Li's criterion

Xian-Jin Li [ MR 98d:11101] proved the following assertion: The Riemann Hypothesis is true if and only if $\lambda_n\ge 0$ for each $n=1,2,\dots$ where

\begin{displaymath}\lambda_n =\sum_\rho (1-(1-1/rho)^n)\end{displaymath}

Another expression for $\lambda_n$ is given by

\begin{displaymath}\lambda_n=\frac{1}{(n-1)!}\frac{d^n}{ds^n}(s^{n-1}\log \xi(s))\vert_{s=1}\end{displaymath}

and

\begin{displaymath}\xi(s)=\frac12s(s-1)\Gamma(s/2)\zeta(s)\end{displaymath}




Back to the main index for The Riemann Hypothesis.