The M\"obius function

The Möbius function $\mu (n)$ is defined as $(-1)^r$ if $n$ is a product of $r$ distinct primes, and as $0$ if the square of a prime divides $n$. Define :


\begin{displaymath}
M(x) := \sum_{n \leq x} \mu (n).
\end{displaymath}

Then RH is equivalent to each of the following statements


\begin{displaymath}
M (x) \ll x^{1/2 + \epsilon},
\end{displaymath}

for every positive $\epsilon$ ;


\begin{displaymath}
M (x) \ll x^{1/2} \exp (A \log x/\log\log x);
\end{displaymath}

for some positive A.

Both results are due to Littlewood.




Back to the main index for The Riemann Hypothesis.