Axiom 3: Functional Equation

There exist numbers $Q>0$, $\alpha_j>0$, and $\Re(r_j)\ge 0$, such that

\begin{displaymath}
\Phi(s):= Q^s \prod_{j=1}^d \Gamma(\alpha_j+r_j) F(s)
\end{displaymath}

satisfies

\begin{displaymath}
\Phi(s)=\varepsilon {\overline{\Phi}}(1-s).
\end{displaymath}

Here $\vert\varepsilon\vert=1$ and ${\overline{\Phi}}(z)={\overline{\Phi({\overline{z}})}}$.




Back to the main index for The Riemann Hypothesis.