inside Q, the set of
these rational numbers which are integral at half of the places, is Diophantine. (Poonen)

Problem/Question 16. Solve the local-global solubility problem for finding lines on a cubic
hypersurface. (Wooley)

(a) Find an example of a cubic hypersurface over Qp (in as many variables as possible) with no
rational line.

(b) Find an example of a cubic hypersurface over Q (in as many variables as possible) with no
rational line.

Remarks.

(i) For (a), we must have at least 10 variables, since there are cubic forms in ≤ 9 variables with
no point. If you have 14 variables, then there is a rational line. (Wooley)

(ii) For (b), for 37? variables, there is a rational line. (Wooley)

(iii) Also, find one with a rational point but no rational line. (Colliot-Thélène)

Problem/Question 17. Draw a regular pentagon P , construct the circle through the 5
vertices C, and consider the curve E : P + λC2 = 0. This is a quintic curve with 5 double
points, and therefore has geometric genus 1. This curve has five points at ∞ (given by the
slopes of the lines). Compute the 5-torsion of E. (McCallum)

Remarks.

(i) The points at ∞ are among the 5-torsion.

(ii) The motivation is: these curves are principal homogeneous spaces, and are candidates for
5-torsion elements in X. If λ is the parameter on X1(5), then this is a twist of the universal
elliptic curve of X1(5). Here we have explicit models. (McCallum)

(iii) If you consider this as a pencil of elliptic curves, how does this relate to the talks at this
conference? (Ellenberg)

(iv) Does the pentagon have to be regular? (Voloch) There are various variations, such as
replacing the circle with a star pentagon.

Problem/Question 18.

(a) Find a separable polynomial g(t) ∈ Q[t] such that the Jacobian of the hyperelliptic curve
s2 = g(t) is isogeneous over Q to Er × B, E an elliptic curve, with r ≥ 4 or r = 3 and
dimB ≤ 1. (Silverberg)

(b) Related problem: Give an example of a map P1 → E4/{±1}, where ±1 acts diagonally,
whose image does not lie in H/{±1} for any subgroup H ( E4. (Ellenberg)

Remarks.
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(i) The case r = 2 and dimB = 0 is possible, as is the case r = 3 and dimB = 2. A consequence
of this construction would be better bounds on the density of quadratic twists of E of rank
≥ r. (Silverberg)

(ii) What if you ask this question over C? (Voloch) Can at least do r = 3 and dimB = 0 over
C. (Poonen) Even over C, maybe it cannot be done for large r. (Ellenberg)

(iii) One might consider the curve s2 = tk + 1 over Q, for k composite. If 3 | k, for example, it
maps to s2 = t3 + 1?

(iv) Does it have to be hyperelliptic? (Rodriguez-Villegas) Yes, for applications. (Ellenberg)

(v) The random matrix heuristics suggest that there is a positive power, so there should be a
curve there, and finding such a curve would give a proof of a density result. (Ellenberg)

(vi) Take E1, E2, E3/Q pairwise isogeneous elliptic curves, A = E1×E2×E3, and look at the set
of principal polarizations on X. Find a nonsplit principal polarization on A; then it comes
from A = Jac(C), g(C) = 3. Now you just need to show that C is hyperelliptic.

Problem/Question 19. Let X be a variety over a number field k and suppose that for
every open Zariski dense U ⊂ X, the map π1(U)→ Gal(k/k) has a splitting s (e.g. if X(k)
is Zariski dense). In this case, if X(Ak) 6= ∅, is there no Brauer-Manin obstruction to the
Hasse principle for X, i.e. is X(Ak)

Br 6= ∅? (Ellenberg)

Remarks.

(i) Is it possible that X(Ak) 6= ∅ follows from the splitting condition? (Poonen) You might also
ask the corresponding question for a local field. (McCallum)

(ii) You might also ask this question for other obstructions. (Ellenberg)

Problem/Question 20. Let p(t) = 3(t4 − 54t2 − 117t − 243). Write the system of two
equations y2 = p(t)(x2 + 1), z2 = p(t)(x2 + 2); think of this as a one-parameter family X of
curves of genus one; X(Q) is empty and X(AQ)

Br 6= ∅ (Skorobogatov).
Is X(k) 6= ∅ for some [k : Q] odd? (Colliot-Thélène)

Remarks.

(i) The secret reason for asking: then X has a zero-cycle of degree 1. (Colliot-Thélène) If you
have a zero cycle of degree 1, then there is such a point.

(ii) Even in a given number field of degree 3, looking at a random way, the evidence you will
find is zero. (Colliot-Thélène)

(iii) What about X ×X ×X modulo the action by three? (Ellenberg)

(iv) Reduce the search by finding one elliptic curve with many rational points (fix x, consider
y2 = p(t)(x2 + 1)), then search for z. (Voloch) But the ratio y/z is only dependent on x.
(Poonen)

(v) Do we expect [k : Q] = 3? (McCallum) Not necessarily. (Colliot-Thélène)

(vi) Consider instead w2 = (x2+2)(x2+1) and y2 = p(t)(x2+1); search now in the first curve for
a cubic point, and search for t. (Poonen) Put the first one in Weierstrass form, and generate
the cubic fields.

Problem/Question 21. Let A/Z be an algebra with rkZA = 9 given by its multiplica-
tion table. Suppose you know that A ' M3(Z); find an algorithm which gives an explicit
isomorphism. (Stoll)

Remarks.
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(i) The motivation comes from very explicit 3-descent on elliptic curves.

(ii) The case of M2(Z) reduces to finding rational points on conics. (Stoll)

(iii) Is this an LLL problem? (Voloch) In some sense, but one needs nine 3× 3-matrices, not one
9× 9-matrix; the equations are not all linear. (Stoll)

Problem/Question 22. Let k be a number field, k 6⊂ R. Construct an algebraic set S ⊂ kn

for some n such that the projection onto one of the coordinates is exactly the set of elements
of k with |k| ≤ 1 for some (archimedean) absolute value | | of k. (Shlapentokh)
Remark. This would imply results on Hilbert’s tenth problem for rings of integers. It prob-
ably is hard because it is close to being equivalent.

Problem/Question 23. Let E ⊂ P2 be an elliptic curve over Q, and suppose E(Q) ' Z.
(Poonen)

(a) Describe S ⊂ E(Q) where S = {(x, y) : y = a2 + b2, a, b ∈ Q}. Is S is finite?

(b) More generally, π : X → E gives a subset π(X(Q)) ⊂ E(Q); what others can you build?

Remark. It is possible to describe in a Diophantine way the set of points S = {(x, y) : 1 ≤
y ≤ 2}; this is an infinite set. (Poonen)

Problem/Question 24. Given an elliptic curve E/Q, rkE(Q) > 0, describe the set of
primes p such that E(Q) is dense in E(Qp). Is this set nonempty? Is there a modular
interpretation of this problem? (Takloo-Bighash)

Remarks.

(i) You need surjectivity of the reduction map (Murty and Gupta have some results) and the
surjectivity of the map on formal groups (Silverman). One suspects that for any such curve
E there exists a prime p with this property.

(ii) This is related to Brauer-type problems for surfaces.

(iii) You should be able to collect data on this to see if there is a positive density. (McCallum)

Problem/Question 25. Is there an algorithm to decide solubility of a system of linear
equations

ai1x1 + · · ·+ ainxn = bi

for ai, b, xi ∈ Z, together with equations of the form

{xiαj} < rj

for αj ∈ R \Q, ri ∈ Q? (Poonen)

Remarks.

(i) This is a problem in linear programming; add variables. (Voloch)

(ii) A negative answer would have implied undecidability for Hilbert’s tenth problem over Q.

Problem/Question 26. Describe the variety of curves of low degree on the Fermat variety
F : xd1 + xd2 + · · ·+ xd6 = 0. (Heath-Brown)

Remarks.

(i) Lines are known, but that is all. Hope that there are none or very few.

(ii) The curves should be over C (for now).
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Problem/Question 27. Given a plane curve of degree d, the number of points on X of
height at most d is ¿ d3. There are curves which have the number of rational points À d2.
Can you do better than ¿ d3? (Heath-Brown)

Remarks. (Roger Heath-Brown, 2004-09-25) observes that actually d5/2 is easy, so the chal-
lenge should be to improve on this.

Problem/Question 28. Let E be an elliptic curve over Q, and P ∈ E(Q)[3], P 6= O,
such that rkE(Q) = 0. Let K/Q be a cyclic extension of degree 3 of conductor f , and let
ν = ν(f) be the number of distinct primes dividing f . It is true that 3ν−1 | #Sel3(E,K)?
(Chantal David)

Remarks. Let K/Q be a cyclic cubic extension. Then the 3-rank of the class group of K is
controlled by primes dividing discriminant of K; if there are d such primes, then 3d−1 divides
the class number hK (genus theory). Problem: carry this over to a guaranteed contribution
of 3-primary component of the 3-Selmer group (over K) of an elliptic curve E/Q. Does 3d−1

divide the Selmer order?

Progress: Fix E/Q with a rational 3-torsion point, and letK vary as above. Then there
is a constant cE depending only on E such that 3d−cE divides the Selmer order. (Clarification
request: do the mean the algebraic part of the L-function, or the 3-part of the Selmer group,
or the group obtained from a 3-descent? That affects the value of cE.)

This has been checked computationally (by checking special values of L-series).

Other problems? Poonen: replace 3 by another prime p, or replace Q by another
number field, etc.

Problem/Question 29. If K is a field such that all O-acyclic varieties over K have a point,
is Gal(K/K) topologically generated by one element?

Problem/Question 30. This problem has been withdrawn.

Problem/Question 31. Harmonic analysis and nonabelian torsors: Takloo-Bighash:
Do these give you methods to find rational points? Hassett: Is there a harmonic analysis
argument to count points on the quintic del Pezzo surface? Wooley: no examples known
where you can combine harmonic analysis with torsors.

Problem/Question 32. (Voloch): Given a family of hypersurfaces, show that “almost
all” members of the family satisfy the Hasse Principle in “interesting” circumstances.

Colliot-Thélène: maybe the opposite?

Poonen: the family was all hypersurfaces of degree d in Pn with coefficients of height
≤ H, over some fixed number field K. The problem was: find the proportion of these that
satisfy the Hasse Principle (originally, that have rational points, but we can find the local
points easily).

Wooley and Venkatesh (tentative):

A−s#{(a1, . . . , as) : |ai| ≤ A, a1x
d
1 + · · ·+ asx

d
s = 0 satisfies HP}

is asymptotic to the product of local densities, at least for s ≥ 3d + 1. This is progress for
d large: for an individual a, one has HP (using current technology) for s >> d log d. Proof
uses (of course) circle method.

de Jong: for cubics in P2, what do conclusions of this type say about 3-Selmer groups
of elliptic curves?
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Stoll: given local points, proportion that have rational points (i.e., satisfy HP) should
be 0.

Mazur: can you put an exponent on that?

Stoll: wait for experimental evidence.

Problem/Question 33. (Poonen) Instead of counting points of bounded height on a va-
riety, count points of bounded height in a Diophantine set. (I.e., counting points in a base
the fibre above which has a rational point.) What rates of growth can you get? Example:
conic bundle over an elliptic curve. Heuristically, it appears rate of growth can be log logB,
whereas for varieties it always turns out to be cBα(logB)β.

Problem/Question 34. (Bogomolov) Replace Heath-Brown by Arakelov (et al).

#{(x, y, z) ∈ P2 : |x|, |y|, |z| ≤ B,P (x, y, z) = 0} << Bα+ε

with α ≤ 2
d
, d = degP . Analogue for surfaces, etc.

Problem/Question 35. Weak approximation for complex function fields: Weak
approximation over a finite extension L of C(t), from Hassett’s lecture.

Colliot-Thélène: Known for X a connected linear algebraic group over L (reduce to
reductive groups immediately; since field has cohomological dimension 1, one has Borel
subgroup, reduce to tori; reduce to quasi-trivial tori, which are open subsets of affine space).

CT: X = G/H, where H is a subgroup of G (not necessarily normal). Same should go
through if H is connected (techniques of Borovoi et al.).

CT: Question: Decide whether weak approximation holds for GLn/G, where G is a
finite subgroup of GLn. This seems nontrivial. (de Jong thinks he can do this; Graber is
unsure.) CT says de Jong claims: Let X/L be an arbitrary smooth projective, geometrically
and rationally connected variety. Then weak approxmation holds. (de Jong: do this by
reducing to characteristic p. Not in the dJ-H-S paper.)

CT: there is an Enriques surface over C(t) that has a rational point but does not satisfy
weak approximation.

Remarks. Yuri Tschinkel remarks that there is progress on Nr 35 due to Colliot-Thelene/Gille
and Madore. To this Brendan Hasset adds that Madore has announced a proof of weak
approximation in smooth fibers for a cubic surface over the function field K(C), where C is
a curve and K is algebraically closed of characteristic zero.

B.2 Photos

William Stein has prepared a gallery of photos3.

Chapter C: Glossary

Abelian variety: A smooth projective geometrically integral group variety over a field.
Over the complex numbers abelian varieties are tori.

Brauer-Manin obstruction: The terminology is utterly awful! Many families don’t sat-
isfy Hasse Principle. One explanation of Manin (see his paper): a cohomological obstruction
using the Brauer group of the variety.

3http://modular.fas.harvard.edu/pics/ascent11/12-2002/AIM rational-points-workshop/
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If a variety has a local point everywhere then it has an adelic point. Manin defined,
using a cohomological condition involving Brauer group, a subset of the adelic points that
must contain the global points. Let X(Ak) be the adelic points of X. Consider the subset
of points P with the property that for every element z ∈ Br(X) the system of elements
(zv(P ))v has sum of invariants = 0.

The B-M is an interesting construction in English. It is a nounal-phrase defined purely
in terms of the sentences in which in which it may occur. There is no such actual object
“the Brauer-Manin obstruction”.

Example: A variety that satisfies X(Ak) 6= ∅ and X(Ak)
Br = ∅ is a counterexample to

the Hasse principle explained by the Brauer-Manin obstruction.

For a long time people were interested in whether there are counterexamples ot Hasse
principle not explained by the Brauer-Manin obstruction. X(Ak)

Br 6= ∅ but still has no
global point (Skorobogotav found first example).

After one glass of wine, McCallum advocates “X(Ak)
Br should be called the set of

Brauer points”.

Brauer-Severi variety: A twist of projective space Pn. Brauer-Severi varieties satisfy the
Hasse principle.

BSD conjecture—BSD—Birch and Swinnerton-Dyer: Let A be an abelian variety
over a global fieldK and let L(A, s) be the associated L-function. The Birch and Swinnerton-
Dyer conjecture asserts that L(A, s) extends to an entire function and ords=1L(A, s) equals
the rank of A(K). Moreover, the conjecture provides a formula for the leading coefficient of
the Taylor expansions of L(A, s) about s = 1 in terms of invariants of A.

Calabi-Yau variety: An algebraic variety X over C is a Calabi-Yau variety if it has trivial
canonical sheaf (i.e., the canonical sheaf is isomorphic to the structure sheaf). [Noriko just
deleted the simply connected assumption.]

Del Pezzo surface: A Del Pezzo surface is a Fano variety of dimension two.

It can be shown that the Del Pezzo surfaces are exactly the surfaces that are geomet-
rically either P1 × P1 or a blowup of P2 at up to 8 points in general position. By general
position we mean that no three points lie on a line, no six points lie on a conic, and no eight
lie points lie on a singular cubic with one of the eight points on the singularity.

Descent:

A. The process of expressing the rational points on a variety as the union of images of
rational points from other varieties.

B. The descent problem is as follows: Given a field extension L/K and a variety X
over L, try to find a variety Y over K such that X = Y ×K L.

Diophantine set: Let R be a ring. A subset A ⊂ Rn is diophantine over R if there exists
a polynomial f ∈ R[t1, . . . , tn, x1, . . . , xm] such that

A = {~t ∈ Rn : ∃~x ∈ Rm such that f(~t, ~x) = 0}.

Enriques Surface: A quotient of a K3 surface by a fixed-point free involution.

Equivalently, the normalization of the singular surface of degree 6 in P3 whose singu-
larities are double lines that form a general tetrahedron.
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OverC an Enriques surface can be characterized cohomologically as follows: H0(Ω2
X) =

0 and 2KX = 0 but KX 6= 0.

Fano variety—Fano: Anticanonical divisor ω⊗−1 is ample. This class of varieties is “sim-
ple” or “close to rational”. For example, one conjectures that Brauer-Manin is only obstruc-
tion. Manin-Batyrev conjecture: asymptotic for number of points of bounded height. A
Fano variety of dimension two is also called a Del Pezzo surface.

Fermat curve: A curve of the form xd + yd = zd. Good examples of many phenomenon.
Good source of challenge problems. (E.g., FLT.) Lot of symmetry so you can compute a
lot with them. Computations are surprising and nontrivial. They’re abelian covers of P1

ramified at 3 points, so they occur in the fund. group of...

More generally xd1 + · · ·+ xdn = 0 is sometimes called a Fermat variety.

General type: A variety X is of general type if there is a positive power of the canonical
bundle whose global sections determine a rational map f : X → Pn with dim f(X) = dimX.
(If X is of general type then there exists some positive power of the canonical bundle such
that the corresponding map is birational to its image.)

“It is a moral judgement of geometers that you would be wise to stay away from the
bloody things.” – Swinnerton-Dyer

Hardy-Littlewood circle method: An analytic method for obtaining asymptotic formu-
las for the number of solutions to certain equations satisfying certain bounds.

Hasse principle: A family of varieties satisfies the Hasse principle if whenever a variety in
the family has points everywhere locally it has a point globally. Here “everywhere locally”
means over the reals and p-adically for every p, and “globally” means over the rationals.

Everywhere local solubility is necessary for global solubility. Hasse proved that it is
also sufficient in the case of quatratic forms.

Hilbert’s tenth problem: Let R be a commutative ring. Hilbert’s tenth problem for R is to
determine if there is an algorithm that decides whether or not a given system of polynomial
equations with coefficients in R has a solution over R.

Jacobian: The Jacobian of a nonsingular projective curve X is an abelian variety whose
points are in bijection with the group Pic0(X) of isomorphism classes of invertible sheaves
(or divisor classes) of degree 0.

K3 surface: A surface with trivial canonical bundle and trivial fundamental group (i.e., a
Calabi-Yau variety of dimension 2).

Lang’s conjectures:

A. Suppose k is a number field and X is a variety over k of general type. Then X(k) is
not Zariski dense in X. (Also there are refinements where we specify which Zariski
closed subset is supposed to contain X(k).)

B. Suppose k is a number field and X is a variety over k. All but finitely many k-rational
points on X lie in the special set.

C. Let X be a variety over a number field k. Choose an embedding of k into the complex
number C, and suppose that X(C) is hyperbolic: this means that every holomorphic
map C→ X(C) is constant. Then X(k) is finite.

Local to global principle: Another name for the Hasse principle.
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Picard group: The Picard group of a variety is the group of isomorphism classes of invertible
sheaves.

Prym variety: A Prym variety is an abelian variety constructed in the following way. Let
X and Y be curves and suppose f : X → Y is a degree 2 étale (unramified) cover. The
associated Prym variety is the connected component of the kernel of the Albanese map
Jac(X)→ Jac(Y ). The Prym variety can also be defined as the connected component of the
−1 eigenspace of the involution on Jac(X) induced by f .

Rationally connected variety: There are three definitions of rationally connected. These
are equivalent in characteristic zero but not in characteristic p.

A. For any two points x, y ∈ X there exists a morphism φ : P1 → X such that φ(0) = x
and φ(∞) = y.

B. For any n points x1, . . . , xn ∈ X there exists a morphism φ : P1 → X such that
{x1, . . . , xn} is a subset of φ(P1).

C. For any two points x, y ∈ X there exist morphisms φi : P
1 → X for i = 1, . . . , r such

that φ1(0) = x, φr(0) = y, and for each i = 1, . . . , r − 1 the images of φi and φi+1

have nontrivial intersection.

Schinzel’s Hypothesis: Suppose f1, . . . , fr ∈ Z[x] are irreducible and no prime divides

f1(n)f2(n) · · · fr(n)
for all n ∈ Z. Then there are infinitely many integers n such that |f1(n)|, . . . , |fr(n)| are
simultaneously prime.

Selmer group: Given Galois cohomology definition for any A ⊂ B. Example A = ker(φ)
where φ is an isogeny of abelian variety. Accessible. It’s what we can compute, at least in
theory.

Shimura variety: A variety having a Zariski open subset whose set of complex points is
analytically isomorphic to a quotient of a bounded symmetric domain X by a congruence
subgroup of an algebraic group G that acts transitively on X. Examples include moduli
spaces X0(N) of elliptic curves with extra structure and Shimura curves which parametrize
quaternionic multiplication abelian surfaces with extra structure.

Special Set: The (algebraic) special set of a variety X is the Zariski closure of the union
of all positive-dimensional images of morphisms from abelian varieties to X. Note that this
contains all rational curves (since elliptic curves cover P1).

Torsor: Let B be a variety over a field k and let G be an algebraic group over k. A left
B-torsor under G is a B-scheme X with a B-morphism G ×k X → X such that for some
étale covering {Ui → B} there is a G-equivariant isomorphism of Ui-schemes from X × Ui
to G× Ui, for all i. If B = Spec(k) these are also called principal homogenous spaces.

Waring’s problem: Given k, find the smallest number gk such that every positive integer
is a sum of gk positive kth powers. The “easier” Waring’s problem refers to the analogous
problem where the kth powers are permitted to be either positive or negative. Modification:
Given k, find the smallest number Gk such that every sufficiently large positive integer is a
sum of Gk positive kth powers.

Weak approximation: For a projective variety X over a global field, say weak approxi-
mation holds if X(K) is dense in the adelic points X(AK). Simplest example where it holds:
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P0, also P1. It does not hold for an elliptic curve over K. (For example, if E has rank 0
it clearly doesn’t hold... but more generally could divide all generators by 2 and choose a
prime that splits completely.)

Example: “Weak approximation does not hold for cubic surfaces.”

Example: “The theory of abelian descent in some cases reduces the question of whether
the Brauer-Manin obstruction is the only obstruction to Hasse on a base variety X to the
question of whether weak approximation holds for a universal torsor.”

Example: “Weak approximation on a moduli space of varieties yields the existence of
varieties over a global field satisfying certain local conditions. For example, we want to know
there is an elliptic curve over Q with certain behavior at 3, 5, 13, as long as can do it over
local fields with that behavior, weak approximation on the moduli space gives you a global
curve that has those properties (because P1 satisfies weak approximation).’

Chapter D: Miscellaneous Photos

William Stein has prepared a gallery of photos4.

4http://modular.fas.harvard.edu/pics/ascent11/12-2002/AIM rational-points-workshop/


