
PROBLEM SESSIONS: "SUBCONVEXITY BOUNDS FOR L-FUNCTIONS"

G. RICOTTA

ABSTRACT. These are the notes I extracted from the problem sessions. There
may be some mistakes. So, use them at your own risk! Do not hesitate to
contact me if you want to add or correct some points.
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1. MONDAY PROBLEM SESSION

1.1. Unknown cases of (sub)convexity.

• This point was mentioned by Reznikov. Let π be an automorphic cuspi-
dal representation of GLm for m Ê 1 and π′ be an automorphic cuspidal
representation of GLn for n Ê 1. Do we know the convexity bound for
L(π×π′, s)? It absolutely converges on ℜs > 1 and thus we know the con-
vexity bound in the s-aspect. Do we know the convexity bound in any
aspect for any m Ê 1 and any n Ê 1? No! For instance, when m = n = 2,
it is known via L2-theory of automorphic forms. Is there a geometric
method which could give the result for any m Ê 1 and any n Ê 1?

• These subconvexity problems were mainly suggested by Michel. Let f
be a Hecke Maass cusp form of level 1 and Laplacian eigenvalue λ f :=
1/4+ i t 2

f . We want to break the convexity bound for L( f ,1/2+ i t f ) in the

spectral aspect namely to find δ> 0 (even microcospic) such that

(1.1) L( f ,1/2+ i t f ) ¿ε t 1/4−δ+ε
f

for any ε > 0. About this problem, two questions arose during the dis-
cussion.

– Is there a work on this from Luo?
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– Does somebody know an arithmetic application of such unkown
convexity bound?

Note that this is a case for which the analytic conductor drops since

Q( f ,1/2+ i t f ) = (
1+ ∣∣1/2+ i t f − i t f

∣∣)(1+ ∣∣1/2+ i t f + i t f
∣∣)≈ t f .

Thus, previous experience suggests that it should be difficult to prove.
You can also think of the method of moments to be convinced: you will
have to estimate an higher moment if you want to break convexity. An-
other example in which the analytic conductor drops is given by

(1.2) L( f × g ,1/2+ i t f ) ¿g ,ε t 1/2−δ+ε
f

for any ε > 0. Here, g is a fixed Hecke Maass cusp form. Note that if
g is an holomorphic Hecke cusp form of weight 4 and level q , such L-
functions already appear in Phillips-Sarnak’s deformation theory even
if people are more interested in non-vanishing results in this context.
Roughly speaking, this theory deals with the deformation of Γ0(q) in the
direction given by g . The authors proved that a positive proportion (in a
suitable sense) of L( f × g ,1/2+ i t f ) does not vanish which entails that a
positive proportion (in the same suitable sense) of f ’s is annihilated by
such deformation.

• Let f and g be two fixed Hecke Maass forms. We want to break the con-
vexity bound for L( f × g ,1/2+ i t ) in the s-aspect namely to find δ > 0
such that

(1.3) L( f × g ,1/2+ i t ) ¿ f ,g ,ε t 1−δ+ε

for any ε> 0. Jutila suggested an extra-average over the spectral param-
eter t f of f to produce some saving. For instance, he proved with Moto-
hashi that

L( f × g ,1/2+ i t ) ¿g ,ε

{
t 1+ε/√

t f if t 3/2
f ¿ t ¿ε t 2−ε

f ,(
t + t f

)2/3+ε if t ¿ t 3/2
f .

How can we extend this range?
• Let us talk about the symmetric-square L-function L(Sym2 f , s) for any

Hecke Maass cusp form of level q f , spectral parameter t f and nebenty-
pus χ f . This L-function is of degree 3. Thus, the subconvexity problem
in the s-aspect is given by

(1.4) L(Sym2 f ,1/2+ i t ) ¿ f ,ε t 3/4−δ+ε

for any ε> 0 and for some δ> 0. About the three spectral parameters at
infinity of L(Sym2 f , s), one is of constant size and the two others are of
size t f . Thus, the subconvexity problem in the spectral aspect is given
by

(1.5) L(Sym2 f ,1/2+ i t ) ¿q f ,t ,ε t 1/2−δ+ε
f

for any ε> 0 and for some δ> 0. The subconvexity problem in the level
aspect is given by

(1.6) L(Sym2 f ,1/2+ i t ) ¿q f ,t ,ε qε×
{

q1/2−δ
f if χ f trivial or non-quadratic,

q1/4−δ
f otherwise
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for some δ> 0 and for any ε> 0 since

L( f × f , s) = L(χ f , s)L(Sym2 f , s).

Michel said that if you know a subconvexity bound for L(Sym2 f , s) in the
s-aspect then you know (by Cauchy-Schwarz) a subconvexity bound for
L( f × g , s) when f 6= g and g is fixed in the s-aspect. He also said that
the subconvexity problem for symmetric square L-functions could have
some link with metaplectic tools on G̃L2 via an integral representation
of this L-function in which an Eisenstein series on G̃L2 occurs.

• Let us talk about triple L-functions. Let f , g , h some Hecke Maass forms,
f being of level q f , spectral parameter t f , weight k f and the same nota-
tions for the two others. We could be interested in the following subcon-
vexity problems

(1.7) L( f × g ×h,1/2+ i t ) ¿ f ,g ,t ,qh k2−δ+ε

when h is holomorphic.

(1.8) L( f × g ×h,1/2+ i t ) ¿ f ,g ,h,ε t 2−δ+ε.

(1.9) L( f × f ×h,1/2) ¿q f ,h,ε t 1−δ+ε
f .

This last case is again an example of situation in which the conductor
drops. Reznikov said that it is easier and doable to prove

(1.10) L( f × g ×h,1/2) ¿ε t 2−δ+ε
f

when f , g and h have some comparable but not equal spectral parame-
ters at infinity such that the conductor does not drop.

1.2. Universality of convexity breaking exponents.

• One aims at explaining the apparently unrelated occurences of Weyl’s
subconvexity exponent given by 1/4(1−1/3) and Burgess’ subconvexity
exponent given by 1/4(1−1/4). Remember that Weyl’s subconvexity ex-
ponent appears

– in the subconvexity problem for GL2 L-functions L( f , s) in the s and
spectral aspect,

– in the subconvexity problem for twisted L-functions L( f ×χ, s) in
the level aspect ( f and χ are of same level),

– in the subconvexity problem for Rankin-Selberg L-functions L( f ×
g , s) in the t f aspect

whereas Burgess’ subconvexity exponent appears
– in the subconvexity problem for Dirichlet L-functions L(χ, s) in the

level aspect,
– in the subconvexity problem for twisted L-functions L( f ×χ, s) in

the conductor aspect of the character.
• A natural problem is to find particular L-functions for which we know

how to prove better exponents than Weyl and Burgess’ ones. Soundarara-
jan suggested to look at L(χ, s) when χ is of conductor say 3n and n goes
to infinity by taking advantage of Vinogradov’s method. We can talk
about subconvexity in the depth aspect in such context. A similar ex-
ample is L( f ×χ, s) by taking advantage of Graham-Ringrose’s method
when the modulus of χ is a higly divisible square-free integer .
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• It is also natural to wonder if there exists some applications which need
a better subconvexity exponent than Weyl or Burgess’ one. Michel sug-
gested an application to André Oort conjecture discovered by Edixhoven.
This conjecture asserts that a curve contained in X0(1) × X0(1) which
does not project to X0(1) itself and contains infinitely many CM points is
the modular curve itself (embedded in the product as a graph of Hecke
correspondence). Assuming GRH for quadratic imaginary fields, Edix-
hoven "proved" this conjecture. The main hole for an unconditional
proof being that he needs to know that the number of primes less than
log2 (|d |) log2

2 (|d |) which are split in the quadratic imaginary field of dis-
criminant d tends to infinity with d . Fouvry, applying a result of Linnik
and Vinogradov, noticed that the number of primes less than |d |1/4+ε
which are split in the quadratic imaginary field of discriminant d tends
to infinity with d . Improving Burgess’ bound for character sums will im-
prove the previous range. Studying these small split primes is a challeng-
ing problem because it may occur when one wants to build an efficient
amplifier. For instance, Duke-Friedlander-Iwaniec faced this problem
when they tried to prove subconvexity bound for class group L-functions
without appealing to the spectral theory of automorphic forms.

2. TUESDAY PROBLEM SESSION

2.1. General definition and interesting examples of periods. Lindenstrauss gave
the following general definition of period. Let G be a group and H be a subgroup
of G . The general space is given by

X :=G(Q)
∖

G(AQ) .

To any automorphic form f on X (a smooth function on X which belongs to the
space of an automorphic representation), we define some periods by∫

H(Q)
∖

H(AQ)
f (h)g (h)dh

for any automorphic form g on H(Q)
∖

H(AQ) . Then, people gave fundamental
examples of periods.

Example 1: Fourier coefficients of cusp forms on GL2

Here, G =GL2 and H is the unipotent subgroup of G namely

H :=
{(

1 x
0 1

)
, x ∈R

}
.

For any g in GL2(Q)
∖

GL2(AQ) , the period∫
R

f

(
g

(
1 t
0 1

))
e(−nt )dt

is directly linked to the n-th Fourier coefficient of f for any n ∈Z.

Example 2: Special values of GL2 L-functions
Here, F is a number field, G =GL2 and H is the torus subgroup of G namely

H :=
{(

y 0
0 1

)
, y > 0

}
.
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The period ∫
F×∖

A×
F

f

((
y 0
0 1

))
d×y

is directly linked to the special value L( f ,1/2) up to Γ-factors.

Example 3: Triple product formula
Here, G = GL2 ×GL2 and H = GL2 is a subgroup of G via the diagonal embed-
ding.Thus, an automorphic form F on G is a pair of automorphic forms f1 and
f2 on GL2. If h ∈ H then F (h) = f1(h) f2(h). The period∫

GL2(Q)
∖

GL2(AQ)
f1(h) f2(h) f3(h)dh

is linked (up to some factors) to the special value L( f1 × f2 × f3,1/2).

2.2. A convexity bound for periods? The discussion was about understanding
what could be a general bound for period which specializes to (sub)convex bounds
for L-functions. Lindenstrauss said that a convex bound for period should be a
bound that comes from general harmonic analysis results (it is the case for L-
functions). Then, Miller defined an automorphic period which is our previous
geometric period up to some factors (which are sometimes special values of L-
functions). Thus, bounding these factors turns out to bounding both (automor-
phic and geometric) periods. Another problem was trying to understand if there
is a canonical way to define a period such that it does not depend on the choice
of test vectors in the space of representations that occur.

2.3. List of problems to be discussed into small groups.

• Subconvexity problems when the analytic conductor drops (in particu-
lar for the symmetric square L-function).

• Improving Weyl’s exponent in various examples. In particular, investi-
gate Soundararajan’s idea about Dirichlet characters of highly compos-
ite moduli or try to prove some explicit spectral decomposition of shifted
convolution sums (Harcos’ suggestion).

• Develop explicit Good-Motoashi type identities.
• Develop associativity type identities in the conductor aspect.
• Formulate clearly period problems in relation to L-functions and repre-

sentation theory.
• Quantitative equidistribution results to prove subconvexity bounds.

3. WEDNESDAY PROBLEM SESSION

Here is an incomplete list of the problems which could be understood in a
close future.

• Silberman suggested to try to prove a strong hybrid subconvexity bound
for standard L-functions on GLn namely try to find δ> 0 such that

L(π,1/2+ i t ) ¿ε Q(π,1/2+ i t )1/4−δ+ε

for any ε > 0. According to Garett, the Diaconu-Garrett-Goldfeld ex-
tension of Good’s method to GLn xGLn−1 may have something to offer
in this direction.Venkatesh also suggested to try to find some applica-
tions of such subconvexity bound before proving them. For instance,
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it can be interesting to clarify the links between subconvexity problems
and equidistribution problems in higher rank for classical groups. Duke
also had in mind to extract explicit information from higher rank Artin
L-functions.

• About periods, a very important point is to find an heuristic way of pre-
dicting what is an analogue of convexity bounds and Lindelöf hypoth-
esis for periods. Also, prove some bounds for periods which special-
ize to subconvexity bounds for L-functions. Silberman mentioned the
problem of predicting what could be the expected bound for the infinite
norm of general automorphic forms when the spectral parameters go to
infinity.

• Jutila suggested to prove someΩ-results about the error term which oc-
curs in some moments of families of L-functions. For instance,∫

tÉT

∣∣L( f ,1/2+ i t )
∣∣2 dt = Main(T )+Error(T )

where Error(T ) = Ω(
p

T ) is expected to hold for any GL2-automorphic
form. What could be some applications of suchΩ-results?

• Venkatesh suggested to find a way to guess when it is possible to prove
some asymptotic formula for some moment given by∑

f ∈F

L( f ,1/2)

where as usual the conductor of each L-function of F is of size almost
constant say Q(F ) in the logarithmic scale and Q(F ) →+∞. If

4 log |F | > logQ(F )

then we generally can prove an asymptotic formula. At the moment, the
record is

6log |F | = logQ(F )

in the work of Conrey and Iwaniec on the cubic moment of automorphic
L-functions. Can we do better?

• Soundararajan asked if it is possible to prove some subconvexity bound
in the critical strip but outside the critical line and eventually near the
edge of the critical strip. One known instance is the ζ function in the
s-aspect near ℜs = 1 via Vinogradov.

• Michel asked about an analogy of (sub)convexity for p-adic L-functions.
The answer could be some integrality property (Mazur, Prasad,...).

4. THURSDAY PROBLEM SESSION

• Venkatesh convinced us that many equidistribution results are useful to
prove asymptotic formula for moments of L-functions with a power sav-
ing in the error term if the suitable equidistribution results are quantita-
tive ones. He illustrated this by two GL2-examples namely∫ +T

−T

∣∣L( f ,1/2+ i t )
∣∣2 dt

and ×∑
χ mod (q)

∫
R

∣∣L( f ×χ,1/2+ i t )
∣∣2 dt .
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• In addition, he mentioned what could be the obstacles to do the same
in higher rank cases. On one hand, it is very hard to prove an inte-
gral representation (period) of L-functions which occured in higher rank
since the archimedean computation may be very far away from obvious.
According to Garett, the Diaconu-Garrett-Goldfeld extension of Good’s
spectral-theory-based method to GLn xGLn−1 illustrates the complica-
tions at archimedean places. On the other hand, it is necessary to anal-
yse such integral representation via ergodic theory or spectral methods.
Two difficult instances are given by On ×On−1 and GLn ×GLn−1.

• An application of subconvexity bounds for GLn may be some informa-
tion about the 2n-moment of the Riemann ζ function. For instance,
some Motohashi type formula make the link between GL3 and |ζ|6. We
also have to mention the work of Conrey and Iwaniec.

5. FRIDAY PROBLEM SESSION

• There will be a website dedicated to subconvexity for L-functions. Peo-
ple agreed that it should contain references to important results, a list of
people with their current attempts and previous results also.

• Venkatesh put the stress on the subconvexity problem in higher-rank
cases. Few methods are known which have bearing on it. After Venkatesh-
Lindenstrauss and Bernstein-Reznikoff treatments of triple products, the
exceptions are works in progress mentionned by Garett: Venkatesh’s ap-
plications of ergodic theoretic ideas coming from Ratner and Clozel, and
Diaconu-Garrett-Goldfeld’s GLn version of an old method of Good.
Venkatesh suggested that a first higher rank example to undertake should
be GL3 ×GL2 with f3 on GL3 is fixed and f2 is varying. In order to get
some insight into that, it would be profitable for everybody that classi-
cal analytic number theorists try to understand the case when f3 is an
Eisenstein series namely∑

f Hecke-Maass of level 1
and eigenvalue 1/4+ t 2

f
t f vT

∫
tvT

∣∣L( f ,1/2+ i t )
∣∣6 dt .

Note that the size of the family is about T 3 whereas the size of the an-
alytic conductor is about T 12 which reveals the level of difficulty. Also,
people should understand where the GL3-theory occurs in the analytic
analysis.


