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This document is an introduction to some topics of the Workshop “Representations of
Surface Groups”, March 19 - March 23, 2007 at the American Institute of Mathematics
in Palo Alto. Its purpose is to frame the discussion of the workshop by presenting
the prerequisite background, a common terminology and notation, and references for
further study. The document is roughly divided into Part I discussing more the general
background and into Part II which discusses several more specific aspects in the case
of SL, as guiding example. In addition to this document, we will have a user-prepared
online glossary of mathematical terms to help participants know what one another is
talking about.

The workshop will concentrate on two general questions:

e Understand the topology, global structure (metrics, complex structures, geom-
etry, symmetry) of the deformation space Hom(w, G)/G of representations of a
surface group 7 in a Lie group G

e Find invariants of representations 7 £ G which detect special properties of 05
such as when p is a discrete embedding.
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Part 1. General Background
1. WHAT IS A SURFACE GROUP REPRESENTATION?

1.1. Surfaces and their fundamental groups. Let ¥ =X, ; be a compact connected
surface of genus g with k holes (that is, 3 is the complement of & disjoint open discs in a
closed orientable surface of genus g). For technical convenience, we choose an orientation
and a smooth structure on ¥. By abusing basepoints, denote the fundamental group of
>

7= m(2).
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The common decomposition of ¥} of a 49+ k-gon with 2¢g identifications of its sides leads
to a presentation

(111) ™ = <A1,Bl,...,Ag,Bg,...,Cl,...,Ck | [Al,Bl] ...[Ag,Bg]Cl Ck = 1)
where [A, B] := ABA 'B~!. The fundamental group 7 is free <= k # 0. At first we
only consider the case k = 0 (that is, 93 = 0).

1.2. The deformation space. Let G be a Lie group. Denote the set of representations
7% G by Hom(7, G). Evaluation on a collection 7y,...,yy € 7

Hom(m, G) — GV

p(m)
p—
p(w)
is an embeedding if vy,...,yn generate w. Its image consists of N-tuples satisfying

the defining relations of 7 satisfied by the generators 7,...,vny. If G is an algebraic
group, this expresses Hom(m, G) as an algebraic subset of G¥. This algebraic structure
is independent of the generating set. In particular Hom(w, G) inherits both the Zariski
and the classical topology. By default we consider the classical topology unless otherwise
noted.

In terms of the standard presentation (1.1), Hom(w, G) identifies with the subset of
G?9t* consisting of

(051,/81, .. 'agaﬁgvfyl’ .- :fyk)

satisfying the single G-valued equation

[, Bi] - . [ag, Bolyr - ooy = 1.

1.3. Symmetries of Hom(7, G). The natural action of Aut(7) x Aut(G) on Hom(7, G)
defined by left- and right-composition

Aut(m) x Aut(G) :Hom(w, G) — Hom(7, G)
(p,0) :pr— aopogp™
preserves the algebraic structure. We will mainly be concerned with the quotient
Hom(m, G)/G := Hom(r,G)/({1} X Inn(G))

upon which Out(7) := Aut(7)/Inn(7) acts. In general the mapping class group my(Diff (%)
embeds in Out(7), and if £ = 0 (or ¢ = n = 1), this embedding is an isomorphism.
One motivation for this study is that the deformation spaces Hom(w, G)/G are natural
objects upon which Out(r) acts.
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1.4. When G is abelian. The simplest groups are commutative. Suppose that & = 0.
When G is abelian, then the commmuators [, 5] = 1 and the defining relation in (1.1)
is vacuous. Thus

Hom(m, G) +— G*
Furthermore Inn(G) is trivial so
Hom(m, G)/G +— G
as well.

Homological machinery applies. By the Hurewicz theorem and the universal coeffi-
cient theorem,

Hom(7, G) = Hom(n/[x, 7], G) = Hom(H, (%), G) & H'(Z, G)
(or HY(m,G) if you prefer group cohomology). In particular when G = R, then
Hom(m, G)/G is the real vector space
H'(X,R) @ R*»
which is naturally a symplectic vector space under the cup-product pairing
H'(Z,R) x H'(X,R) — H*(3,R) @R

(Note that the orientation of X is used to obtained a scalar-valued bilinear form.) The
mapping class group action factors through the symplectic linear group:

Out(m) = mo(Diff (X)) — Sp(2¢,Z).

The other fundamental case occurs when G = U(1) & R/Z =~ S'. In this case
Hom(w,G)/G is a 2¢g-dimensional torus, which identifies with the quotient

H'(Z,R)/H' (3,Z)
of the symplectic vector space H'(X,R) by its integer lattice H' (%, Z).

This quotient admits another intepretation when we fix a complex structure on X, i.e.
an endomorphism

T.> L T,%

of the tangent space T, X such that J> = —Id. This makes ¥ into a one-dimensional
complex manifold, that is, a Riemann surface, which we denote

X =(3,J).

Over a Riemann surface X = (X, J) diffeomorphic to ¥ the space H*(X,R)/H' (%, Z)
appears as the Jacobian Jac(X) of X, which parametrizes isomorphism classes of topo-
logically trivial holomorphic line bundles over X (for more explanation see below). It
is an abelian variety (a compact complex algebraic group), whose isomorphism class
actually detects the isomorphism class of the Riemann surface X (Torelli’s theorem).
For the theory when G = C* (the nonzero complex numbers), see the expository memoir
[40]. This paper develops Higgs bundle theory over Riemann surfaces in the “trivial”
cases of line bundles.

In these abelian cases G = R, S*, C*, the deformation space Hom(7, G)/G is a smooth
manifold (in fact a Lie group).



SURFACE GROUP REPRESENTATIONS 5

1.5. de Rham, Hodge and Dolbeault theory. Going from a topological object like
H'(Z,R)/H'(%,7Z) to the holomorphic object Jac(X) plays an important role more
generally. The de Rham theory identifies H*(X, R) with the cosets of closed differential
forms by the subspace of exact differential forms. This requires a differentiable structure
on Y. Hodge theory identifies the de Rham cohomology with the space of harmonic forms
(not just equivalence classes of forms). This requires a Riemannian metric on . Briefly,
a 1-form has an energy, which is just the square of its L2-norm taken with respect to
the metric. The unique form in a cohomology class ¢ is then the closed form in ¢ of
minimum energy (the smallest, or closest to 0, one in the affine subspace defined by c).

The situation’s even better for 1-forms on 2-manifolds. In this case the L?-norm de-
fined by the Riemannian metric depends only on the conformal structure defined by the
Riemannian structure. In other words, it only depends on the measurement of angles,
not lengths. In dimension two, the conformal structure is conveniently represented by
the almost complex structure, the automorphism

T, 5 T,x
of the tangent space T,% defined by rotating vectors by /2.
Thus a conformal structure makes ¥ into a Riemann surface X = (3, J).

The map on 1-forms induced by the complex structure is the Hodge x-operator defined
by:
* :=qao.J
where the 1-form
a:T, — R

is a linear functional on tangent vectors. In terms of the conformal structure J, the
energy of a 1-form « equals:

||a||2=/a/\*a=/oz/\(oz0J).
X X

The Euler-Lagrange equations for minimum energy is just the harmonic conditions:

(1.5.1) do=d*a=0.

Sadly, J doesn’t have eigenspaces. But the complex numbers come to the rescue!
Complexifying the tangent space T, X gives the complex tangent space

TEX =T, X ® C

which is a two-dimensional complex vector space. J extends uniquely to a complex-
linear map still satisfying J? = —1. It splits into two complex lines (the +i- and
—i-eigenspaces respectively)

TCX = TWO X @ TOD X

where the +i-eigenspace 750 X consists of holomorphic tangent vectors and the —i-
eigenspace T(®V X consists of anti-holomorphic tangent vectors.

Suppose now that « is a complex 1-form, that is, a C-linear functional

TEX — C.
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It uniquely decomposes as a = a? + %) where a"* vanishes on 7V X and o(%"
vanishes on T(X% X . Harmonicity (1.5.1) is equivalent to the two conditions that

(1) o9 is a holomorphic 1-form, that is, when you write it locally in terms of a
holomorphic coordinate z on X, that it looks like

f(z)dz

where f is a holomorphic function, and
(2) a®Y is an anti-holomorphic 1-form, which in this case is equivalent to the

condition that its complex conjugate (%Y is a holomorphic 1-form in the above
sense.

What happens if o was real to begin with? Suppose that o takes the original real
tangent space T, X into R? In that case
1,0)

bl

a0l) = of

so real de Rham cohomology classes «— harmonic (real) 1-forms <— holomorphic
(necessarily C-valued) 1-forms. Holomorphicity is easily expressed by decomposing the
exterior derivative operator (de Rham differential)

d: A(X,C) — A*(X,C)

as
d = d®0 4 q©1)

where d®%(«) is the (p, ¢)-component of do. More customary notation is @’ = d*% and
d" = d%Y, and d"f = 0 coincides with the ordinary Cauchy-Riemann equations. The
operator d” will generalize to a holomorphic structure on a (smooth complex) vector
bundle, whose solutions are defined to be the holomorphic sections of the bundle.

When describing these different points of view, Simpson calls the theory of repre-
sentations of fundamental groups Betti theory, the theory of closed 1-forms (or more
generally, flat connections, see §2) de Rham theory, the theory of harmonic represen-
tatives Hodge theory and the theory of holomorphic representatives Dolbeault theory.
For a Riemann surface (i.e. a complex one-dimensional manifold) the GAGA principle
implies that the holomomrphic objects (and hence representations of m1(X)) can be
studied using the tools of algebraic geometry. Higgs bundles are the holomorphic (and
hence algebraic) objects corresponding to surface group representations in Lie groups.

Intepreting quite different mathematical objects as the “same” is best cast in the
context of the notion of an equivalence of categories. A classification problem involves
determining a class of restricted mathematical objects, and their equivalence classes
under an equivalence relation. Often this equivalence relation is given by an operation
of a group of transformations. The set of equivalence classes, the set of moduli, often
admits additional structure (such as a topology, structure as a group or an algebraic
variety). However, in many cases the quotient moduli space may contain much less
information than the original group action. This may happen if the group action displays
chaotic dynamics and the quotient is poorly separated. For this reason, it is better to
consider a deformation theory
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A deformation theory (or transformation groupoid) (S,G) consists of a category C
defined by a group action as follows. Let o : G x S — S be a left action of a group
G on a set S. The deformation theory (S,G) consists of the category C whose objects
form a set Obj(C) = S with morphisms

x5y
corresponding to triples (g, z,y) € G x S x S such that a(g,z) = y.
The identity element e € G determines, for each object z € S the identity morphism

e
r— .

The inverse of the morphism

z Ly

1S

y i

and the composition of morphisms
g h
rT——y—=z
equals
hg
T — z.
In particular every morphism is an isomorphism.

The moduli set corresponding to such a deformation theory is the set Iso(C) of isomor-
phism classes of objects. The isotropy group of an object € Obj(C) is the set Mor(z, )
consisting of morphisms x — x, which has the structure of a group. An equivalence of
categories is a functor F' : A — B such that there exists a functor H : B — A and
natural transformations from the compositions F'o H and H o F' to the identity functors
of B and A respectively. (See Jacobson [51] or Gelfand-Manin [32], p.28 for discussion
of this notion and Goldman-Millson [38] for an application closely related to this one.)
An equivalence of categories induces a bijection Iso(A) — Iso(B), although in general
Obj(.A) and Obj(B) may be enormously different. For example, each groupoid arising
from a group G operating on itself by left-multiplication is equivalent to the groupoid
with one object and one morphism.

Equivalent deformation theories yield equivalent moduli sets. However the finer no-
tion of equivalence has further implications— for example isotropy groups of corre-
sponding points in the moduli spaces are isomorphic.

Often the sets Obj(.A) admit additional algebraic or geometric structures, which in-
duce additional structures on Iso(A). For the examples discussed here, these moduli
sets are Lie groups, and the equivalences of deformation theories induces isomorphisms
of (real) Lie groups.

Equivalent deformation theories may have different structures. An equivalence of a
deformation theory A with another deformation theory may provide additional struc-
tures to Iso(A).

The following criterion is a useful tool for proving that a functor is an equivalence of
categories. A functor F': A — B is an equivalence if and only if:



8 BRADLOW, GARCIA-PRADA, GOLDMAN, AND WIENHARD

e Surjective on isomorphism classes: The induced map
F, :1so(A) — Iso(B)

is surjective;
e Full: For z,y € Obj(A), the map

F(z,y) : Mor(z,y) — Mor(F(z), F(y))

is surjective;

e Faithful: For z,y € Obj(A), the map
F("an) : MOF(.’L’,y) — MOF(F(.’L‘),F(y))

is injective.

1.6. Singularities of Hom(w, G)/G. Let’s return to the general structure of the defor-
mation space. If G is not abelian, Hom(7, G)/G is not a manifold. Everything possible
can go wrong:

e The algebraic set Hom(7, G) may be singular, so Hom(7, G) is not a manifold.

e The group G may not act properly, so Hom(w,G)/G may not be Hausdorff
(except when G is compact);

e The group G may not act freely. Even where Hom(w, G)/G is a Hausdorff smooth
manifold, the quotient Hom (7, G)/G may be only an orbifold.

Nonetheless we easily repair these spaces. If £ > 0, then 7 is free of rank N = 2g+k—1
and

Hom(m, G) +» GV
is a smooth manifold. When £ = 0, then none of the standard generators in (1.1) can
be eliminated, Hom (7, G) may indeed be singular.

At this point, restricting to reductive groups is handy. A subgroup G C GL(n,C)
is reductive if it is algebraic (Zariski-closed), and the representation on C* and all its
tensor powers are reductive (“completely reducible”, that is, a direct sum of irreducible
representations). Equivalently, the trace form on its Lie algebra g C g£(n, C)

gxg—C

(a,b) —> tr(ab)
is nondegenerate. All the classical linear groups are reductive, and every reductive
group is a product of simple groups and abelian groups of diagonal matrices.

A representation is reductive if its Zariski-closure is reductive. that is, the smallest
algebraic subgroup containing its image is reductive. For linear representations, this is
equivalent to complete reduchbility.

So suppose G is reductive. By computing the differential of the map
G¥ — @

(ala e 769) — [alaﬂl] st [ag’ﬁg]a
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the inverse function theorem implies that the smooth points of Hom(m, G) consist pre-
cisely of representations p with trivial infinitesimal centralizer, that is, every one-
parameter subgroup of G which centralizes p lies in Center(G). For this calculation,
see [34].

Next we discuss the Inn(G)-action. The isotropy group of a point
h:=(hy,...,hy) € GY
equals the common centralizer Z(h) in Inn(G) = G//Center(G) that is, all
[u] € G/Center(G)

such that u = hsuh;'. In particular Inn(G) acts freely on h if Z(h) is trivial, and
Inn(G) acts locally freely on h if Z(h) is trivial, the same condition as smoothness
above. The duality between smoothness of Hom(7, G) at p and the local freeness of the
Inn(G)-action at p is a nonlinear 2-dimensional Poincaré duality on X ([34]).

Whether Hom(w, G)/G is Hausdorff is more subtle. Continuing to assume G reduc-
tive, one can remove a somewhat larger subset of Hom(7, G) than the representations
with trivial infinitesimal centralier to obtain a proper action. The precise condition is
that the image p(7) does not lie in a parabolic subgroup of G. For G = GL(n, C), this is
equivalent to the irreducibility of the linear representation; the bad representations are
the ones which can be put in simultaneous upper-triangular form.

For example, consider a representation p such that

p(7) = [Pu(’)’) 912(7)] :
0 p2ay)

Vv € m and where pi2(79) # 0 for some vy € w. Conjugating by the one-parameter

subgroup
A0
gr =
0 At

maps p to another representation by upper triangular matrices

(D)) = | Aqu(v)]_
ax(p) (1) [ 0 i)

which as A — 0 converges to a representation p, by diagonal matrices. Genericly p is
inequivalent to pg. Since the closure of the orbit p contains py, the point [p] in the orbit
space is not closed.

Let Hom(w, G)' denote the Inn(G)-invariant subset of Hom(7, G) which do not lie in
parabolic subgroups and have no extra symmetries under Inn(G). Then Hom(7w, G)" is
a smooth manifold, upon which Inn(G) acts properly and freely. The quotient map

Hom(m, G)' — Hom(r,G)' /G

is a smooth fibration over a smooth Hausdorff manifold.
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2. CONNECTION WITH CONNECTIONS

A differentiable structure on ¥ lets us interpret representations 71 (X) £ as smooth
objects, namely flat connections on G-bundles. The two alternate approaches involve
principal G-bundles or vector bundles. While principal bundles are more general, vector
bundles are perhaps easier to develop. A good general reference on connections is
Kobayashi-Nomizu [54]. Here we briefly summarize a few main points which we need
later.

2.1. G-vector bundles. Suppose that G C GL(n,C) as above and ¥ is a smooth
manifold. A rank n complex vector bundle over 3, denoted by E =5 ¥ is a locally
trivial fibration in which the fibers are copies of C*. An important special case is the
trivial bundle where E = 3 x C* and 7y is Cartesian projection.

One way to describe a bundle is by means of a system of local trivializations glued
together by a cocycle of transition functions:

e The local trivializations are pairs (U,, 1) where U, C ¥ are open sets and the

1, are homeomorphisms U, x C* *2 7=1(U,),

e A system of local trivializations consists of a cover for X, {U,}aer, and a local
trivialization for each « in the indexing set I, and

e a cocycle of transition functions is a collection of maps

U, NUs £ GL(n, C)
with one such map for each pair (o, 8) corresponding to a non-empty intersection
U, NUs and such that Yz € U, NUg, and v € C*

¢a($, ’U) = wﬂ(% gaﬁv)'

This is a lot of baggage, so we usually just write £ when the context is clear. De-
spite its cumbersomeness, the description in terms of local trivializations and transition
functions provides a convenient way to describe geometric bundle structures which play
a key role in our story. In particular:

2.1.1.  To say that a rank n vector bundle E ™% ¥ has structure group G' C GL(n, C)
means that one can find a system of local trivializations in which the transition functions

all take their values in G C GL(n,C) (and the action g,pv is thus via the representation
defined by the inclusion G C GL(n,C) )

2.1.2. If the base space is a smooth manifold and the transition functions are smooth
maps, then the local trivial bundles U, x C" determine a smooth structure on the total
space of the bundle. The projection map E =2 ¥ is then a diffeomorphism and F is
said to be a smooth bundle.

2.1.3. If the transition functions are not only smooth, but are locally constant, that
is, if they satisfy the condition

(2.1.1) dgas =0 ,
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where d is the exterior derivative, then the system of local trivializations is said to define
a flat structure on E.

2.1.4. If the base manifold has a complex structure (making ¥ a Riemann surface),
and the structure group G is a complex Lie group, then there is another option for
the transition functions: they can be holomorphic maps, that is, they can satisfy the
condition

(2.1.2) d"gap =0,

where d” is the Cauchy Riemann operator described in Section 1.5. The local trivial
bundles U, x C" are then complex coordinate patches on the total space of the bundle,
and the projection map F =% ¥ is a holomorphic map between complex manifolds. In
this case, the system of local trivializations defines a holomorphic structure on FE.

2.2. Gauge transformations. If F, E' are two vector bundles over ¥, then a gauge
transformation is a map E 5 E satisfying

e T 0o ® =7p;
e Vz € 3, the restriction

(7TE) - (x) 2 (’ﬂ'El) - (x)

is a linear isomorphism, represented by an element of G.

For the trivial bundle, gauge transformations correspond to maps ¥ — G.

If G C G' C GL(n,C) is a homomorphism of Lie groups, then every G-bundle is a G'-
bundle. The G'-gauge group is larger than the G-gauge group. An important example
occurs when G is the unitary group U(n) C GL(n,C): the unitary gauge group preserves
a Hermitian metric on U(n)-vector bundle but is strictly smaller than the linear gauge
group consisting of all linear automorphisms.

More generally, one may consider bundle automorphisms which cover a nontrivial map
Y — 3, but still take fibers to fibers by transformations in G. A gauge tranformation
is then a bundle automorphism covering the identity diffeomorphism of X.

2.3. How does a representation determine a vector bundle? To obtain a vector
bundle from a representation p, first choose a universal covering space ¥ —» % with
deck group . For example, & = f](acg) is the space of relative homotopy classes of
based paths in X starting at a fixed basepoint xq, and 7 = 7m1(2, zg).-

The action of 7 on gl lifts to an action by bundle automorphisms on the trivial
C*-bundle ¥ x C* — X

(2.3.1) Tx (ExC) — (ExC)
v (&) = (vE, p(7)v)
7 acts properly and freely on 3 and hence also on & x C"; the resulting quotient map
(ExC)/mr—S/r=%
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is a rank n vector bundle over 3. We denote this bundle by E, and (for reasons which
will be explained in Section 2.4) we call it the flat bundle with holonomy p.

Here is another way to describe this bundle: the universal cover & can be regarded
as a prinicipal 7-bundle: the fibers of the covering are copies of 7 = 71(X) and 7
acts on the total space (that is, i) by deck transformations. For any Lie group G, a
representation

(2.3.2) p:m(X)—G

then defines an associated G-bundle. The total total space of this bundle is the analog
of (X x C")/m, with C" replaced by G. If we compose the homomorphism (2.3.2) with
a representation of G, that is, with a homomorphism from G into GL(N, C) for some N,
then the construction yields an associated rank-N vector bundle. If G = GL(n,C), and
we can take the fundamental representation (that is, N = n), then we get the bundle
E, described above.

Exercise 2.3.1. Find a coordinate atlas and a cocycle for the vector bundle E,,.

2.4. Flat bundles and covering spaces. A vector bundle arising from a representa-
tion as above has very special properties. Firstly, it is trivial over the universal covering.
Secondly, it has a system of local trivializations for which the transition functions (that
is, the g,p ) are (locally) constant. These are constructed from a system of local trivial-
izations for the universal cover (viewed as a m;-bundle over 3J). The transition functions
for this are necessarily locally constant since as a topological space 7; has the discrete
topology. The resulting system of local trivializations thus defines a flat structure (as
defined in Section 2.1.3) on the bundle.

The geometric significance, which can be seen from either point of view, is that the
total space E, has a foliation §, which is transverse to the fibration £, — ¥, and such
that the restriction of the fibration to each leaf is a covering space.

Exercise 2.4.1. Describe this foliation in the above construction of E,,.

Since at each point p € E,, the leaf of the foliation through p is transverse to the
fiber containing p, it follows that the tangent space to the leaf is complementary (in the
tangent space T,E,) to the vertical space at p (that is, the directions along the fiber).
The tangents to the leaves thus define a horizontal distribution on E,. Distributions of
this sort provide one definition of a connection on a bundle (see section 2.5). Notice
that, by construction, the distribution coming from §, is integrable. This is precisely
what it means for a connection to be flat. Indeed, a flat connection is equivalent to a
flat structure on a bundle .

By the path-lifting properties of covering spaces, paths in X can always be lifted to
paths in the total space of E,. The foliation §, picks out a distinguished class of such
lifts. Specifically, given any point Zo € E, and any path y(t) starting at v(0) = mg(Z),
3! lifted path 4(¢) such that

o (7(1) = 7(t),
e 7(0) = Zp,and
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e Vi, the lifted path () stays in the same leaf of §,;

A system like this of path liftings defines a notion of parallel transport across fibers.
In general, loops in ¥ do not lift to closed loops. Moreover, the discrepancy at the
endpoints can depends on the path. For the parallel transport defined by the foliation
Sp, this holonomy around loops depends only on the relative homotopy class of the loop.

We note, finally, that the foliation defines a special class of sections of E,, namely
those sections which are graphs of “constant” maps into the fiber C* with respect to
the local trivializations v, above. Precisely, let A C ¥ be a path-connected subset and
suppose that

A% (Bp)la = 15(A)
is a section over A. Then s is parallel :<=> it lies in a single leaf of F,. Equivalently, s
arises from the graph of a constant map
A—SxC
T — (2, 1)

where A is a path-component of 75'(4) C ¥ and vy € C*. This observation shows not
only that parallel sections exist over A, but that there are lots of them. In fact, given
a vector space basis for the fiber over any point in A, we can extend each basis element
to a parallel section over A. The resulting sections will provide a basis for the fiber over
each point in A, that is, they will constitute a local frame of parallel sections. Thus one
may think of a flat bundle as a bundle together with a preferred class of local frames,
viz. the local frames of parallel sections.

2.5. Flat connections, curvature and parallel transport. Flat connections are
analytic objects (tensor fields) which are equivalent to representations of 7 (X).

We have already alluded to one definition of a connection on a bundle E, namely a
distribution on the total space of E' which at each point is complementary to the vertical
directions at that point. 1. We briefly mention two other equivalent points of view and
say something about how the various points of view are related.

2.5.1. A connection is a way of “connecting” the fibers of F. It does this by means
of a parallel lifting of paths in ¥. For any path 7(¢), a connection picks out a class
of of sections which will be parallel over v. These provide the parallel lifts. In local
coordinates it is a system of first-order differential equations in which Z; is the initial
condition. The system of differential equations extends the ordinary differential system
defining the constant functions.

As such it is represented by a differential operator
A2, E,) 2 AYS,E,)
which extends the ordinary exterior derivative on functions

A2, C) & A2, C).

Ithere is another condition which the distribution must satisfy, namely that it is compatible with
the action of the structure group of the bundle. The interested reader is referred to *** for precise
details
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2.5.2. This provides the third description of a connection. The extension is enforced
by the product identity

D(fs)=df ANs+ fDs
S0, in particular, a constant multiple of a parallel section remains parallel.

The covariant derivative of a section s with respect to a tangent vector v € T, %
equals the evaluation
D, (s) := (Ds)(v)
of the linear functional Ds, € Hom(7,X, E,) on v. It measures the deviation of s from
being parallel along paths ~(¢) with velocity vector 7/(t) = v. In particular section
s(7(t)) over y(t) is parallel <= the covariant derivative

D7/(t)$ =0.
Existence and uniqueness of parallel transport of a vector follow from existence of
uniqueness of linear systems of differential equations.

Parallel sections passing through a point p € E can be used to lift tangent vectors at
7(p) € ¥ to tangent vectors at p. The resulting vectors define a subspace of horizontal
directions in T, F, that is, they define a horizontal distribution. This shows the relation
to our first definition of a connection.

2.5.3. Connections can be computed in terms of local trivializations as follows. Sup-
pose that U C X is a single coordinate patch over which E has trivialization . Let
e1,...,e, be the basis of sections corresponding to 1 and let z!, 2% be local coordinates
on U. Then, writing

Deg =T% da* ® eg,
we see that for an arbitrary section s = f“e,,
Ds = df%eq + foT? da'eg,

which we write as

D=d+T
where I' € A' (U, End(F)) is the matrix-valued 1-form
I =17 dat

(where the indices 1 < o, f < n).

2.5.4. Parallel transport is independent of the path in its relative homotopy class if
and only if the curvature of D vanishes. The curvature, Fp is defined locally (that is,
over U) as
Fp=dl +T AT € A*(Z,End(E)).

Here dI' is the exterior derivative of the End(FE)-valued 1-form I' with respect to the
natural extension of D to End(E)-valued differential forms and ' AT is the End(E)-
valued 2-form obtained by matrix multiplication in End(E) and exterior multiplication
of 1-forms. In terms of the Lie structure on End(E),

1
PAT = [T, T]
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obtaining the general formula (valid for principal bundle connections)
1
Fp=dlI' + E[F’F]'

Globally the curvature measure the failure of the horizontal distribution to be inte-
grable. Tt also measure the failure of the covariant derivative to define a complex

A E) S A E) D A25,E)S -

that is, it measures the non-vanishing of D?. In fact, Fp = D?. For more details see
[54, 40].

2.5.5. Gauge transformations g are sections of the subbundle of Aut(E) corresponding
to GG, and act on connections by

g:D—sgoDog™?

and curvature behaves like

Fop =goFpogt

2.6. Equivalent deformation theories. Holonomy around loops based at zy defines
a map

{Flat connections on E} fokeo, Hom(m (%, 29), G)

respecting the natural equivalence relations. Namely, the group of G-gauge transforma-
tions on E evaluates to a transformation in G at the basepoint zy and hol, is equivariant
respecting this evaluation homomorphism. The corresponding map is an equivalence of
deformation theories from the gauge transformations acting on flat connections to G
acting on Hom(7, G). In particular this correspondence defines a natural homeomor-
phism between the quotient spaces Hom(w, G)/G and the space of gauge-equivalence
classes of flat connections on G-bundles over .

3. COMPACT REPRESENTATIONS AND HOLOMORPHIC STRUCTURES

A good reference for this material is Kobayashi’s book [53].

Surface group representations into compact groups are successfully understood in
terms of holomorphic vector bundles over Riemann surfaces. It is important to distin-
guish between a complex structure on a real vector bundle, which is just an operation of
v/—1 on the fibers, and the deeper notion of a holomorphic structure which is a notion
of holomorphic section, when the base is a complex manifold. Complex structures may
exist on smooth vector bundles over arbitrary topological spaces, which holomorphic
structures are only defined on smooth vector bundles with complex structure over com-
plex manifolds. A holomorphic vector bundle over a complex manifold X is a complex
vector bundle over X with a holomorphic structure.
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3.1. Holomorphic structures. The starting point of this subject is the Jacobi variety
Jac(X) of a Riemann surface X, which parametrizes topologically trivial holomorphic
line bundles over X. This space identifies naturally with Hom(w,U(1)). If G is a
compact Lie group, then the work of Narasimhan-Seshadri [70], extended by Ramanan,
Ramanathan and and others, interpret representations m(X) 2 G as holomorphic
vector bundles over X, satisfying a condition of stability.

Let X be a Riemann surface diffeomorphic to ¥ and E a smooth complex vector
bundle over X. That is, the transition cocycle consists of smooth maps U, N Ug —
GL(n,C). With respect to such a structure, there is a well-defined notion of what it
means for a section to be smooth. Smooth sections form a module over the ring of
smooth functions on X. On a complex manifold, holomorphic functions form a subring
of the ring of smooth functions.

A holomorphic structure on F is a way to specify a class of sections which will be
holomorphic. This will be analogous to how a connection satisfies a class of sections
to be parallel, or “locally constant.” Of course, we would require that multiplying a
holomorphic section defined over an open subset U C X by a holomorphic function on U
preserves holomorphicity. Just as connections allow us to extend the exterior derivative
d on scalar-valued functions (and differential forms) to E-valued forms, a holomorphic
structure will allow us to extend the Cauchy-Riemann operator d” from scalar-valued
forms to E-valued forms. Thus, a holomorphic structure on a complex vector bundle F
is a linear operator

AR(X; B) 2 AR(X B)
satisfying the product formula

D"(fs)=d"f Ns+ fD"(s)
for f € A°(X,C) and s € A*(X;E). A section s € A°X, E) is holomorphic with
respect to D" < D"s = 0.

Just as the (0,1) part of the exterior derivative d is the Cauchy-Riemann operator
d", the (0, 1)-part of a flat connection D is a holomorphic structure.

3.2. Hermitian metrics and connections. A simple relationship exists between con-
nections, Hermitian metrics and holomorphic structures. Let X be a complex manifold
and F a smooth complex vector bundle over X. A Hermitian metric on F is a section
h of the associated bundle of positive definite Hermitian forms on £ — that is, at each
point € X is a positive definite Hermitian pairing

E, x E, ™= C
which in terms of a local trivialization is given by the positive definite Hermitian matrix
hag = hy(ea,ep).

Let D be a connection on E and let h be a Hermitian structure on E. The following
conditions are equivalent:

e The holonomy of D is unitary with respect to h;
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e For each tangent vector £ € T, X,

Ehy(s1,82) = hy (Dg(sl), 52) + hy (51, Dg(Sg)).

e D is a U(n)-connection with respect to the reduction of structure group to U(n)
defined by h.

The following fundamental theorem is straightforward and elementary (see [53]):

Theorem 3.2.1. For every Hermitian metric h and holomorphic structure D", 3! con-
nection D such that:

e D is unitary with respect to h;
e The (0,1)-part of D equals D".

The curvature Fpp of D is a (1, 1)-form and is necessarily closed (since dim¢(X) = 1).
Its cohomology class (scaled by —i/27) is a topological invariant of E, the first Chern
class or the degree of E. In particular, E is topologically trivial (equivalent to the
product bundle) <= ¢;(F) = 0 <= F) is exact.

3.3. Line bundles and divisors. When n = 1, then E is a line bundle. Holomorphic
line bundles are classified by the Picard group, Pic(X) and the most important invariant
is the degree. Every holomorphic line bundle admits a meromorphic section s, any two
nonzero meromorphic sections differ by multiplication by a meromorphic function. The
line bundle is determined by s, and indeed just by the divisor div(s) of s, the formal
integral linear combination of zeroes and poles of s, weighted by multiplicity. Two
divisors determine the same line bundle if they differ by a principal divisor, that is, the
divisor of a non-identically zero meromorphic function. The degree of the divisor

T = ng[x1] + ngfxe] + - - - + nyx)]
where n; € Z and p; € X is the sum
deg(z) :=n1 +ng+---+ny.

For a compact Riemann surface X of genus g, the components of Pic(X) are detected
by the homomomorphism

Pic(X) <& 7
given by degree. The identity component Jac(X) = Ker(deg) is a complex torus of
complex dimension g.

For this classical theory, see the excellent texts of Farkas-Kra [27], Forster [28],
Jost [52], Miranda [66], or Mumford [68].

The main classical result (see Goldman-Xia [40] for a detailed exposition) is that
holomorphic line bundles over a closed Riemann surface admit a unique flat Hermitian
metric, and hence

Jac(X) +— Hom(m,U(1)).
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3.4. Higher rank bundles and stability. Holomorphic vector bundles of rank n > 1
are considerably more complicated. If F is a C"-bundle, then its degree is defined as the
degree of its determinant line bundle Det(F) = A"(E). Elementary obstruction theory
implies that two C"-bundles over a surface X are isomorphic <= they have the same
degree.

Exercise 3.4.1. Let E, be a flat C"-bundle arising from a representation © LN GL(n, C).
Then deg(E) = 0.

Now let X be a Riemann surface diffeomorphic to ¥. Unlike the case n = 1, the space
of isomorphism classes of holomorphic C*-bundles for n > 1 fails to be Hausdorff. Here
is a simple example. Let n € Q'(X) be a nonzero holomorphic 1-form; being harmonic
and nonzero its de Rham cohomology class in H*(X,C) is nonzero. The trivial C?-
bundle over X admits a (trivial) holomorphic structure D§ by taking the two basic
sections e, es to be holomorphic:

Dy f%q = d" feq.

For each nonzero ¢ € C the new holomorphic structure D defined by:

egr —0
7
D!

ey 7761

is nontrivial. The gauge transformations defined by

A0
a\ =
[0 A‘ll

map Dy to DY,,. The equivalence class D}, for nonzero ¢, contains the equivalence class
of Dy in its closure.

What makes this construction work is the existence of the “destabilizing” holomor-
phic subbundle (e;) in which the deformation to a new structure takes values. If this
subbundle were more twisted (having negative degree) such a construction would be
impossible.

Exercise 3.4.2. Generalize this example to show that if L is a holomorphic line bundle
of degree d > 0 and X has genus g > 2d — 1, then L @ L™ is a holomorphic rank two
bundle of degree 0 whose isomorphism class is in the closure of a different isomorphism
class.

This phenomenon can be avoided by restricting to holomorphic vector bundles which
are stable in the following sense. Suppose that E is a holomorphic C"-bundle of degree
0. A destabilizing subbundle of E is a holomorphic subbundle of negative degree. Then
FE is stable :<—= E admits no destabilizing subbundle.

Theorem 3.4.3 (Narasimhan-Seshadri [70]). If 7 2 U(n) is an irreducible representa-
tion, then E, is a stable holomorphic vector bundle. Conversely every stable holomorphic
C™-bundle admits a flat unitary connection with irreducible holonomy, and hence arises
as E, for an irreducible representation © 2 U(n).
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The original proof in [70] uses Geometric Invariant Theory to identify two moduli
spaces. A more direct gauge-theoretic proof was proved by Donaldson’s thesis [19].

4. FUCHSIAN REPRESENTATIONS

Perhaps the most important class of surface group representations are Fuchsian rep-
resentations in G = PSL(2,R). Such representations arise as holonomy of marked
hyperbolic structures on Y. Their equivalence classes comprise the Fricke space of X.
By the uniformization theorem, Fricke space identifies with the Teichmailler space Ty,
consisting of equivalence classes of marked conformal structures on X..

4.1. Hyperbolic structures on surfaces. A hyperbolic structure on Y. is a Riemann-
ian metric on ¥ having constant negative curvature, which we take to be —1. Such a
metric is locally isometric to the hyperbolic plane H?, and a hyperbolic structure can
alternatively be described as a geometric structure locally modeled on H?. That is, a
hyperbolic surface M comes equipped with a coordinate atlas of charts mapping into
H2, such that the coordinate changes on overlapping patches are locally isometric. If

M — M is a universal covering space, then M inherits a hyperbolic structure which

is induced by a developing map M devu, I:|2. All these maps are local isometries. The
group 71 (M) of deck transformations of M — M acts on H? by isometries and dev is
equivariant respecting this action: Vv € m1(M), the diagram

commutes. The correspondence v —3 p(7) is a homomorphism, 7 (M) 222 Isom(H?2),
the holonomy representation of the hyperbolic surface M.

dev, is unique up to composition with an isometry H> % H2, and the holy; is unique
up to composition of the inner automorphism G — G defined by g € Isom(H?).

If the hyperbolic structure is complete, that is, the Riemannian metric is geodesically
complete, then the developing map is a global isometry M ~ H2. In that case the 7-
action on H? defined by the holonomy representation p is equivalent to the action by deck
transformations, so p defines a proper free m-action on H? by isometries. Conversely if p
defines a proper free iosometric m-action, then the quotient M := H?/p(n) is a complete
hyperbolic manifold with a preferred isomorphism

m(X) S p(r) C G
which determines a preferred homotopy class of homotopy equivalences

¥ — M.
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4.2. Fricke space: marked hyperbolic structures. A marked hyperbolic structure
on ¥ is defined as a pair (M, f) where M is a hyperbolic surface and f is a homotopy
equivalence > — M. Two marked hyperbolic structures

sLov 4w
are equivalent :<=> 3 an isometry M % M’ such that
M

e
Io
y

I V7
S—=M

homotopy-commutes, that is, ¢ o f ~ f'. The Fricke space of ¥ is the space of all
such equivalence classes of marked hyperbolic structures on . (When 9% # (), the
hyperbolic structures are assumed to have geodesic boundary or be complete with finite
area; see Bers-Gardiner [2].) When 90X = (), the Fricke space is diffeomorphic to an
open cell of dimension 3|x(X)|.

4.3. Fuchsian components of Hom(7, G)/G. Using Poincaré’s upper half plane model
of H?, the group Isom(H?) of isometries of H? identifies with PGL(2,R) (acting by
real linear, or conjugate-linear, fractional transformations). Its identity component
Isom™ (H?) = PSL(2,R) consists of orientation-preserving isometries. The holonomy
representation of an orientable hyperbolic surface maps to PSL(2,R). For the moment
we consider G = Isom(H?) = PGL(2, R).

To every equivalence class of marked hyperbolic structures is a well-defined equiva-
lence class
[p] € Hom(m, G)/G.

A representation 7 2 G is Fuchsian :<=> it arises as the holonomy of a hyperbolic
structure on Y. Equivalently, it satisfies the three conditions:

e p is injective;
e Its image p(m) is a discrete subgroup of G}
e The quotient G/p(m) is compact.

The first condition asserts that p is an embedding, and the second two conditions assert
that p(m) is a cocompact lattice. When 0¥ = (), the third condition (compactness of
G/p(r)) follows from the first two. In general, we say that p is a discrete embedding (or
discrete and faithful) if p is an embedding with discrete image (the first two conditions).

Theorem 4.3.1. Let G = Isom(H?) = PGL(2,R) and X a closed connected surface with
Xx(2) < 0. Fricke space, the subset of Hom(w,G)/G consisting of G-equivalence classes
of Fuchsian representations, is a connected component of Hom(w,G)/G.

This result follows from three facts: openness of Fricke space (Weil [80]), closedness
of Fricke space (Chuckrow [13]) and the connectedness of Fricke space (see for example,
Jost [52],84.3, Buser [12] or Thurston [76] for elementary proofs using Fenchel-Nielsen
coordinates). The connectedness also follows from the uniformization theorem, together
with the identification of s with the vector space H°(X; K?), see §4.5 below.)



SURFACE GROUP REPRESENTATIONS 21

When G = Isom™(H?) = PSL(2,R), the situation is slightly more complicated due
to orientation. Assume that ¥ is orientable, and fix an orientation on it. Also fix an

orientation on H2. Let ¥ 25 M be marked hyperbolic structure on Y. The orientation of
M induces an orientation of M which is invariant under 7, (M). However, the developing
map devy, may or not preserve the (arbitrarily) chosen orientations of M and H2.
Accordingly Isom™ (H?)-equivalence classes of Fuchsian representations in G fall into
two classes, which we call orientation-preserving and orientation-reversing respectively.
These two classes are interchanged by inner automorphisms of orientation-reversing
isometries of H2.

Theorem 4.3.2. Let G = Isom™ (H?) = PSL(2,R) and ¥ a closed connected oriented
surface with x(X) < 0. The set of G-equivalence classes of Fuchsian representations
forms two connected connected components of Hom(mw,G)/G. One component corre-
sponds to orientation-prserving Fuchsian representations and the other to orientation-
reversing Fuchsian representations.

4.4. Teichmiiller space: Marked conformal structures. The Teichmiller space
Ts, of X is the deformation space of marked conformal structures on .

A marked conformal structure on ¥ is a pair (X, f) where X is a Riemann surface
and f is a homotopy equivalence ¥ — X. Marked conformal structures

»4hx vix
are equivalent <= 3 a biholomorphism X % X’ such that
X

e
I o
y

S —— X’
fl
homotopy-commutes.

Theorem 4.4.1 (Uniformization). Let X be a Riemann surface with x(X) < 0. Then
there exists a unique hyperbolic metric whose underlying conformal structure agrees with
X.

Hitchin [48] deduces this result from his general self-duality theorem, which also
generalizes Donaldson’s proof [19] of the Narasimhan-Seshadri [70] Theorem 3.4.3. This
proof sets up a canonical Higgs bundle associated to a Riemann surface. Solving the
self-duality equations produces a Hermitian metric which induces a constant curvature
Riemannian metric which is conformal on X. We discuss these ideas in §6.

The Poincaré-Koebe Uniformization Theorem provides a canonical bijection between
hyperbolic structures and conformal structures when x(X) < 0. Therefore it is tempting
to confuse these two deformation spaces using this deep theorem.

However, for our purposes clarifying the two structures, and separating the Fricke
space from the Teichmiiller space is important. The theory of Higgs bundles heavily de-
pends on a conformal structure X, although it has strong applications to the topological
object associated to ¥ (or just # = 71(X)). Understanding the dependence of the Higgs
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bundle theory as the conformal structure varies over ¥y is an important question. For
example, the mapping class group action does not respect the conformal structure and
therefore involves the dependence of Higgs bundle theory on the Teichmiiller parameter
X. For this reason we have pedanticly chosen to call the deformation space of hyperbolic
structures “Fricke space” rather than the more common “Teichmiiller space.”

An interesting example of our distinction is that each point of Teichmiiller space,
(represented by a Riemann surface X) defines the structure of a complex vector space
on Fricke space (as H°(X, K?)). The same Fuchsian representation gives rise to quite
different pairs (X, ¢) where ¢ € H°(X, K?)) is a holomorphic quadratic differential on
X.

4.5. Teichmiiller space, Fricke space and harmonic maps. Teichmiiller described
a complex structure, and a metric geometry, on Ty, using extremal quasiconformal map-

pings. Start with an initial marked Riemann surface X Jo, X as our basepoint in %y..
Then any other point in Ty corresponds to a map Xy — X, which we may assume is a
diffeomorphism. Teichmiiller solved the problem of finding the most conformal homeo-
morphism homotopic to ¢. Such a map is described by holomorphic quadratic differen-
tials on the Riemann surfaces X, and X, and using these parameters, he parametrized
Ts as a bounded domain in a complex vector space. In particular the complezr struc-
ture on Ty is independent of the basepoint Xy. The Teichmiiller distance between the
corresponding points in %y is the quasiconformal dilation of the extremal map, that
is, a quantitative measure of how far this most conformal differs from actually being
conformal. For accounts of this theory, see the books of Nag, Gardiner, Hubbard.

However, another description of Ty, or rather Fricke space, is more relevant here. This
is the parametrization of Fricke space by harmonic diffeomorphisms. For this discussion
assume that ¥ is a closed oriented surface with x(X) < 0.

Let X be a closed Riemann surface diffeomorphic to 3, and consider a Fuchsian
representation of 7 = m;(X). Equivalently, consider a homotopy class of homotopy
equivalences

x4Hm

where M is a hyperbolic surface. Since homotopy equivalences between closed surfaces
are homotopic to diffeomorphisms, we may assume f is a diffeomorphism. The energy
density of f is the exterior 2-form

|df||>dA = df A (df o J)

where dA is the area form of a some metric in the conformal class and ||df|| is the
magnitude of the differential df, measured with respect to the same metric on X and
the Riemannian metric on M. The second expression, particular to dimg(X) = 2
depends only on the conformal structure. The energy of f is the integral

/ ldf|PdA
X

and a critical point of this functional is a harmonic map.
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Theorem 4.5.1 (Eels-Sampson [22],Schoen-Yau [62]). Let X be a closed Riemann sur-

face with x(X) < 0, let M be a hyperbolic surface, and X M oa homotopy-equivalence.
Then f is homotopic to a unique harmonic map. Furthermore this harmonic map is a
diffeomorphism.

The existence and uniqueness are special cases of the much more general theory of
Eels-Sampson [22] which guarantees existence under the assumptions that X is a closed
Riemannian manifold and M is a nonpositively curved complete Riemannian manifold.
They deduce uniqueness when M is assumed to have negative curvature. That the
harmonic map is a diffeomorphism is due to Schoen-Yau [62].

If f is such a harmonic map, then its Hopf differential is a measure to which f fails
to be conformal. Let g;; denote the metric tensor on M; complexify it to obtain a
symmetric complex 2-tensor

C
T°M x T°M 2%, C.
Pull it back to the Riemann surface to obtain a symmetric complex 2-tensor on X. Use

the conformal structure of X to select its (2, 0)-part h(f), which is a smooth section of
the holomorphic line bundle K?. When f is harmonic A(f) is holomorphic.

Theorem 4.5.2 (Tromba [79]). The map
Fx — H'(X;K?)

which associates to a marked hyperbolic surface X — M the Hopf differential of the
corresponding harmonic diffeomorphism is bijective.

Using harmonic maps, the Fricke space of a Riemann surface X identifies with the
complex vector space of holomorphic quadratic differentials on X. In particular the
choice of X imparts a complex structure to Fricke space. The uniformization theorem
identifies the Fricke space of X with the Teichmiiller space ¥sx, which already has a
complex structure biholomorphic to a bounded domain. Hence the complex structures
are different. Indeed, the complex structures on §x corresponding to different Riemann
surfaces X heavily depends on X.

4.6. Dynamics of Fuchsian action on the circle. Closely related to surface group
representations is the fundamental action of a closed surface group 7 on S!. Let ¥
be a closed connected surface with x(X) < 0 and let 7 = 7m(X). A choice of hyper-
bolic structure on ¥ defines a Fuchsian representation of 7 in PSL(2, R), and PSL(2,R)
acts by orientation-preserving projective transformations of RP! ~ S!. The projective
line appears as the ideal boundary OH?, defined synthetically as equivalence classes of
asymptotic geodesic rays. Thus a point in Ty determines a projective action of 7 on
St

This action has many beautiful properties. It is minimal, that is, every orbit is dense,
and it is structurally stable, in that every small C' perturbation of it is topologically
conjugate to it. It intimately relates to the geodesic flow of M as follows. The orienta-
tiond of ¥ induces an orientation on S*. Positively oriented ordered distinct triples of
points in S = dH? correspond to unit tangent vectors on H2. Suppose that (v,,vq,v_)
is such a triple, then v,,v_ are the endpoints at infinity of a unique oriented geodesic
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£. Let p € £ the unique point on £ closest to vg. Then the unit vector v = v(v,, v, v_)
corresponding to (v, vp,v_) is the unit tangent vector at p which is tangent to the
geodesic £ pointing towards v .

Although the action of m on S! is minimal, the action on the invariant open subset
of positively oriented triples (S')3t C S x S! x S is discrete. Its quotient is the unit
tangent bundle UM of the hyperbolic surface.

Exercise 4.6.1. Identify the stable manifolds of the geodesic flow in terms of this
parametrization by S'. Show that the foliation of UM defined by the trajectories of
the geodesic flow depends only on the topology of M and not its hyperbolic structure.
In contrast show that two hyperbolic surfaces whose geodesic flows are conjugate by a
diffeomorphism must be isometric.

Exercise 4.6.2. Show that for different points in §x, these actions are topologically
conjugate. (In fact the conjugating homeomorphism is Hélder continuous.) Show that
two such actions are smoothly conjugate <= they are conjugate in PSL(2,R), that is,
they represent the same point in §x.

This action can be constructed directly just from 7. Namely, giving 7= the word
metric coming from its Cayley graph, S! can be obtained as equivalence classes of
quasi-geodesic rays in m, that is, Lipschitz maps of N into «. If f : X — M is the
harmonic diffeomorphism corresponding to a conformal structure X and a point in Fx,
then lifting f to the universal covering yields a harmonic diffeomorphism

EN /R
which extends continuously to a p-equivariant homeomorphism S' — S*.
In section 8.1 we make use of these structures when we discuss very briefly the notion
of Anosov structures, introduced by Labourie in [57], and its relation to Fuchsian rep-

resentations. Anosov structures play an important role in Labourie’s work on Hitchin
components, but also for maximal representations.

4.7. The Euler class. The Fricke space §x can also be recovered by looking at the
Euler class of a representation 7 2> PSL,(R). Since this point of view then leads to the

more general consideration of maximal representations, it is discussed in Section 7 in
Part II.

5. SL(n,C)-HIGGS BUNDLES

In this section we describe briefly some basic features of Higgs bundles, and why they
are relevant to the subject of this workshop, namely fundamental group representations
in a reductive Lie group G.

As we shall see, a Higgs bundle is a bundle with both a complex (holomorphic)
structure and also a flat structure. The flat structure is the link to fundamental group
representations; the complex structure is responsible for new geometric features on the
moduli space of representations (that is, for non-abelian Hodge theory), and also for the
new tools which Higgs bundles bring to the study of the representations. We consider
representations m = m; (%) & G.
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We now describe in three steps how to get from such a representation to the notion a
Higgs bundle.

5.1. From representations to flat bundles: universal covers and associated
bundles. We have already seen, in sections 2.3 and 2.4 how a representation defines
a G-bundle with a flat connection. Conversely, given a principal G-bundle Fg — X
with a flat connection, the holonomy around loops in ¥ defines a representation of 7 (X)
in the structure group of the bundle, that is, it defines a representation (2.3.2). This
correspondence defines an equivalence of deformation theories between flat G-bundles
over ¥ with G-gauge transformations and Hom(7, G) with inner automorphisms of G.
In particular the quotients spaces Hom(w, G)/G and the space of isomorphism classes
of flat G-bundles over 3.

5.2. From flat bundles to harmonic bundles: what reductivity means. Assume
that G is a reductive Lie group. In general, in order for the space Hom(m(X), G)/G to
have good topological properties, it is necessary to exclude the G-orbits of non-reductive
representations in Hom(m;(3), G). We thus define the moduli space of representations
of m1(X) in G to be the orbit space

R(G) = Hom™ (1,(%),G)/G

of reductive representations. With the quotient topology, R(G) has the structure of an
algebraic variety.

For the sake of definiteness, we explain the case G = SL(n,C). For an arbitrary
reductive Lie group, the reader may consult the survey paper [5]. Let E be a smooth
SL(n, C)-bundle over ¥. Let D be an SL(n,C) connection on E and let Fp be its
curvature. If D is flat then Fp = 0. By the correspondence described above, we get an
identification

(5.2.1) R =R(SL(n,C)) = {Reductive SL(n, C)-connections D : Fp =0}/9°,

where, by definition, a flat connection is reductive if the corresponding representation
of m(X) in SL(n,C) is reductive, and ¥° is the group of automorphisms of E — the
gauge group®.

Now consider Hermitian metrics on E. A metric on E is a smoothly varying choice
of Hermitian inner product on the fibers of the C* vector bundle naturally associated
to E. On each fiber it allows one to define a unitary basis. Moreover, these fiber-wise
unitary bases fit together to form local unitary frames for E. The transition functions
which relate overlapping unitary frames must be unitary transformations. Thus a choice
of Hermitian metric is equivalent to a reduction of structure group from GL(n,C) to
U(n) (or, if orientation is respected, from SL(n,C) to SU(n)). This can equivalently
be described as a choice of section for the bundle E Xg ¢, ) SL(n,C)/SU(n), i.e the
associated bundle with fiber SL(n, C)/SU(n).

This point of view is particularly useful if E has a flat structure, that is, if E = E,
for some representation © 2 SL(n, C) (as in §2.3). Then

(5.2.2) E Xsi(n,c) SL(n,C)/SU(n) = (£ x SL(n,C)/SU(n))/p(r)

2Thus orbits of ¥¢ correspond to isomorphism classes of flat bundles
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and a section A of E x5 (nc) SL(n, C)/SU(n) lifts to the graph of m-equivariant map

(5.2.3) S 2y SL(n,C©)/SU(n) .

A choice of bundle metric, while independent of a choice of connection, nevertheless
interacts with connections in the following way. We have seen (in section 2.5.3) that
with respect to a local trivialization of E, a connection D is described by

D=d+T
where I' is a sl(n, C)-valued 1-form. The metric defines a decomposition
(5.2.4) sl(n, C) = su(n) @& Sym(n)

where Sym(n) denotes the vector space symmetric 7 x n matrices. We thus obtain a
decomposition (which depends on the metric)

'=A+4+V

We denote the metric by h, and the resulting SU(n) bundle by Ej. It is not hard to
see that the local expressions d + A define an SU(n)-connection on E;, while ¥ defines
a 1-form with values in ad(Ep). Thus every SL(n, C)-connection D on E decomposes
uniquely as

(5.2.5) D=d,+ 7,
where d4 is an SU(n)-connection on E; and ¥ € Q!(2, ad(Ep)).

Let F4 be the curvature of d4. The flatness of D, that is, the condition Fp = 0, is
then equivalent to the conditions

da¥ = 0.

(5.2.6)

If D is flat, then the metric is given by a m;-equivariant map as in (5.2.3). There is a
good notion of harmonicity for such maps. For this, we choose a Riemannian metric on
Y. This lifts to a Riemannian metric on 3, and the the target space SL(n,C)/SU(n) is a
Riemannian symmetric space. The one-form ¥ can be identified with the differential of
h, and d4 with the pull-back of the Levi-Civita connection on SL(n, C)/SU(n). Hence,
the harmonicity condition of & expressed in terms of D and its decomposition (5.2.5)
becomes

(5.2.7) 450 =0,

where d%, the adjoint of the covariant derivative operator, is defined using the metric
h and the metric on X. Actually, this condition only depends on the conformal class of
the Riemannian metric of X.
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As a set of conditions for the pair (d4, V), the equations (5.2.6) and (5.2.7) are
invariant under the action of ¢, the gauge group of E;. A theorem of Donaldson [20]
in rank 2 and Corlette for arbitrary rank [17] says the following.

Theorem 5.2.1. There is a homeomorphism
(5.2.8) {Reductive G-connections D with Fp = 0}/%°
(5.2.9) =~ {(da, V) satisfying (5.2.6) and (5.2.7)} /9.

Theorem 5.2.1 asserts that the @°-orbit of every reductive flat SL(n, C)-connection,
say Dy, contains a flat SL(n,C)-connection D = g¢(Dy) such that if we write D =
ds + ¥, the additional condition d%¥ = 0 is satisfied. This can be interpreted more
geometrically in terms of the reduction A’ = g(h) of E to a SU(n)-bundle obtained by
the action of g € ¥° on h. Equation d%¥ = 0 is equivalent to the harmonicity of the
71 (X)-equivariant map X — SL(n,C)/SU(n) corresponding to the new reduction of
structure group A'.

Define a harmonic SL(n, C)-bundle to be a flat SL(n, C)-bundle (E, D) with a har-
monic reduction of structure group to SU(n), that is, with a reduction A to Ej such
that the induced decomposition D = d4 + V¥ yields a pair (da, ¥) satisfying (5.2.6) and
(5.2.7).

5.3. From harmonic bundles to Higgs bundles: the holomorphic picture. On
> a conformal structure and a complex structure are equivalent and we will show now
that harmonic bundles can be described in holomorphic terms; the result is a stable
SL(n, C)-Higgs-bundle.

Let X be the Riemann surface defined by X with its complex structure. Using the
complex structure on X, we can decompose the covariant derivative d4 into (0, 1) (that
is, anti-holomorphic) and (1,0) (that is, holomorphic) parts, that is, we can write

dy = 8_,4 + dS,O).
Furthermore, the section ¥ € Q(X, ad(Ey)) can be written as

U =% — (),

where ® € Q"°(X, ad(E)) and 7 is the conjugation on sl(n, C) defining its compact real
form, i.e 7(®) = —®*. The defining equations for the harmonic bundle, that is, (5.2.6)
and (5.2.7), then become

9 =0=[2,Q]
(5.3.1) 04® =0
Fy—[®,7(®)] = 0.
The conditions on the first line are automatic since the complex dimension of X is one.

In any case, the condition 9% = 0 says that the operator 04 defines a holomorphic
structure on the SL(n,C)-bundle E. The condition 04® = 0 then says that ® is a



28 BRADLOW, GARCfA-PRADA, GOLDMAN, AND WIENHARD

holomorphic section of ad(E) ® K x, where K x is the canonical bundle on X. This leads
directly to the notion of a (SL(n, C)-) Higgs bundle, namely

Definition 5.3.1. An SL(n,C)-Higgs bundle over X is a pair (£,P) where £ is a
holomorphic principal SL(n, C)-bundle and ® is a holomorphic section of ad(€) @ Kx.

For those who prefer to work with vector bundles, rather than principal bundles, we
can replace this definition with the following:

Definition 5.3.2. An SL(n, C)-Higgs bundle over X is a pair (E,®) where E is a rank
n holomorphic vector bundle with trivial determinant and ® € H°(X,ad(F) ® Kx),

where ad(E) is the adjoint sl(n,C)-bundle (that is, ® is a traceless endomomorphism

Such Higgs-bundles where introduced by Hitchin in [49]°.

The holomorphic vector bundle E can be viewed as a smooth vector bundle together
with a a 0-operator Og. If we fix the underlying smooth bundle, then the Higgs bundles
correspond to pairs (Og, ®). We will use this description interchangeably with the
notation (E,®). Now given a metric A on the smooth bundle, there is a bijective
correspondence between operators dg and connections d4. The last condition in (5.3.1)
can thus be read as a condition for a metric on the Higgs bundle (0z, ®). Here’s where
things get interesting: In ([49]) Hitchin showed how to construct a moduli space of such
Higgs bundles. This moduli space is meant to be a nice geometric object whose points
parameterize isomorphism classes of Higgs bundles.

As is well known from the corresponding construction for plain holomorphic bundles,
the construction of such a moduli space requires the exclusion of certain ‘bad’ classes
from the set of all isomorphism classes. The precise definition of ‘bad’ is inspired by
the concept of stability in Geometric Invariant Theory [69, 71]

To define stability we will relax the condition of E having trivial determinant and
consider Higgs bundles (E, ®) consisting of a holomorphic vector bundle E and ® €
H°(X,End(E) ® Kx). For simplicity we will consider only the case in which degE = 0.

Definition 5.3.3. Let (E,®) be a Higgs bundle such that degE = 0. Then (E,®) is
stable <= V ®-invariant subbundle E' C F,

(5.3.2) deg(E") < 0.

Here ®-invariant means that ®(E') C E'® Kx. The Higgs bundle is semistable :<=>
(5.3.2) holds as a weak inequality, and is polystable :<=> it decomposes as a direct sum
of stable Higgs bundles of degree 0.

Note that if (E, ®) is a polystable SL(n, C)-Higgs bundle, the vector bundles in the
various summands need not have trivial determinant. Let M be the moduli space M
of polystable SL(n, C)-Higgs bundles. In [49] Hitchin gave an analytic construction of
M in the rank 2 case *. In this situation, M is an irreducible quasiprojective algebraic

3Actually in [49] Hitchin doesn’t use the term ‘Higgs bundle’, but does introduce the name ‘Higgs
field’ for @; the name ‘Higgs bundle’ was introduced by Simpson.
“A GIT construction was given later by Nitsure for arbitrary rank [72].
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variety of complex dimension 6g — 6, where g is the genus of X, which is assumed to
satisfy g > 2. The set of stable points defines a dense open smooth subvariety. Hitchin
(for rank 2) [48] and Simpson (for arbitrary rank) [73] proved the following crucial - for
us - theorem.

Theorem 5.3.4. An SL(n,C)-Higgs bundle (E,®) is polystable if and only if E admits
a Hermitian metric with respect to which the corresponding pair (da,®) satisfies Fy —
[®,7(®)] = 0. This metric is unique up to SU(n)-gauge transformations.

It follows from this that

Theorem 5.3.5. There is a homeomorphism

(5.3.3) M 2 {(da,®) satisfying (5.3.1)}/¥9.

To complete the circle we just need the following.

Proposition 5.3.6. The correspondence (da, ®) — (da, ¥ := ® — 7(®)) defines a
homeomorphism

(5.3.4) {(da, ®) satisfying (5.3.1)}/9 = {(da, V) satisfying (5.2.7)}/9.

(5.2.1), (5.2.8)), (5.3.3)), and (5.3.4) together imply the following fundamental result:
Theorem 5.3.7. The varieties M homeomorphic.

Remark 5.3.8. Notice that the complex structures of M and R are different. The
complex structure of M is induced by the complex structure of X, while that of R is
induced by the complex structure of SL(n, C).

We have thus seen that SL(n, C)-Higgs bundles are the objects of the Dolbeault theory
corresponding to the Betti theory of SL(n, C)-representations and the de Rham theory
of flat SL(n, C)-connections. The Dolbeault theory relates to the de Rham theory via
Hodge theory of harmonic objects — Hermitian metrics arising as solutions to the self-
duality equations.

Part 2. SL, as guiding example
6. Hicas BUNDLES AND SU(2) AND SL(2,R) REPRESENTATIONS OF 7y (X)

In this section we restrict to the case n = 2 and describe some more specific features
and applications of Higgs bundles, which will also generalize to a bigger class of Lie
groups G (see [3, 4, 5, 29, 30, 31, 41, 48, 49, 83]).

6.1. SL(2,C)-Higgs bundles and real forms. In this section R = R(SL(2,C) and
M is the moduli space of polystable SL(2, C)-Higgs bundles.

The Narasimhan-Seshadri Theorem 3.4.3 identifies the moduli space of representa-
tions of 71 (X)) in SU(2) with the moduli space of polystable rank 2 vector bundles with
trivial determinant. This defines a subvariety of M consisting of Higgs bundles with
d =0.
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Our goal now is to identify also the moduli space of SL(2,R) representations 7 (X),

that is,
R(SL(2,R)) := Hom™ (7, (X),SL(2,R))/SL(2,R),

in terms of Higgs bundles. In fact, we will see that both moduli spaces of SU(2) and
SL(2,R) representations appear as fixed points of a certain antiholomorphic involution
in R.

Before doing that we recall that there is a topological invariant that one can attach
to an element in R(SL(2,R)). This is the Euler class d € Z of the corresponding flat
SL(2,R)-bundle. We can then define the subvarieties

Rq:={p € R(SL(2,R)) : with Euler class d}.

By Milnor [65], Rq = () unless |d| < g — 1.

It turns out that the conjugations with respect to both real forms, SU(2) and SL(2, R),
of SL(2,C) are inner equivalent and hence they induce the same antiholomorphic invo-
lution ¢ : R — R, where we recall that the complex structure of R is that naturally
induced by the complex structure of SL(2,C). To be more precise, at the level of Lie
algebras, the conjugation with respect to the real form su(2) is given by the C-antilinear
involution

7 :5l(2,C) — sl(2,C)
A - A,
while the conjugation with respect to the real form sl(2, R) is given by the C-antilinear
involution

o:sl(2,C) — sl(2,C)
A A
Now,
a(A) = Jr(A)J!

J— 0 1 _
-1 0

This is simply because for every A € sl(2, R), one has that
(6.1.1) JA=—A"J.
Under the correspondence M = R , the antiholomorphic involution of R defined by 7
and o becomes the holomorphic involution M <+ M given by
(6.1.2) (E,®) — (E,-9),
where we recall that the complex structure of M is that induced by the complex struc-

ture of X. This follows basically from the fact that the flat SL(2, C)-connection D
corresponding to (Og, ®) under Theorem 5.3.7 is given by

D:(§E+T((§E)+@—T(q>),

for J € sl(2,R) given by

and then

E
(E, —®). Notice also that 7(D) = o(D).
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Proposition 6.1.1. There is a commutative diagram
M —— M

«| |

where the vertical arrows correspond to the homomorphism between M and R.

The fixed points of ¢ are of two types:
Type 1: (E,®) € M such that & = 0.
Type 2: (E,®) € M such that E = L & L™*, where L is a holomorphic line bundle

and
()
v 0

where 8 € HY(X, L?Kx) and v € H°(X, L?Kx). This is clear since the gauge trans-

formation (Z 0 ) brings (E, ®) to (E,—®).
0 —

The subvariety of fixed points of the first type is identified with the moduli space
of polystable rank 2 vector bundles with trivial determinant, and corresponds to the
moduli of representations of 71(X) in SU(2), as well-know by the already mentioned
theorem of Narasimhan and Seshadri [70],

As for the second type, the degree of L allows us to define the moduli space My of
Higgs bundles as above with fixed degl. = d. Here the natural gauge transformations
are C*-transformations, that is, those of L. Allowing SL(2, C)-transformation naturally
identifies My and M _; inside M. Now, the semistability condition gives a constraint
on the possible degrees that L may have, namely, we must have

(6.1.3) d) < g— 1.

This can be seen very easily. Assume that d > 0 (similar argument for d < 0). Suppose
that d > g — 1. Then v = 0 and L is a ®-invariant line subbundle of E. By the
semistability of (E, ®) we must have that d < 0 which gives a contradiction.

We thus have the following.

Theorem 6.1.2. R, is homeomorphic to My.

The moduli space of representations of 7 (X) in SL(2, R) was studied by Goldman
[33, 35], who showed that for d satisfying |d| = g — 1 there are 2%¢ isomorphic connected
components that can be identified with Teichmiiller space, and showed that for d such
that |d| < g — 1 there is only one component. In [49] this was also proved by Hitchin,
who also gave a very explicit description of each component.

iFrom the description of M, as the set of equivalence classes (L, #,7) where L is a
line bundle of degree d and

Be H (X, I’Kx), ~v€HX,L*Kx).
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My is the total space of a holomorphic complex vector bundle of rank g + 2|d| — 1 over
a 229-fold covering of the 2g — 2 — 2|d|-symmetric power

Sym2g7272|d|X

of X. To see this, assume that d > 0 (the case d < 0 is similar), then the pair (L, )
defines an element in Sym?9~2724(X), given by the zeros of 7. But if Ly is a line bundle
of degree 0 of order two, that is, L3 = O, then the element (LL,~) defines also the
same divisor in Sym* 2 2¢(X). Hence the set of pairs (L,v) gives a point in the 2%9-
fold covering of Sym?9~2724(X). The section 3 now gives the fiber of the vector bundle.
Notice Riemann-Roch = H'(X,L*Kx) = 0.

. From this proposition we deduce:

e dim M, = 3g — 3,

e M, is connected if |d| < g — 1,

e M, has 2% connected components if |d| = g — 1, each isomorphic to C393
(the fiber of a rank 3g — 3 vector bundle over a 2%9-fold covering of a point!).
This is clear since if degL = g — 1, the line bundle L2 ® Kx is of zero degree
and hence has a section (unique up to multiplicaton by a scalar) if and only if
L7?2® Kx = Oy, i.e. if L is a square root of Kx. For each of the 229 choices
of square root L = K;(/Q, one has a connected component which is parametrized
by 8 € H(X,K%). As explained in Section 6.3, each of these components is
diffeomorphic to Teichmiller space.

6.2. Uniformization and Riemann surfaces. Let p be an orientation-preserving
Fuchsian representation. The developing map defines a diffeomorphism

¥ — M :=H?/p(n)

where M is a compatibly oriented hyperbolic surface. Forgetting the metric but remem-
bering the conformal structure on M is a Riemann surface X for which the corresponding
map X — M is biholomorphic.

Theorem 6.2.1 (Uniformization). Let X be a compact Riemann surface. Then 3!
hyperbolic structure M compatible with the conformal structure on X.

In particular 3 a Fuchsian representation p for which the corresponding map X —
H2/p(7) is biholomorphic.

We shall use both the upper-half plane model H? and the unit disc model D, both sub-
domains of P(C?) which are projectively equivalent. The automorphism group Aut(H?)
identifies with the projective linear group PSL(2,R) and Aut(DD), it identifies with the
projective unitary group PU(1,1).

6.3. Uniformization and vector bundles. We interpret this construction in terms
of holomorphic vector bundles. This requires a lifting of the representation
L SL(2,C),

which is equivalent to the choice of a spin structure on X. The obstruction to lifting
the projective representation p to a linear representation p is the second Stiefel- Whitney
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class
wy(X) € H*(X;Z)
which vanishes since it is the Z/2-reduction of the Euler class of X. Since x(X) = 2—2g
is even, wo = 0 and p lifts.
Let E, be the flat C2-bundle over X with holonomy p. For each z € X, ¢(z) is a line
in C2, and the map X % D defines a holomorphic line bundle L C E.

The canonical line bundle K x is the holomorphic line bundle defined by the cotangent
bundle of X. We claim that L? = K.

To this end, let £ C C? be a line which determines a point, also denoted ¢, of P(C?).
The tangent space naturally identifies
T,P(C?) = Hom(¢, C? /¢).
The SL(2, C)-invariant symplectic structure on C? defines an natural isomorphism
(A=
with the vector space £* dual to £. Since
X 5 P(C?)
is a local biholomorphism, its differential identifies the tangent line bundle K ' with
Hom(L,L™') = L72
Thus L? & Ky,
deg(L)=1-¢g<0.
and F is unstable, destabilized by L.

One approach to obtaining a class of stable objects is to replace E by a stable Higgs
bundle (see Section 5). The holomorphic C*>-bundle E is a nontrivial extension

0—L—FE—L"'"—0

and we replace F by the direct sum V = L & L' with an auxiliary Higgs field. In this
particular case, L? = Ky and the isomorphism defines a holomorphic section ® of

Kx ® Hom(L,L™") ¢ Kx ® End(V)
which is everywhere nonzero.

This section ® is the Hom(L, L™') C End(V)-valued holomorphic 1-form correspond-
ing to the differential of ¢.

The above Higgs bundle is stable since deg(V) = 0 and the only ®-invariant holo-
morphic subbundle is the image L~ C V of ® which has degree 1 — g.

6.3.1. Hermitian metrics and uniformization. The uniformization X 2 D defines the
extra structure of a Hermitian metric on the vector bundle V' as follows. D admits an
Aut(D)-invariant Riemannian metric gp of curvature —1 (a hyperbolic metric, which pulls
back to a 7-invariant hyperbolic metric ¢*gp on X, and hence a hyperbolic metric on
X. This Riemannian metric on X is compatible with the conformal structure on X and
therefore defines a Hermitian metric on the holomorphic line bundle K~! corresponding
to the tangent bundle TX. Furthermore this Hermitian structure defines Hermitian
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metrics on all bundles associated to Kx, such as L and V. In particular the Hermitian
metric hy on V' plays a crucial role in the Higgs bundle machinery as follows.

6.3.2. Two decompositions. The original flat vector bundle E has a holomorphic struc-
ture D" arising from the flat connection D. However, the holomorphic vector bundle
underlying the Higgs bundle corresponding to E' is quite different. Namely, let D, be
the unique Hermitian connection preserving hy. Its (0,1)-part D} is a holomorphic
structure.

Thus we have used the Hermitian metric h to decompose the original flat connection
into a skew-Hermitian part Dj,, which is the Hermitian connection, and a Hermitian
(self-adjoint) part ¥, which is an End(E)-valued 1-form (in fact its values are endomor-
phisms which are self-adjoint with respect to h):

D =D,+ 0.
The complex structure on X provides further decompositions
D, =D, + D}
U =2+ "

where & — the Higgs field — is the (1,0)-part of ¥ and the (0, 1)-part of ¥ equals the
adjoint of ® with respect to h.

We continue to consider the holomorphic C?-bundle V = L@ L~!. The vector bundle
End(V) decomposes as a direct sum

End(V) = Hom(L, L) ® Hom(L, L™!)
® Hom(L ™, L) ® Hom(L ™', L ).
A Higgs field ® € Q'(X,End(V) decomposes as a 2 X 2 matrix of holomorphic 1-forms

3, %]
@21 (DZQ

where ®1; is a holomorphic section of Kx ® Hom(L, L) = Kx, where ®,5 is a holomor-
phic section of Kx ® Hom(L, L™!) 2 C, where ®y; is a holomorphic section of Ky ®
Hom(L=!,L) = K%, and where ®y, is a holomorphic section of Kx ® Hom(L™!, L~!) =
Kx. For simplicity we assume that the holomorphic 1-forms

(I)ll = CI)22 =0.

If &5 vanishes somewhere, then it vanishes identically, and L destabilies Higgs bundle
(V,®). Hence we assume that @y, is everywhere nonzero. Thus the Higgs field is com-
pletely determined by precisely by ®4;, which corresponds to a holomorphic quadratic
differential, that is, a holomorphic section of K%.

7. INVARIANTS OF REPRESENTATIONS - THE EULER NUMBER

When 7 is the fundamental group of a closed oriented surface (that that is, £k = 0),
one source of invariants of representations m — G are characteristic classes. The
characteristic classes of the flat principal G-bundle over ¥ determine invariants of 7 —
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G. When G is a connected Lie group, the only invariants lie in H?(3, m,(G)), and they
are given by an obstruction map

Hom(m, G) 2 H*(X, m(Q)) = 7.(G).

In particular, nonzero characteristic invariants exist only if 7;(G) is nontrivial. The
fundamental group of G = PSL(2,R) is infinite cyclic; the corresponding obstruction oy
is the Euler number of the associated RP!-bundle over X:

Hom(T, G) = Z.

7.1. Central Extensions. The Euler number is the obstruction to trivialize the RP'-
bundle over ¥ associated to 7 — PSL(2,R). Trivializing the RP'-bundle over ¥ is
essentially the same as lifting the structure group from PSL(2, R) to the universal cover
PSL(2,R). Consider the central extension

—~——

(7.1.1) 0 — Z — PSL(2,R) — PSL(2,R) — 1.

When we present 7 by its standard presentation (1.1) and try to lift the representation

7 — PSL(2,R) to a representation 7 — PSL(2,R). Thus we consider commutators [, h]

——

in PSL(2, R) of the lifts of two elements g, h € PSL(2, R) to PSL(2,R) Since the extension
(7.1.1) is central, the commutator [g, k] does only depend on g, h € PSL(2,R), producing
a lifted commutator map

—_

PSL(2,R) x PSL(2,R) s PSL(2, R).
The Euler number of 7 % PSL(2,R) equals
e(p) = [p(A1), p(B1)]™ ... [p(Ag), p(By)]™
€ Z = m(PSL(2,R))

and satisfies the Milnor-Wood-inequality [65, 82]:

e(p)] < 20— 2
To understand the space of homomorphisms Hom(w, G) it is often useful to decompose
Hom(m, G) into simpler pieces Hom(7, G), where 7(*) are the fundamental groups of
the subsurfaces ¥; in a decomposition ¥ = ¥; U ---U Y, and we would like that the

Euler class, similar to the Euler characteristic, is additive under this decomposition.
Given a representation 7 £ PSL(2, R) with restrictions

7 Ty PSL(2,R)
the total Euler class is additive:

e(p) =e(p1) + -+ e(p).
For this we first have to understand the Euler number for a representation 7 —
PSL(2,R) when 7 is the fundamental group of a surface with nonempty boundary, that
is, if £ > 0. In this case 7 is isomorphic to a free group of rank 2¢g+k—1 and in particular,
there are no invariants coming from characteristic classes, since H%(Z, 71 (Q)).

One way around this is to consider the relative Euler number of the the RP!-bundle
over X, relative with respect to fixed trivializations along the boundary. This requires
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to prescribe some conditions for the holonomy around the boundary. ([35]). We will
describe another definition/formular for the Euler number involving “translation num-
bers” (and rotation numbers).

7.2. Quasimorphism/Translation number. PSL(2,R) acts on S' = RP! by rota-

tions. This action lifts to an action of PSL(2,R) on R = ST by translation. Let us recall

how the translation number of an element § € PSL(2,R) and the rotation number of
an element g € PSL(2,R) can be recovered from the central extension (7.1.1). Central
extensions of G' by Z are classified by second cohomology classes [c] € H?(G,Z). In
particular, the central extension (7.1.1) is given by a cocycle:

PSL(2,R) x PSL(2,R) = Z
(9.h) > cly,h).

—~—

This means that we can identify PSL(2, R) as a set with PSL(2,R) x Z, where the group
multiplication is defined by

(g7 m) : (h’ n) = (gha m+n+ C(g; h))
The associativity of this group multiplication is precisely the cocycle condition for c.

An important feature is now that our central extension (7.1.1) is indeed given by a
bounded cocycle, that is,

sup |c(g,h)| =D
9,hEPSL(2,R)

for some D € N. This implies that the function which is the projection onto the second
factor

PSL(2,R) = PSL(2,R) x Z %> Z

g=(g,m) — m,
is a quastmorphism, that is,
sup |f(g,h) — f(9) — f(R)| = sup e(g,h)|=D.
9,hEPSL(2,R) 9,hEPSL(2,R)

In particular the homogeneization

—~—

rot: PSL(2,R) — R

g + rot(g) = lim Hg")

n—oo N

is well defined. Moreover rot is a continuous quasimorphism, which is a homomorphism

on cyclic subgroups and is invariant under conjugation. Let § € PSL(2, R), then rot(§j)
is the translations number of g.

Note that rot is actually equivariant with respect to the action of Z by decktransfor-

mations on PSL(2, R) and by translation on R, so that it induces a continuous map, the
rotation number function:

PSL(2,R) =% S' = R/Z.
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7.3. The Euler number revisited. Now we have all our tools to define the Euler
number of a representation p : # — PSL(2,R), when 7 is the fundamental group of
a surface with boundary. We assume that £ > 0, so that 7 is isomorphic to the free

group. There is no obstruction to lift the representation p to PSL(2,R), so let us just
choose a lift

—~——

(7.3.1) p:m— PSL(2,R).
We again consider 7 in its standard presentation given in (1.1).

Definition 7.3.1. The Euler number of the representation p is
n

(7.3.2) e(p) === _rot(p(c;) € R.

=1

The reader may check that this definition is independent of the lift chosen in (7.3.1).

Let us emphasize that since we use the presentation of 7, the Euler number is not
an invariant of a the free group isomorphic to 7, but depends on how this free group is
realized as fundamental group of a surface.

7.4. Properties of the Euler number. Now that we have a definition of the Euler
number for a representation of any surface group 7 let us state some properties, proofs
of which can be found in [65, 33, 9].

Proposition 7.4.1. (1) The Euler number e : Hom(w,PSL(2,R)) — R is a contin-
uwous real valued function.
(2) The Euler number is additive under admissible decompositions of surfaces: e(p) =
e(p1) + e(p2) (see above discussion).
(3) The Euler number is bounded |e(p)| < (29 — 2 + k).
(4) The Euler number satisfies the congruence property e(p) = — Y. rot(p(c;))
mod Z.

7.5. Representations with maximal Euler number. We will now focus on Prop-
erty (3), by making the following definition.

Definition 7.5.1. A representation p : m(3,) — PSL(2,R) is said to be maximal if
e(p) =29—2+k.

With these representations of maximal Euler number we recover uniformizations:

Theorem 7.5.2. Let p : 1 — PSL(2,R) be mazimal. Then p is the holonomy ho-
momorphism of a complete hyperbolic structure on X. In particular, p is discrete and

faithful.

This result was proven by Goldman [33, 35] under the assumption of some boundary
condition; without any boundary condition it is proved by Burger and lozzi [6].

An important step to prove this theorem is to transfer the maximality of the Euler
number of the representation p to a a more geometric “maximality”. The theorem is
basically proven if we show that given a maximal representation p there exists a semi
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continuous p-equivariant orientation-preserving map S' — S* = RP!, where for sake of
simplicity 7 acts on the left side by identifying Om with an oriented circle S'.

Indeed the existence of such a map completely characterizes maximal representations.

Theorem 7.5.3. Let 7 2 PSL(2,R) be a homomorphism. Then p is mazimal if and
only if there exists a semi-continuous orientation-preserving p-equivariant map

or=5'% 8,
where Om 1s the boundary of Or with its natural action by .

To give an idea how the maximality of the Euler number is related to orientation
preserving maps, we have to discuss a little bit the geometric origin of the cocycle ¢
which defined the central extension (7.1.1) which was so essential in our definition of
the Euler number.

7.6. The orientation cocycle. Let D C C be the Poincaré disk and consider the
boundary 0D = S' with a fixed orientation.

Let us define the orientation cocycle
S'xS'x S5z

which associates 1 to a positively oriented triple, —1 to a negatively oriented triple
and 0 two a triple on non-pairwise distinct points.

Remark 7.6.1. (1) Note that the 5(z,y,2) is equal to i times the volume of the
ideal triangle in D spanned by z,y and z. Indeed the orientation cocycle, and
can be obtained by extending the volume function, which assigns to an ordered
triple (z,v, z) € D® the volume of the unique geodesic triangle they determine.

(2) An orientation preserving map from S* — S! is a map which send every posi-

tively oriented triple to a positively oriented triple.

The action of PSL(2, R) on D extends continuously to an action by orientation preserv-
ing homeomorphism on the boundary D = S!. Fixing a point 2, € S the orientation
cocycle gives rise to a cocycle

PSL(2,R) x PSL(2,R) & Z
(gah) '_)ﬂ(z()agZOathO)a
which is obviously bounded. This cocycle is essentially the cocycle ¢ corresponding
to the central extension in (7.1.1).

Relating these different description of this bounded cocycle ¢’ then allows one to apply
techniques from bounded cohomology, for which we refer the reader to in [11, 7, 50] (the
techniques nedded for maximal representation are also reviewed in [9] and [8]). This
techniques enable us to derive from the maximality of the Euler number that there exists
a p-equivariant measurable map S' 2 S' such that for almost all positively oriented
triples (z,y,2) € S x S* x S! the following integral formula holds

/\PSL(2 R) Be(gz), ¢(gy), p(g2)du(g) = 1.
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Since supgiygi4gt || = 1. This implies that the p-equivariant orientation preserving
map St — S! exists “measurably”. Then there is still some work to do to promote this
to a semi-continuous map.

7.7. Generalization - Representations of maximal Toledo invariant. What we
described for the Euler number and maximal representation generalizes to representation
p: 7™ — G when G is a simple Lie group with 7, (G) = Z, which is the case when G is the
isometry group of a Hermitian symmetric space. To learn about the general case we refer
the reader to [9] or to [8], a survey about maximal representations p : 7 — Sp(2n, R)
into the symplectic group.

Let us just remark that these general maximal representation are discrete and faith-
ful. Moreover, there is a characterization of maximal representations similar to the
characterization in Theorem 7.5.3.

To define a generalization of a positively oriented triples in S*, the orientation cocycle
on S! is replace by the Maslov cocycle on the Shilov boundary S of the Hermitian
symmetric space X associated to G. The Maslov cocycle is a function

Sxsx3$%u
which can also be realized as extension of the integral of the Kédhler form over geodesic
triangles in X. The Maslov cocycle satisfies

sup |A| < rankg(X),

S3
where rankg(X) denotes the R-rank of X. So that we can call a triple (z,y,z) € S
mazimal if B(z,y,z) = rankg(X). When S = S' the Maslov cocycle is precisely the
orientation cocycle and maximal triples are positively oriented triples. For more details
on the Maslov cocycle the reader is refered to [15, 14]

8. HITCHIN COMPONENTS AND POSITIVE OR CONVEX REPRESENTATIONS

In this section we describe the moduli space 7 (X) of complete hyperbolic structures
from two other perspectives which relate to the study of Hitchin components and posi-
tive representation.

8.1. Anosov representations and Hitchin components. The geodesic flow of a
hyperbolic metric on a closed surface ¥ is Anosov. This Anosov property can be used
to describe T (X).

Let us assume that 7 is the fundamental group of a closed surface and p : m —
PSL(2,R) be a representation. We choose a hyperbolic metric on X, such that the
universal covering f; is identified with D.

The geodesic flow g; on the unit tangent bundle T'D gives rise to a flow §;” on the
total space of the flat R%-bundle E? := T'D x R? over T'D, where G;”(u,x) = (gsu, ),
commuting with the diagonal 7-action given by y(u,z) := (yu, p(y)z). Hence G,
descends to a flow g/ on the quotient E? := I'\(7T'D x R) which is a flat R*-bundle over
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the unit tangent bundle T'Y. Note that this is indeed the flat bundle associated to the
representation 7, (T'%) — 7 2 PSL(2, R).

The projection
(8.1.1) p: B’ - T'S,

is then equivariant with respect to the g/-action on E” and to the action of the geodesic
flow g; on T'%,.

Definition 8.1.1. The representation p : I'y — PSL(2,R) is said to be an Anosov
representation if there erists a gl -invariant continuous splitting of EP into two line
bundles E° = L™ & L~ and constants A, B > 0 such that

llg?€ll < e ||€|| for all € € LT

and

lg” &Il < e M|€]| for all & € L™,
for all t > 0.

If p is an Anosov representation we get a a continuous, non-constant, p-equivariant
curve £ : Om — S', where Or is identified with the space of stable (or unstable) leaves
of the geodesic flow g; on T'%,.

The relation between Anosov representations and holonomy representations of hyper-
bolic structures is given by the following fact.

Proposition 8.1.2. Let p : @ — PSL(2,R) be a representation. Suppose that there
erists a continuous, non-constant, p-equivariant curve & : On — S* then p is a discrete
and faithful representation.

Proof. Note that the action of a non-trivial normal subgroup A < 7 on 07 is minimal
(that is, every orbit is dense). If Kerp were nontrivial, the curve £! were constant, which
contradicts the hypothesis. Thus p is faithful. Moreover since 7 acts minimally on
(Om x Or) — diagonal, £ is also injective, and p(7)-is split over R. Proper Lie subgroups
of PSL(2,R) are virtually solvable, so the faithful representation p has Zariski dense
image. A Zariski dense subgroup of a simple Lie group is either dense or discrete. Since
p(m) does not intersect the open set of elliptic elements nontrivially it is not dense.
Hence p(r) is discrete. O

8.1.1. Definition of the Hitchin component. The Hitchin component in Rep(w, G) was
defined by Hitchin [49] for all split real Lie groups, that is,. G = PSL(n,R), Sp(2n,R),
SO(n,n+1), SO(n,n) and expectional cases, where he also showed - using Higgs bundle
methods - that Repy;, (7, G) is homeomorphic to a ball of dimension —x/(X) dim(G).

Remember that maximal representations were defined when G is the isometry group
of a Hermitian symmetric space The only group for which both, Hitchin components
and maximal representations are defined is Sp(2n, R).
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Let us focus on G = PSL(n,R). Then the Hitchin components Rep,, (7, PSL,(R)) C
Rep(m, PSL,(R)) is the connected component of Rep(m,PSL,(R)) containing a repre-
sentation

pirr © L= ™ — PSL,(R),

obtained as the composition of the inclusion ¢ : 7 — PSLy(R) as a uniform lattice with
the n-dimensional irreducible representation p;. : PSLy(R) — PSL,(R).

Introducing the notion of Anosov representations p : @ — PSL(n, R) in [57], Labourie
showed that all representations in the Hitchin component are discrete, faithful and
semisimple.

8.1.2. Characterization via convez curves. Combining work of Labourie [57] and Guichard
[45], representations in the Hitchin component are characterized by convez curves into
projective space. A curve

£:0m — RP"!

is said to be convex ° if for every n-tuple (¢, ...,t,) of pairwise distinct points t; € Om
the lines £(t;) are in direct sum

@ﬁ(ti) = R".

Convex curves £ : Or — RP? are precisely injective curves which parametrize the
boundary of a strictly convex domain in RP2.

Theorem 8.1.3 (Labourie [57], Guichard [45]). Let p : 1 — PSL,(R)) be a representa-
tion. Then p is in Hitchin component Rep (7, PSL,(R)) if and only if there exists a
p-equivariant convex curve & : Om — RP" 1,

This characterization is very similar to the characterization of maximal represen-
tations. The similarity becomes even more apparent if convex curves are related to
positive curves into flag varieties, mentioned below.

8.2. Shear coordinates and positive representations. Assume for simplicity that
we have a surface Y with exactly one puncture and let us choose a triangulation of 3
with the only vertex being the puncture. Given a complete finite volume hyperbolic
structure on 3 we can lift the triangulation to an ideal triangulation of the universal
cover > ~ ID. To every edge e of the triangulation we can associate now a positive
real number. Let 1,72, 73,74 € RP! be the four vertices of the ideal triangles sharing
the edge e. We associate to e the exponential of the cross ratio of z1, x9, x3, 4. This
defines shear coordinates on T (X). Given a positive real number for every edge of our
triangulation of ¥, we can construct a hyperbolic structure, by first identifying every
triangle with the unique ideal hyperbolic triangle and then gluing any ideal triangles,
adjacent in e in such a way that the crossratio of the four endpoints will give rise to the
number associate to the edge e.

Note that in [57, 44, 45] convex curves are called hyperconvex curves.
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8.2.1. Positive representations. Fock and Goncharov generalized this idea of shear co-
ordinates to define the set of positive representations of m into any real split simple Lie
group G. For G = PSL(n,R) these generalized shear coordinates can be describe in a
nice geometric way.

We refer the reader to [25] for a review of shear coordinates from their point of view, to
[26] for a geometric description of the generalized shear coordinates when G' = SL(3, R)
and to [24] for the general case.

The Fock-Goncharov coordinates give rise to more structures on the set of positive
representations related to cluster algebras, and admit a natural quantization.

8.2.2. Characterizations via positive curves. Let us emphasize that parallel to the above
discussion for maximal representations and Hitchin components, positive represesenta-
tions of Fock and Goncharov can be described similar as the above in terms of “positve
maps”. Without giving any definition we mention that for example for G = PSL(n, R)
there exists a notion of positive triples of flags in Flag(R").

Theorem 8.2.1 (Fock-Goncharov [24]). Let p : @ — PSL(n,R) be a representation.
Then p is a positive representation if and only if there exists a (semi-continuous) curve
£:0m =8t = Flag(R") sending positively oriented triples in S to positive triples of
flags. In particular, every positive representation is discrete and faithful.

9. REMARKS

There are many topics, developments, generalizations and questions which we could
not touch in this short introduction. You are invited to check the list of references for
further topics and to discuss during the workshop ....
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