Axiom 4: Euler Product


\begin{displaymath}
F(s)=\prod_p F_p(s),
\end{displaymath}

where the product is over the rational primes. Here

\begin{displaymath}
F_p(s)=\exp\left(\sum_{k=1}^\infty \frac{b_{p^k}}{p^{ks }} \right)
\end{displaymath}

with $b_n\ll n^\theta$ for some $\theta<\frac12$.

Note that this implies $a_1=1$, so $F(s)=1$ is the only constant function in the Selberg class.




Back to the main index for The Riemann Hypothesis.